101
|
Yan B, Ran X, Gollu A, Cheng Z, Zhou X, Chen Y, Yang ZJ. IntEnzyDB: an Integrated Structure-Kinetics Enzymology Database. J Chem Inf Model 2022; 62:5841-5848. [PMID: 36286319 DOI: 10.1021/acs.jcim.2c01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Data-driven modeling has emerged as a new paradigm for biocatalyst design and discovery. Biocatalytic databases that integrate enzyme structure and function data are in urgent need. Here we describe IntEnzyDB as an integrated structure-kinetics database for facile statistical modeling and machine learning. IntEnzyDB employs a relational database architecture with a flattened data structure, which allows rapid data operation. This architecture also makes it easy for IntEnzyDB to incorporate more types of enzyme function data. IntEnzyDB contains enzyme kinetics and structure data from six enzyme commission classes. Using 1050 enzyme structure-kinetics pairs, we investigated the efficiency-perturbing propensities of mutations that are close or distal to the active site. The statistical results show that efficiency-enhancing mutations are globally encoded and that deleterious mutations are much more likely to occur in close mutations than in distal mutations. Finally, we describe a web interface that allows public users to access enzymology data stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-driven modeling in biocatalysis and molecular evolution.
Collapse
Affiliation(s)
- Bailu Yan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Xiang Zhou
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yiwen Chen
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37205, United States
| |
Collapse
|
102
|
Abstract
Carbenes are highly reactive compounds with unique value to synthetic chemistry. However, a small number of natural enzymes have been shown to utilize carbene chemistry, and artificial enzymes engineered with directed evolution required transition metal ions to stabilize the carbene intermediates. To facilitate the design of broader classes of enzymes that can take advantage of the rich carbene chemistry, it is thus important to better understand how to stabilize carbene species in enzyme active sites without metal ions. Motivated by our recent studies of the anaerobic ergothioneine biosynthesis enzyme EanB, we examine carbene-protein interaction with both cluster models and QM/MM simulations. The cluster calculations find that an N-heterocyclic carbene interacts strongly with polar and positively charged protein motifs. In particular, the interaction between a guanidinium group and carbene is as strong as ∼30 kcal/mol, making arginine a great choice for the preferential stabilization of carbenes. We also compare the WT EanB and its mutant in which the key tyrosine was replaced by a non-natural analogue (F2Tyr) using DFTB3/MM simulations. The calculations suggest that the carbene intermediate in the F2Tyr mutant is more stable than that in the WT enzyme by ∼3.5 kcal/mol, due to active site rearrangements that enable a nearby arginine to better stabilize the carbene in the mutant. Overall, the current work lays the foundation for the pursuit of enzyme designs that can take advantage of the unique chemistry offered by carbenes without the requirement of metal ions.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
103
|
Athavale SV, Gao S, Das A, Mallojjala SC, Alfonzo E, Long Y, Hirschi JS, Arnold FH. Enzymatic Nitrogen Insertion into Unactivated C-H Bonds. J Am Chem Soc 2022; 144:19097-19105. [PMID: 36194202 PMCID: PMC9612832 DOI: 10.1021/jacs.2c08285] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective functionalization of aliphatic C-H bonds, ubiquitous in molecular structures, could allow ready access to diverse chemical products. While enzymatic oxygenation of C-H bonds is well established, the analogous enzymatic nitrogen functionalization is still unknown; nature is reliant on preoxidized compounds for nitrogen incorporation. Likewise, synthetic methods for selective nitrogen derivatization of unbiased C-H bonds remain elusive. In this work, new-to-nature heme-containing nitrene transferases were used as starting points for the directed evolution of enzymes to selectively aminate and amidate unactivated C(sp3)-H sites. The desymmetrization of methyl- and ethylcyclohexane with divergent site selectivity is offered as demonstration. The evolved enzymes in these lineages are highly promiscuous and show activity toward a wide array of substrates, providing a foundation for further evolution of nitrene transferase function. Computational studies and kinetic isotope effects (KIEs) are consistent with a stepwise radical pathway involving an irreversible, enantiodetermining hydrogen atom transfer (HAT), followed by a lower-barrier diastereoselectivity-determining radical rebound step. In-enzyme molecular dynamics (MD) simulations reveal a predominantly hydrophobic pocket with favorable dispersion interactions with the substrate. By offering a direct path from saturated precursors, these enzymes present a new biochemical logic for accessing nitrogen-containing compounds.
Collapse
Affiliation(s)
- Soumitra V. Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yueming Long
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
104
|
Omura K, Aiba Y, Suzuki K, Ariyasu S, Sugimoto H, Shoji O. A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
105
|
Li DA, He XH, Tang X, Wu Y, Zhao H, He G, Peng C, Han B, Zhan G. Organo/Silver Dual Catalytic (3 + 2)/Conia-Ene Type Cyclization: Asymmetric Synthesis of Indane-Fused Spirocyclopenteneoxindoles. Org Lett 2022; 24:6197-6201. [PMID: 35976152 DOI: 10.1021/acs.orglett.2c02472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing efficient strategies to synthesize spirocyclopenteneoxindoles is an attractive target due to their potential biological activity. This work described the thiourea/silver dual catalytic (3 + 2)/Conia-ene type reaction of 2-(2-oxoindolin-3-yl)malononitrile with ortho-ethynyl substituted nitrostyrene. The reaction features mild conditions and good atom- and step-economy. Three new C-C bonds were formed within one synthetic step, providing the indane-fused spirocyclopenteneoxindoles in good yields, with excellent chemo-, regio-, and stereoselectivity.
Collapse
Affiliation(s)
- Dong-Ai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yuling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongli Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
106
|
Heller ER, Richardson JO. Heavy-Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022; 61:e202206314. [PMID: 35698730 PMCID: PMC9540336 DOI: 10.1002/anie.202206314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/01/2023]
Abstract
We simulate two recent matrix-isolation experiments at cryogenic temperatures, in which a nitrene undergoes spin crossover from its triplet state to a singlet state via quantum tunnelling. We detail the failure of the commonly applied weak-coupling method (based on a linear approximation of the potentials) in describing these deep-tunnelling reactions. The more rigorous approach of semiclassical golden-rule instanton theory in conjunction with double-hybrid density-functional theory and multireference perturbation theory does, however, provide rate constants and kinetic isotope effects in good agreement with experiment. In addition, these calculations locate the optimal tunnelling pathways, which provide a molecular picture of the reaction mechanism. The reactions involve substantial heavy-atom quantum tunnelling of carbon, nitrogen and oxygen atoms, which unexpectedly even continues to play a role at room temperature.
Collapse
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical ChemistryETH Zürich8093ZürichSwitzerland
| | | |
Collapse
|
107
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
108
|
Hemin-catalyzed controlled oxidative cyanation of secondary amine for the synthesis of α-aminonitriles and α-iminonitriles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Nitrenium ion-based ipso-addition and ortho-cyclization of arenes under photo and iron dual-catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
110
|
Fu Y, Chen H, Fu W, Garcia-Borràs M, Yang Y, Liu P. Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. J Am Chem Soc 2022; 144:13344-13355. [PMID: 35830682 PMCID: PMC9339536 DOI: 10.1021/jacs.2c04937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New-to-nature radical biocatalysis has recently emerged as a powerful strategy to tame fleeting open-shell intermediates for stereoselective transformations. In 2021, we introduced a novel metalloredox biocatalysis strategy that leverages the innate redox properties of the heme cofactor of P450 enzymes, furnishing new-to-nature atom-transfer radical cyclases (ATRCases) with excellent activity and stereoselectivity. Herein, we report a combined computational and experimental study to shed light on the mechanism and origins of enantioselectivity for this system. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) calculations revealed an unexpected role of the key beneficial mutation I263Q. The glutamine residue serves as an essential hydrogen bond donor that engages with the carbonyl moiety of the substrate to promote bromine atom abstraction and enhance the enantioselectivity of radical cyclization. Therefore, the evolved ATRCase is a bifunctional biocatalyst, wherein the heme cofactor enables atom-transfer radical biocatalysis, while the hydrogen bond donor residue further enhances the activity and enantioselectivity. Unlike many enzymatic stereocontrol rationales based on a rigid substrate binding model, our computations demonstrate a high degree of rotational flexibility of the allyl moiety in an enzyme-substrate complex and succeeding intermediates. Therefore, the enantioselectivity is controlled by the radical cyclization transition states rather than the substrate orientation in ground-state complexes in the preceding steps. During radical cyclization, anchoring effects of the Q263 residue and steric interactions with the heme cofactor concurrently control the π-facial selectivity, allowing for highly enantioselective C-C bond formation. Our computational findings are corroborated by experiments with ATRCase mutants generated from site-directed mutagenesis.
Collapse
Affiliation(s)
- Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catalisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
111
|
Abstract
The application of biocatalysis in conquering challenging synthesis requires the constant input of new enzymes. Developing novel biocatalysts by absorbing catalysis modes from synthetic chemistry has yielded fruitful new-to-nature enzymes. Organocatalysis was originally bio-inspired and has become the third pillar of asymmetric catalysis. Transferring organocatalytic reactions back to enzyme platforms is a promising approach for biocatalyst creation. Herein, we summarize recent developments in the design of novel biocatalysts that adopt iminium catalysis, a fundamental branch in organocatalysis. By repurposing existing enzymes or constructing artificial enzymes, various biocatalysts for iminium catalysis have been created and optimized via protein engineering to promote valuable abiological transformations. Recent advances in iminium biocatalysis illustrate the power of combining chemomimetic biocatalyst design and directed evolution to generate useful new-to-nature enzymes.
Collapse
Affiliation(s)
- Guangcai Xu
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| |
Collapse
|
112
|
Reetz M. Witnessing the Birth of Directed Evolution of Stereoselective Enzymes as Catalysts in Organic Chemistry. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
113
|
Reetz M. Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. Chembiochem 2022; 23:e202200049. [PMID: 35389556 PMCID: PMC9401064 DOI: 10.1002/cbic.202200049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Indexed: 11/25/2022]
Abstract
This review outlines recent developments in protein engineering of stereo- and regioselective enzymes, which are of prime interest in organic and pharmaceutical chemistry as well as biotechnology. The widespread application of enzymes was hampered for decades due to limited enantio-, diastereo- and regioselectivity, which was the reason why most organic chemists were not interested in biocatalysis. This attitude began to change with the advent of semi-rational directed evolution methods based on focused saturation mutagenesis at sites lining the binding pocket. Screening constitutes the labor-intensive step (bottleneck), which is the reason why various research groups are continuing to develop techniques for the generation of small and smart mutant libraries. Rational enzyme design, traditionally an alternative to directed evolution, provides small collections of mutants which require minimal screening. This approach first focused on thermostabilization, and did not enter the field of stereoselectivity until later. Computational guides such as the Rosetta algorithms, HotSpot Wizard metric, and machine learning (ML) contribute significantly to decision making. The newest advancements show that semi-rational directed evolution such as CAST/ISM and rational enzyme design no longer develop on separate tracks, instead, they have started to merge. Indeed, researchers utilizing the two approaches have learned from each other. Today, the toolbox of organic chemists includes enzymes, primarily because the possibility of controlling stereoselectivity by protein engineering has ensured reliability when facing synthetic challenges. This review was also written with the hope that undergraduate and graduate education will include enzymes more so than in the past.
Collapse
Affiliation(s)
- Manfred Reetz
- Max-Planck-Institut fur KohlenforschungMülheim an der RuhrGermany
| |
Collapse
|
114
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
115
|
Wang Z, Li X, Li Z. Engineering of cascade reactions and alditol oxidase for high‐yielding synthesis of (R)‐phenylethanolamine from styrene, ʟ‐phenylalanine, glycerol or glucose. ChemCatChem 2022. [DOI: 10.1002/cctc.202200418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zilong Wang
- National University of Singapore Department of Chemical and Biomolecular Engineering SINGAPORE
| | - Xirui Li
- National University of Singapore Department of Chemical and Biomolecular Engineering SINGAPORE
| | - Zhi Li
- National University of Singapore Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4, #03-03 117576 Singapore SINGAPORE
| |
Collapse
|
116
|
Mai BK, Neris NM, Yang Y, Liu P. C-N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp 3)-H Amination: A Combined Computational and Experimental Investigation. J Am Chem Soc 2022; 144:11215-11225. [PMID: 35583461 DOI: 10.1021/jacs.2c02283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineered metalloenzymes represent promising catalysts for stereoselective C-H functionalization reactions. Recently, P450 enzymes have been evolved to allow for new-to-nature intramolecular C(sp3)-H amination reactions via a nitrene transfer mechanism, giving rise to diamine derivatives with excellent enantiocontrol. To shed light on the origin of enantioselectivity, a combined computational and experimental study was carried out. Hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the activation energies and enantioselectivities of both the hydrogen atom transfer (HAT) and the subsequent C-N bond forming radical rebound steps. Contrary to previously hypothesized enantioinduction mechanisms, our calculations show that the radical rebound step is enantioselectivity-determining, whereas the preceding HAT step is only moderately stereoselective. Furthermore, the selectivity in the initial HAT is ablated by rapid conformational change of the radical intermediate prior to C-N bond formation. This finding is corroborated by our experimental study using a set of enantiomerically pure, monodeuterated substrates. Furthermore, classical and ab initio molecular dynamics simulations were carried out to investigate the conformational flexibility of the carbon-centered radical intermediate. This key radical species undergoes a facile conformational change in the enzyme active site from the pro-(R) to the pro-(S) configuration, whereas the radical rebound is slower due to the spin-state change and ring strain of the cyclization process, thereby allowing stereoablative C-N bond formation. Together, these studies revealed an underappreciated enantioinduction mechanism in biocatalytic C(sp3)-H functionalizations involving radical intermediates, opening up new avenues for the development of other challenging asymmetric C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Natalia M Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
117
|
Kerns S, Biswas A, Minnetian NM, Borovik AS. Artificial Metalloproteins: At the Interface between Biology and Chemistry. JACS AU 2022; 2:1252-1265. [PMID: 35783165 PMCID: PMC9241007 DOI: 10.1021/jacsau.2c00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
Artificial metalloproteins (ArMs) have recently gained significant interest due to their potential to address issues in a broad scope of applications, including biocatalysis, biotechnology, protein assembly, and model chemistry. ArMs are assembled by the incorporation of a non-native metallocofactor into a protein scaffold. This can be achieved by a number of methods that apply tools of chemical biology, computational de novo design, and synthetic chemistry. In this Perspective, we highlight select systems in the hope of demonstrating the breadth of ArM design strategies and applications and emphasize how these systems address problems that are otherwise difficult to do so with strictly biochemical or synthetic approaches.
Collapse
Affiliation(s)
- Spencer
A. Kerns
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Ankita Biswas
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Natalie M. Minnetian
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - A. S. Borovik
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| |
Collapse
|
118
|
Heller ER, Richardson JO. Heavy‐Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eric R Heller
- Eidgenossische Technische Hochschule Zurich Lab. Physical Chemistry SWITZERLAND
| | - Jeremy O Richardson
- Eidgenössische Technische Hochschule Zürich Lab. Physical Chemistry Vladimir-Prelog-Weg 2 8093 Zurich SWITZERLAND
| |
Collapse
|
119
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
120
|
Xu G, Poelarends GJ. Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangcai Xu
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Gerrit J. Poelarends
- University of Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713 AV Groningen NETHERLANDS
| |
Collapse
|
121
|
Huang X, Yang Y. The Many Facets of Green Organometallic Chemistry: A Foreword. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
122
|
Xie VC, Styles MJ, Dickinson BC. Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 2022; 47:403-416. [PMID: 35427479 PMCID: PMC9022280 DOI: 10.1016/j.tibs.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Noncovalent interactions between biomolecules such as proteins and nucleic acids coordinate all cellular processes through changes in proximity. Tools that perturb these interactions are and will continue to be highly valuable for basic and translational scientific endeavors. By taking cues from natural systems, such as the adaptive immune system, we can design directed evolution platforms that can generate proteins that bind to biomolecules of interest. In recent years, the platforms used to direct the evolution of biomolecular binders have greatly expanded the range of types of interactions one can evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-RNA, and protein-DNA interactions.
Collapse
Affiliation(s)
| | - Matthew J Styles
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
123
|
Miller DC, Lal RG, Marchetti LA, Arnold FH. Biocatalytic One-Carbon Ring Expansion of Aziridines to Azetidines via a Highly Enantioselective [1,2]-Stevens Rearrangement. J Am Chem Soc 2022; 144:4739-4745. [PMID: 35258294 PMCID: PMC9022672 DOI: 10.1021/jacs.2c00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report enantioselective one-carbon ring expansion of aziridines to make azetidines as a new-to-nature activity of engineered "carbene transferase" enzymes. A laboratory-evolved variant of cytochrome P450BM3, P411-AzetS, not only exerts unparalleled stereocontrol (99:1 er) over a [1,2]-Stevens rearrangement but also overrides the inherent reactivity of aziridinium ylides, cheletropic extrusion of olefins, to perform a [1,2]-Stevens rearrangement. By controlling the fate of the highly reactive aziridinium ylide intermediates, these evolvable biocatalysts promote a transformation which cannot currently be performed using other catalyst classes.
Collapse
Affiliation(s)
- David C. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ravi G. Lal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Luca A. Marchetti
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Present Address: Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
124
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
125
|
Zhao Q, Yao Q, Dou T, Xu T, Zhang J, Chen X. Catalysts Based on the C−H⋅⋅⋅M Weak Interaction: Synthesis, Characterization and Catalytic Application of Bis(pyrazolyl)borate Cu(I) Complexes in Carbene Insertion into Heteroatom Hydrogen Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Qiu‐Yue Yao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Dou
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Xu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
126
|
Chen CC, Dai M, Zhang L, Zhao J, Zeng W, Shi M, Huang JW, Liu W, Guo RT, Li A. Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
127
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
128
|
Cammarota RC, Liu W, Bacsa J, Davies HML, Sigman MS. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. J Am Chem Soc 2022; 144:1881-1898. [DOI: 10.1021/jacs.1c12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan C. Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Wenbin Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
129
|
Yang X, Gerroll BHR, Jiang Y, Kumar A, Zubi YS, Baker LA, Lewis JC. Controlling Non-Native Cobalamin Reactivity and Catalysis in the Transcription Factor CarH. ACS Catal 2022; 12:935-942. [PMID: 35340760 DOI: 10.1021/acscatal.1c04748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vitamin B12 derivatives catalyze a wide range of organic transformations, but B12-dependent enzymes are underutilized in biocatalysis relative to other metalloenzymes. In this study, we engineered a variant of the transcription factor CarH, called CarH*, that catalyzes styrene C-H alkylation with improved yields (2-6.5-fold) and selectivity relative to cobalamin. While the native function of CarH involves transcription regulation via adenosylcobalamin (AdoCbl) Co(III)-carbon bond cleavage and β-hydride elimination to generate 4',5'-didehydroadenosine, CarH*-catalyzed styrene alkylation proceeds via non-native oxidative addition and olefin addition coupled with a native-like β-hydride elimination. Mechanistic studies on this reaction echo findings from earlier studies on AdoCbl homolysis to suggest that CarH* selectivity results from its ability to impart a cage effect on radical intermediates. These findings lay the groundwork for the development of B12-dependent enzymes as catalysts for non-native transformations.
Collapse
Affiliation(s)
- Xinhang Yang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yasmine S. Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A. Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
130
|
Liu Z, Qin ZY, Zhu L, Athavale SV, Sengupta A, Jia ZJ, Garcia-Borràs M, Houk KN, Arnold FH. An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes. J Am Chem Soc 2022; 144:80-85. [PMID: 34941252 PMCID: PMC8765727 DOI: 10.1021/jacs.1c11340] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Propargyl amines are versatile synthetic intermediates with numerous applications in the pharmaceutical industry. An attractive strategy for efficient preparation of these compounds is nitrene propargylic C(sp3)-H insertion. However, achieving this reaction with good chemo-, regio-, and enantioselective control has proven to be challenging. Here, we report an enzymatic platform for the enantioselective propargylic amination of alkynes using a hydroxylamine derivative as the nitrene precursor. Cytochrome P450 variant PA-G8 catalyzing this transformation was identified after eight rounds of directed evolution. A variety of 1-aryl-2-alkyl alkynes are accepted by PA-G8, including those bearing heteroaromatic rings. This biocatalytic process is efficient and selective (up to 2610 total turnover number (TTN) and 96% ee) and can be performed on preparative scale.
Collapse
Affiliation(s)
- Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zi-Yang Qin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ledong Zhu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Soumitra V. Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Zhi-Jun Jia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003 Girona, Spain
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
131
|
Miller DC, Athavale SV, Arnold FH. Combining chemistry and protein engineering for new-to-nature biocatalysis. NATURE SYNTHESIS 2022; 1:18-23. [PMID: 35415721 DOI: 10.1038/s44160-021-00008-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysis, the application of enzymes to solve synthetic problems of human import, has blossomed into a powerful technology for chemical innovation. In the past decade, a threefold partnership, where nature provides blueprints for enzymatic catalysis, chemists introduce innovative activity modes with abiological substrates, and protein engineers develop new tools and algorithms to tune and improve enzymatic function, has unveiled the frontier of new-to-nature enzyme catalysis. In this perspective, we highlight examples of interdisciplinary studies which have helped to expand the scope of biocatalysis, including concepts of enzymatic versatility explored through the lens of biomimicry, to achieve both activities and selectivities that are not currently possible with chemocatalysis. We indicate how modern tools, such as directed evolution, computational protein design and machine learning-based protein engineering methods, have already impacted and will continue to influence enzyme engineering for new abiological transformations. A sustained collaborative effort across disciplines is anticipated to spur further advances in biocatalysis in the coming years.
Collapse
Affiliation(s)
- David C Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| | - Soumitra V Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| |
Collapse
|
132
|
Zhang Y, Dydio P. Teaching natural enzymes new radical tricks. Science 2021; 374:1558-1559. [PMID: 34941419 DOI: 10.1126/science.abm8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yang Zhang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
133
|
Zhou Q, Chin M, Fu Y, Liu P, Yang Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 2021; 374:1612-1616. [PMID: 34941416 PMCID: PMC9309897 DOI: 10.1126/science.abk1603] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Naturally occurring enzymes can be a source of unnatural reactivity that can be molded by directed evolution to generate efficient biocatalysts with valuable activities. Owing to the lack of exploitable stereocontrol elements in synthetic systems, steering the absolute and relative stereochemistry of free-radical processes is notoriously difficult in asymmetric catalysis. Inspired by the innate redox properties of first-row transition-metal cofactors, we repurposed cytochromes P450 to catalyze stereoselective atom-transfer radical cyclization. A set of metalloenzymes was engineered to impose substantial stereocontrol over the radical addition step and the halogen rebound step in these unnatural processes, allowing enantio- and diastereodivergent radical catalysis. This evolvable metalloenzyme platform represents a promising solution to tame fleeting radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Chin
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Corresponding author.
| |
Collapse
|
134
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
135
|
Nazarbek G, Kutzhanova A, Nurtay L, Mu C, Kazybay B, Li X, Ma C, Amin A, Xie Y. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing ( Rhizoma polygonati) and Goji ( Lycium chinense). NANOSCALE ADVANCES 2021; 3:6728-6738. [PMID: 36132653 PMCID: PMC9418865 DOI: 10.1039/d1na00475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Nanozymes and natural product-derived herbzymes have been identified in different types of enzymes simulating the natural protein-based enzyme function. How to explore and predict enzyme types of novel nanozymes when synthesized remains elusive. An informed analysis might be useful for the prediction. Here, we applied a protein-evolution analysis method to predict novel types of enzymes with experimental validation. First, reported nanozymes were analyzed by chemical classification and nano-evolution. We found that nanozymes are predominantly classified as protein-based EC1 oxidoreductase. In comparison, we analyzed the evolution of protein-based natural enzymes by a phylogenetic tree and the most conserved enzymes were found to be peroxidase and lyase. Therefore, the natural products of Rhizoma polygonati and Goji herbs were analyzed to explore and test the potent new types of natural nanozymes/herbzymes using the simplicity simulation of natural protein enzyme evolution as they contain these conserved enzyme types. The experimental validation showed that the natural products from the total extract of nanoscale traditional Chinese medicine Huangjing (RP, Rhizoma polygonati) from Mount-Tai (Taishan) exhibit fructose-bisphosphate aldolase of lyase while nanoscale Goji (Lycium chinense) extract exhibits peroxidase activities. Thus, the bioinformatics analysis would provide an additional tool for the virtual discovery of natural product nanozymes.
Collapse
Affiliation(s)
- Guldan Nazarbek
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Aidana Kutzhanova
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Lazzat Nurtay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Bexultan Kazybay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Amr Amin
- Biology Department, UAE University Al Ain 15551 UAE
- The College, The University of Chicago Chicago IL 60637 USA
| | - Yingqiu Xie
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| |
Collapse
|
136
|
Martin ML, Boyer A. Controlling Selectivity in the Synthesis of
Z
‐α,β‐Unsaturated Amidines by Tuning the
N
‐Sulfonyl Group in a Rhodium(II) Catalyzed 1,2‐H Shift. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew L. Martin
- School of Chemistry University of Glasgow Joseph Black Building G12 8QQ Glasgow Scotland
| | - Alistair Boyer
- School of Chemistry University of Glasgow Joseph Black Building G12 8QQ Glasgow Scotland
| |
Collapse
|
137
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
138
|
Athavale SV, Gao S, Liu Z, Mallojjala SC, Hirschi JS, Arnold FH. Biocatalytic, Intermolecular C-H Bond Functionalization for the Synthesis of Enantioenriched Amides. Angew Chem Int Ed Engl 2021; 60:24864-24869. [PMID: 34534409 DOI: 10.1002/anie.202110873] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Indexed: 11/07/2022]
Abstract
Directed evolution of heme proteins has opened access to new-to-nature enzymatic activity that can be harnessed to tackle synthetic challenges. Among these, reactions resulting from active site iron-nitrenoid intermediates present a powerful strategy to forge C-N bonds with high site- and stereoselectivity. Here we report a biocatalytic, intermolecular benzylic C-H amidation reaction operating at mild and scalable conditions. With hydroxamate esters as nitrene precursors, feedstock aromatic compounds can be converted to chiral amides with excellent enantioselectivity (up to >99 % ee) and high yields (up to 87 %). Kinetic and computational analysis of the enzymatic reaction reveals rate-determining nitrenoid formation followed by stepwise hydrogen atom transfer-mediated C-H functionalization.
Collapse
Affiliation(s)
- Soumitra V Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California, 91125, USA
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California, 91125, USA
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California, 91125, USA
| | | | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California, 91125, USA
| |
Collapse
|
139
|
Athavale SV, Gao S, Liu Z, Mallojjala SC, Hirschi JS, Arnold FH. Biocatalytic, Intermolecular C−H Bond Functionalization for the Synthesis of Enantioenriched Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soumitra V. Athavale
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard, MC 210-41 Pasadena California 91125 USA
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard, MC 210-41 Pasadena California 91125 USA
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard, MC 210-41 Pasadena California 91125 USA
| | | | | | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard, MC 210-41 Pasadena California 91125 USA
| |
Collapse
|
140
|
Ospina F, Schülke KH, Hammer SC. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. Chempluschem 2021; 87:e202100454. [PMID: 34821073 DOI: 10.1002/cplu.202100454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Biocatalysis has traditionally been viewed as a field that primarily enables access to chiral centers. This includes the synthesis of chiral alcohols, amines and carbonyl compounds, often through functional group interconversion via hydrolytic or oxidation-reduction reactions. This limitation is partly being overcome by the design and evolution of new enzymes. Here, we provide an overview of a recently thriving research field that we summarize as biocatalytic alkylation chemistry. In the past 3-4 years, numerous new enzymes have been developed that catalyze sp3 C-C/N/O/S bond formations. These enzymes utilize different mechanisms to generate molecular complexity by coupling simple fragments with high activity and selectivity. In many cases, the engineered enzymes perform reactions that are difficult or impossible to achieve with current small-molecule catalysts such as organocatalysts and transition-metal complexes. This review further highlights that the design of new enzyme function is particularly successful when off-the-shelf synthetic reagents are utilized to access non-natural reactive intermediates. This underscores how biocatalysis is gradually moving to a field that build molecules through selective bond forming reactions.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kai H Schülke
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
141
|
Upp DM, Huang R, Li Y, Bultman MJ, Roux B, Lewis JC. Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Upp
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Rui Huang
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
| | - Max J. Bultman
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| | - Benoit Roux
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Jared C. Lewis
- Department of Chemistry Indiana University Bloomington IN 47405 USA
| |
Collapse
|
142
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|
143
|
Han X, Shan LX, Zhu JX, Zhang CS, Zhang XM, Zhang FM, Wang H, Tu YQ, Yang M, Zhang WS. Copper-Nitrene-Catalyzed Desymmetric Oxaziridination/1,2-Alkyl Rearrangement of 1,3-Diketones toward Bicyclic Lactams. Angew Chem Int Ed Engl 2021; 60:22688-22692. [PMID: 34414645 DOI: 10.1002/anie.202107909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Although copper-nitrene has been extensively studied as a versatile active species in various transformations, asymmetric reactions involving copper-nitrene have been limited to the aziridination of olefins. Herein, we report the novel copper-nitrene-catalyzed desymmetric oxaziridination reaction of cyclic diketones with alkyl azides and the subsequent rearrangement of the resulting highly active intermediate, which produces a synthetically challenging chiral bicyclic lactam containing a quaternary carbon center. This procedure not only enriches the copper-nitrene-catalyzed asymmetric reactions, but also provides an alternative strategy to address the inherent challenges of catalytic asymmetric Schmidt reactions. This unique reaction could inspire the investigation of novel copper-nitrene-catalyzed asymmetric transformations and their reaction mechanisms.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Xin Shan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xin Zhu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Chiral Medicine Chemistry, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Shuo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
144
|
Han X, Shan L, Zhu J, Zhang C, Zhang X, Zhang F, Wang H, Tu Y, Yang M, Zhang W. Copper‐Nitrene‐Catalyzed Desymmetric Oxaziridination/1,2‐Alkyl Rearrangement of 1,3‐Diketones toward Bicyclic Lactams. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Li‐Xin Shan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jin‐Xin Zhu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Chang‐Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Xiao‐Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Fu‐Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Yong‐Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Chiral Medicine Chemistry Shanghai Jiao Tong University Shanghai 200240 China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wen‐Shuo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| |
Collapse
|
145
|
Du B, Ouyang Y, Chen Q, Yu WY. Thioether-Directed NiH-Catalyzed Remote γ-C(sp 3)-H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J Am Chem Soc 2021; 143:14962-14968. [PMID: 34496211 DOI: 10.1021/jacs.1c05834] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C-H bond amidation of unactivated alkenes. Due to the preference for five-membered nickelacycle formation, the chain-walking isomerization initiated by the NiH insertion to an alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-dibutyl-1,10-phenanthroline (L4) as the ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)-H bonds to afford the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).
Collapse
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuxin Ouyang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qishu Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
146
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
147
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
148
|
Mlostoń G, Kula K, Jasiński R. A DFT Study on the Molecular Mechanism of Additions of Electrophilic and Nucleophilic Carbenes to Non-Enolizable Cycloaliphatic Thioketones. Molecules 2021; 26:5562. [PMID: 34577032 PMCID: PMC8466156 DOI: 10.3390/molecules26185562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanisms of addition of dihalocarbenes and dimethoxycarbene to thioketones derived from 2,2,4,4-tetrmethylcyclobutane-1,3-dione were examined on the basis of the DFT wb97xd/6-311g(d,p)(PCM) calculations. Obtained results demonstrated that the examined processes exhibit polar nature and in the case of electrophilic dichloro-, and dibromocarbenes are initiated by the attack of carbene species onto the sulfur atom of the C=S group. Remarkably, reactions involving more electrophilic carbenes (dichloro-, and dibromocarbene) proceeds via stepwise mechanism involving thiocarbonyl ylide as a transient intermediate. In contrast, analogous reactions with nucleophilic dimethoxycarbene occur via a single step reaction, which can be considered as the [2 + 1] cycloaddition reaction initiated by the attack onto the C=S bond. A computational study showed that difluorocarbene tends to react as a nucleophilic species and resembles rather dimethoxycarbene and not typical dihalocarbene species. Significantly higher reactivity of the thioketone unit in comparison to the ketone group, both present in 3-thioxo-2,2,4,4-tetramthylcyclobutanone molecule, was rationalized in the light of DFT computational study.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
| | - Karolina Kula
- Institute of Organic Chemistry & Technology, Cracow University of Technology, Warszawska 24, PL-31-155 Krakow, Poland;
| | - Radomir Jasiński
- Institute of Organic Chemistry & Technology, Cracow University of Technology, Warszawska 24, PL-31-155 Krakow, Poland;
| |
Collapse
|
149
|
Lenzen K, Planchestainer M, Feller I, Padrosa DR, Paradisi F, Albrecht M. Minimalistic peptidic scaffolds harbouring an artificial carbene-containing amino acid modulate reductase activity. Chem Commun (Camb) 2021; 57:9068-9071. [PMID: 34498652 PMCID: PMC8427656 DOI: 10.1039/d1cc03158a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the boom of new artificial metalloenzymes, we developed an Fmoc-protected histidinium salt (Hum) as N-heterocyclic carbene precursor. Hum was placed via solid-phase peptide synthesis into short 7-mer peptides. Upon iridation, the metallo-peptidic construct displayed activity in catalytic hydrogenation that outperforms small molecule analogues and which is dependent on the peptide sequence, a typical feature of metalloenzymes.
Collapse
Affiliation(s)
- Karst Lenzen
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Matteo Planchestainer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Isabelle Feller
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
150
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|