101
|
Neal SP, Hodges WN, Velosa DC, Aderorho R, Lucas SW, Chouinard CD. Improved analysis of derivatized steroid hormone isomers using ion mobility-mass spectrometry (IM-MS). Anal Bioanal Chem 2023; 415:6757-6769. [PMID: 37740752 DOI: 10.1007/s00216-023-04953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.
Collapse
Affiliation(s)
- Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Walker N Hodges
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | | |
Collapse
|
102
|
Kirkwood-Donelson KI, Dodds JN, Schnetzer A, Hall N, Baker ES. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses. SCIENCE ADVANCES 2023; 9:eadj7048. [PMID: 37878714 PMCID: PMC10599621 DOI: 10.1126/sciadv.adj7048] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Because of environmental and health concerns, legacy per- and polyfluoroalkyl substances (PFAS) have been voluntarily phased out, and thousands of emerging PFAS introduced as replacements. Traditional analytical methods target a limited number of mainly legacy PFAS; therefore, many species are not routinely assessed in the environment. Nontargeted approaches using high-resolution mass spectrometry methods have therefore been used to detect and characterize unknown PFAS. However, their ability to elucidate chemical structures relies on generation of informative fragments, and many low concentration species are not fragmented in typical data-dependent acquisition approaches. Here, a data-independent method leveraging ion mobility spectrometry (IMS) and size-dependent fragmentation was developed and applied to characterize aquatic passive samplers deployed near a North Carolina fluorochemical manufacturer. From the study, 11 PFAS structures for various per- and polyfluorinated ether sulfonic acids and multiheaded perfluorinated ether acids were elucidated in addition to 36 known PFAS. Eight of these species were previously unreported in environmental media, and three suspected species were validated.
Collapse
Affiliation(s)
| | - James N. Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Astrid Schnetzer
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC,, USA
| | - Nathan Hall
- Department of Marine, Earth, and Atmospheric Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
103
|
Schramm HM, Tamadate T, Hogan CJ, Clowers BH. Evaluation of Hydrogen-Deuterium Exchange during Transient Vapor Binding of MeOD with Model Peptide Systems Angiotensin II and Bradykinin. J Phys Chem A 2023; 127:8849-8861. [PMID: 37827113 DOI: 10.1021/acs.jpca.3c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The advancement of hybrid mass spectrometric tools as an indirect probe of molecular structure and dynamics relies heavily upon a clear understanding between gas-phase ion reactivity and ion structural characteristics. This work provides new insights into gas-phase ion-neutral reactions of the model peptides (i.e., angiotensin II and bradykinin) on a per-residue basis by integrating hydrogen/deuterium exchange, ion mobility, tandem mass spectrometry, selective vapor binding, and molecular dynamics simulations. By comparing fragmentation patterns with simulated probabilities of vapor uptake, a clear link between gas-phase hydrogen/deuterium exchange and the probabilities of localized vapor association is established. The observed molecular dynamics trends related to the sites and duration of vapor binding track closely with experimental observation. Additionally, the influence of additional charges and structural characteristics on exchange kinetics and ion-neutral cluster formation is examined. These data provide a foundation for the analysis of solvation dynamics of larger, native-like conformations of proteins in the gas phase.
Collapse
Affiliation(s)
- Haley M Schramm
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Tomoya Tamadate
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
104
|
Stewart AK, Foley MH, Dougherty MK, McGill SK, Gulati AS, Gentry EC, Hagey LR, Dorrestein PC, Theriot CM, Dodds JN, Baker ES. Using Multidimensional Separations to Distinguish Isomeric Amino Acid-Bile Acid Conjugates and Assess Their Presence and Perturbations in Model Systems. Anal Chem 2023; 95:15357-15366. [PMID: 37796494 PMCID: PMC10613829 DOI: 10.1021/acs.analchem.3c03057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Bile acids play key roles in nutrient uptake, inflammation, signaling, and microbiome composition. While previous bile acid analyses have primarily focused on profiling 5 canonical primary and secondary bile acids and their glycine and taurine amino acid-bile acid (AA-BA) conjugates, recent studies suggest that many other microbial conjugated bile acids (or MCBAs) exist. MCBAs are produced by the gut microbiota and serve as biomarkers, providing information about early disease onset and gut health. Here we analyzed 8 core bile acids synthetically conjugated with 22 proteinogenic and nonproteogenic amino acids totaling 176 MCBAs. Since many of the conjugates were isomeric and only 42 different m/z values resulted from the 176 MCBAs, a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was used for their separation. Their molecular characteristics were then used to create an in-house extended bile acid library for a combined total of 182 unique compounds. Additionally, ∼250 rare bile acid extracts were also assessed to provide additional resources for bile acid profiling and identification. This library was then applied to healthy mice dosed with antibiotics and humans having fecal microbiota transplantation (FMT) to assess the MCBA presence and changes in the gut before and after each perturbation.
Collapse
Affiliation(s)
- Allison K Stewart
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew H Foley
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Michael K Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Sarah K McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Ajay S Gulati
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily C Gentry
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lee R Hagey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology and Pediatrics, University of California at San Diego, La Jolla, California 92093, United States
| | - Casey M Theriot
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27607, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27607, United States
| |
Collapse
|
105
|
Spiridon A, Oburger E, Valadbeigi Y, Kloimböck T, Stanetty C, Kratena N, Draskovits M, Causon T, Hann S. Surveying the mugineic acid family: Ion mobility - quadrupole time-of-flight mass spectrometry (IM-QTOFMS) characterization and tandem mass spectrometry (LC-ESI-MS/MS) quantification of all eight naturally occurring phytosiderophores. Anal Chim Acta 2023; 1278:341718. [PMID: 37709429 DOI: 10.1016/j.aca.2023.341718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Phytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence. With access to the full set of PS standards for the first time, we report comprehensive methods to both fully characterize (IM-QTOFMS) and quantify (LC-ESI-MS/MS) all eight naturally occurring PS belonging to the mugineic acid family. The quantitative method was fully validated, yielding linear results for all eight analytes, and no unwanted interferences with soil and plant matrices were observed. LOD and LOQ values determined for each PS were below 11 and 35 nmol L-1, respectively. The method's precision under reproducibility conditions (intra- and inter-day) of measurement was less than 2.5% RSD for all analytes. Additionally, all PS were annotated with high-resolution mass spectrometric fragment spectra and further characterized via drift tube ion mobility-mass spectrometry. The collision cross-sections obtained for primary ion species yielded a valuable database for future research focused on in-depth PS studies. The new quantitative method was applied to analyse root exudates from Fe-controlled and deficient barley, oat, rye, and sorghum plants. All eight PS, including mugineic acid (MA), 3"-hydroxymugineic acid (HMA), 3"-epi-hydroxymugineic acid (epi-HMA), hydroxyavenic acid (HAVA), deoxymugineic acid (DMA), 3"-hydroxydeoxymugineic acid (HDMA), 3"-epi-hydroxydeoxymugineic acid (epi-HDMA) and avenic acid (AVA) were for the first time successfully identified and quantified in root exudates of various graminaceous plants using a single analytical procedure. These newly developed methods can be applied to studies aimed at improving crop yield and micronutrient grain content for food consumption via plant-based biofortification.
Collapse
Affiliation(s)
- Andreea Spiridon
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Younes Valadbeigi
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Tobias Kloimböck
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Christian Stanetty
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Nicolas Kratena
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Markus Draskovits
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Tim Causon
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
106
|
Kedia K, Harris R, Ekroos K, Moser KW, DeBord D, Tiberi P, Goracci L, Zhang NR, Wang W, Spellman DS, Bateman K. Investigating Performance of the SLIM-Based High Resolution Ion Mobility Platform for Separation of Isomeric Phosphatidylcholine Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2176-2186. [PMID: 37703523 DOI: 10.1021/jasms.3c00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different cis-double bond locations. Similarly, PC 18:1/18:1 (cis-9) can be resolved from the corresponding PC 18:1/18:1 (trans-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.
Collapse
Affiliation(s)
- Komal Kedia
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rachel Harris
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Kim Ekroos
- Lipidomics Consulting Ltd, Irisviksvägen 31D, 02230 Esbo, Finland
| | - Kelly W Moser
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Paolo Tiberi
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire WD6 3FG United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Kevin Bateman
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
107
|
Zhang H, Luo M, Wang H, Ren F, Yin Y, Zhu ZJ. AllCCS2: Curation of Ion Mobility Collision Cross-Section Atlas for Small Molecules Using Comprehensive Molecular Representations. Anal Chem 2023; 95:13913-13921. [PMID: 37664900 DOI: 10.1021/acs.analchem.3c02267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of ion mobility-mass spectrometry (IM-MS) has revolutionized the analysis of small molecules, such as metabolomics, lipidomics, and exposome studies. The curation of comprehensive reference collision cross-section (CCS) databases plays a pivotal role in the successful application of IM-MS for small-molecule analysis. In this study, we presented AllCCS2, an enhanced version of AllCCS, designed for the universal prediction of the ion mobility CCS values of small molecules. AllCCS2 incorporated newly available experimental CCS data, including 10,384 records and 7713 unified values, as training data. By leveraging a neural network trained on diverse molecular representations encompassing mass spectrometry features, molecular descriptors, and graph features extracted using a graph convolutional network, AllCCS2 achieved exceptional prediction accuracy. AllCCS2 achieved median relative error (MedRE) values of 0.31, 0.72, and 1.64% in the training, validation, and testing sets, respectively, surpassing existing CCS prediction tools in terms of accuracy and coverage. Furthermore, AllCCS2 exhibited excellent compatibility with different instrument platforms (DTIMS, TWIMS, and TIMS). The prediction uncertainties in AllCCS2 from the training data and the prediction model were comprehensively investigated by using representative structure similarity and model prediction variation. Notably, small molecules with high structural similarities to the training set and lower model prediction variation exhibited improved accuracy and lower relative errors. In summary, AllCCS2 serves as a valuable resource to support applications of IM-MS technologies. The AllCCS2 database and tools are freely accessible at http://allccs.zhulab.cn/.
Collapse
Affiliation(s)
- Haosong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingdu Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmiao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| |
Collapse
|
108
|
Kinlein Z, Clowers BH. Evaluating dynamic traveling wave profiles for the enhancement of separation and sensitivity in traveling wave structures for lossless ion manipulations. J Chromatogr A 2023; 1706:464207. [PMID: 37506460 PMCID: PMC10528362 DOI: 10.1016/j.chroma.2023.464207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The amenability of traveling wave ion mobility spectrometry (TWIMS) to extended separation pathlengths has prompted a recent surge of interest concerning the technique. While promising, the optimization of ion transmission, particularly when analyzing increasingly disparate species, remains an obstacle in TWIMS. To address this issue, we evaluated a suite of dynamic TW profiles using an original TW structures for lossless ion manipulations (TW-SLIM) platform developed at Washington State University. Inspired by the range of gradient elution profiles used in traditional chromatography, three distinct square TW profiles were evaluated: a static approach which represents a traditional waveform, a dual approach which consists of two distinct TW profiles within a given separation event; and a ramp approach which varies TW speed and amplitude at a fixed rate during separation. The three waveform profiles were evaluated in terms of their impact on separation (quantified as resolution) and sensitivity (quantified using signal-to-noise ratio (SNR), and ion abundance). Concerning separation, the highest resolution (R) was observed when operating with the static waveform (R = 7.92); however, the ramp waveform performed comparably (R = 7.70) under similar conditions. Regarding SNR, optimum waveform profiles were species dependent. Bradykinin2+ displayed the largest gains in SNR (36.6% increase) when ramping TW speed, while the gains were greatest (33.5% increase) for tetraoctylammonium when modulating TW amplitude with the static waveform. Lastly, significant (>10%) increases in the abundance of tetraoctylammonium ions were observed exclusively when utilizing a ramped waveform. The present set of experiments outline the results and challenges related to optimizing separations using alternative TW profiles and provides insight concerning TW-SLIM method development which may be tailored to enhance select analytical metrics.
Collapse
Affiliation(s)
- Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
109
|
da Silva KM, Wölk M, Nepachalovich P, Iturrospe E, Covaci A, van Nuijs ALN, Fedorova M. Investigating the Potential of Drift Tube Ion Mobility for the Analysis of Oxidized Lipids. Anal Chem 2023; 95:13566-13574. [PMID: 37646365 DOI: 10.1021/acs.analchem.3c02213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Epilipids, a subset of the lipidome that comprises oxidized, nitrated, and halogenated lipid species, show important biochemical activity in the regulation of redox lipid metabolism by influencing cell fate decisions, including death, health, and aging. Due to the large chemical diversity, reversed-phase liquid chromatography-high-resolution mass spectrometry (RPLC-HRMS) methods have only a limited ability to separate numerous isobaric and isomeric epilipids. Ion mobility spectrometry (IMS) is a gas-phase separation technique that can be combined with LC-HRMS to improve the overall peak capacity of the analytical platform. Here, we illustrate the advantages and discuss the current limitations of implementing IMS in LC-HRMS workflows for the analysis of oxylipins and oxidized complex lipids. Using isomeric mixtures of oxylipins, we demonstrated that while deprotonated ions of eicosanoids were poorly resolved by IMS, sodium acetate and metal adducts (e.g., Li, Na, Ag, Ba, K) of structural isomers often showed ΔCCS% above 1.4% and base peak separation with high-resolution demultiplexing (HRDm). The knowledge of the IM migration order was also used as a proof of concept to help in the annotation of oxidized complex lipids using HRDm and all-ion fragmentation spectra. Additionally, we used a mixture of deuterium-labeled lipids for a routine system suitability test with the purpose of improving harmonization and interoperability of IMS data sets in (epi)lipidomics.
Collapse
Affiliation(s)
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Palina Nepachalovich
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
110
|
Kartowikromo KY, Olajide OE, Hamid AM. Collision cross section measurement and prediction methods in omics. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4973. [PMID: 37620034 PMCID: PMC10530098 DOI: 10.1002/jms.4973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Omics studies such as metabolomics, lipidomics, and proteomics have become important for understanding the mechanisms in living organisms. However, the compounds detected are structurally different and contain isomers, with each structure or isomer leading to a different result in terms of the role they play in the cell or tissue in the organism. Therefore, it is important to detect, characterize, and elucidate the structures of these compounds. Liquid chromatography and mass spectrometry have been utilized for decades in the structure elucidation of key compounds. While prediction models of parameters (such as retention time and fragmentation pattern) have also been developed for these separation techniques, they have some limitations. Moreover, ion mobility has become one of the most promising techniques to give a fingerprint to these compounds by determining their collision cross section (CCS) values, which reflect their shape and size. Obtaining accurate CCS enables its use as a filter for potential analyte structures. These CCS values can be measured experimentally using calibrant-independent and calibrant-dependent approaches. Identification of compounds based on experimental CCS values in untargeted analysis typically requires CCS references from standards, which are currently limited and, if available, would require a large amount of time for experimental measurements. Therefore, researchers use theoretical tools to predict CCS values for untargeted and targeted analysis. In this review, an overview of the different methods for the experimental and theoretical estimation of CCS values is given where theoretical prediction tools include computational and machine modeling type approaches. Moreover, the limitations of the current experimental and theoretical approaches and their potential mitigation methods were discussed.
Collapse
Affiliation(s)
| | - Orobola E Olajide
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
111
|
Moses T, Burgess K. Right in two: capabilities of ion mobility spectrometry for untargeted metabolomics. Front Mol Biosci 2023; 10:1230282. [PMID: 37602325 PMCID: PMC10436490 DOI: 10.3389/fmolb.2023.1230282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
This mini review focuses on the opportunities provided by current and emerging separation techniques for mass spectrometry metabolomics. The purpose of separation technologies in metabolomics is primarily to reduce complexity of the heterogeneous systems studied, and to provide concentration enrichment by increasing sensitivity towards the quantification of low abundance metabolites. For this reason, a wide variety of separation systems, from column chemistries to solvent compositions and multidimensional separations, have been applied in the field. Multidimensional separations are a common method in both proteomics applications and gas chromatography mass spectrometry, allowing orthogonal separations to further reduce analytical complexity and expand peak capacity. These applications contribute to exponential increases in run times concomitant with first dimension fractionation followed by second dimension separations. Multidimensional liquid chromatography to increase peak capacity in metabolomics, when compared to the potential of running additional samples or replicates and increasing statistical confidence, mean that uptake of these methods has been minimal. In contrast, in the last 15 years there have been significant advances in the resolution and sensitivity of ion mobility spectrometry, to the point where high-resolution separation of analytes based on their collision cross section approaches chromatographic separation, with minimal loss in sensitivity. Additionally, ion mobility separations can be performed on a chromatographic timescale with little reduction in instrument duty cycle. In this review, we compare ion mobility separation to liquid chromatographic separation, highlight the history of the use of ion mobility separations in metabolomics, outline the current state-of-the-art in the field, and discuss the future outlook of the technology. "Where there is one, you're bound to divide it. Right in two", James Maynard Keenan.
Collapse
Affiliation(s)
- Tessa Moses
- EdinOmics, RRID:SCR_021838, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
112
|
Guo R, Zhang Y, Liao Y, Yang Q, Xie T, Fan X, Lin Z, Chen Y, Lu H, Zhang Z. Highly accurate and large-scale collision cross sections prediction with graph neural networks. Commun Chem 2023; 6:139. [PMID: 37402835 DOI: 10.1038/s42004-023-00939-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
The collision cross section (CCS) values derived from ion mobility spectrometry can be used to improve the accuracy of compound identification. Here, we have developed the Structure included graph merging with adduct method for CCS prediction (SigmaCCS) based on graph neural networks using 3D conformers as inputs. A model was trained, evaluated, and tested with >5,000 experimental CCS values. It achieved a coefficient of determination of 0.9945 and a median relative error of 1.1751% on the test set. The model-agnostic interpretation method and the visualization of the learned representations were used to investigate the chemical rationality of SigmaCCS. An in-silico database with 282 million CCS values was generated for three different adduct types of 94 million compounds. Its source code is publicly available at https://github.com/zmzhang/SigmaCCS . Altogether, SigmaCCS is an accurate, rational, and off-the-shelf method to directly predict CCS values from molecular structures.
Collapse
Affiliation(s)
- Renfeng Guo
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Youjia Zhang
- School of Computer Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yuxuan Liao
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Qiong Yang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Ting Xie
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Xiaqiong Fan
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zhonglong Lin
- Yunnan Academy of Tobacco Agricultural Sciences, 650021, Kunming, Yunnan, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, 650021, Kunming, Yunnan, China.
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China.
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China.
| |
Collapse
|
113
|
Wedge A, Hoover M, Pettit-Bacovin T, Aderorho R, Efird E, Chouinard CD. Development of a Rapid, Targeted LC-IM-MS Method for Anabolic Steroids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37390334 DOI: 10.1021/jasms.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Anabolic steroids are of high biological interest due to their involvement in human development and disease progression. Additionally, they are banned in sport due to their performance-enhancing characteristics. Analytical challenges associated with their measurement stem from structural heterogeneity, poor ionization efficiency, and low natural abundance. Their importance in a variety of clinically relevant assays has prompted the consideration of integrating ion mobility spectrometry (IMS) into existing LC-MS assays, due primarily to its speed and structure-based separation capability. Herein we have optimized a rapid (2 min) targeted LC-IM-MS method for the detection and quantification of 40 anabolic steroids and their metabolites. First, a steroid-specific calibrant mixture was developed to cover the full range of retention time, mobility, and accurate mass. Importantly, this use of this calibrant mixture provided robust and reproducible measurements based on collision cross section (CCS) with interday reproducibility of <0.5%. Furthermore, the combined separation power of LC coupled to IM provided comprehensive differentiation of isomers/isobars within 6 different isobaric groups. Multiplexed IM acquisition also provided improved limits of detection, which were well below 1 ng/mL in almost all compounds measured. This method was also capable of steroid profiling, providing quantitative ratios (e.g., testosterone/epitestosterone, androsterone/etiocholanolone, etc.). Lastly, phase II steroid metabolites were probed in lieu of hydrolysis to demonstrate the ability to separate those analytes and provide information beyond total steroid concentration. This method has tremendous potential for rapid analysis of steroid profiles in human urine spanning a variety of applications from developmental disorders to doping in sport.
Collapse
Affiliation(s)
- Ashlee Wedge
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Makenna Hoover
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Terra Pettit-Bacovin
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Emmaleigh Efird
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | | |
Collapse
|
114
|
Liu Y, Kaffah N, Pandor S, Sartain MJ, Larrouy-Maumus G. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep 2023; 13:10390. [PMID: 37369807 DOI: 10.1038/s41598-023-37641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. The involvement of lipids is even more pronounced in mycobacteria, including the human pathogen Mycobacterium tuberculosis, which produces a highly complex and diverse set of lipids in the cell envelope. These lipids include mycolic acids, which are among the longest fatty acids in nature and can contain up to 90 carbon atoms. Mycolic acids are ubiquitously found in mycobacteria and are alpha branched and beta hydroxylated lipids. Discrete modifications, such as alpha, alpha', epoxy, methoxy, keto, and carboxy, characterize mycolic acids at the species level. Here, we used high precision ion mobility-mass spectrometry to build a database including 206 mass-resolved collision cross sections (CCSs) of mycolic acids originating from the strict human pathogen M. tuberculosis, the opportunistic strains M. abscessus, M. marinum and M. avium, and the nonpathogenic strain M. smegmatis. Primary differences between the mycolic acid profiles could be observed between mycobacterial species. Acyl tail length and modifications were the primary structural descriptors determining CCS magnitude. As a resource for researchers, this work provides a detailed catalogue of the mass-resolved collision cross sections for mycolic acids along with a workflow to generate and analyse the dataset generated.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadhira Kaffah
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
115
|
Pachulicz R, Yu L, Jovcevski B, Bulone V, Pukala TL. Structural Analysis and Identity Confirmation of Anthocyanins in Brassica oleracea Extracts by Direct Injection Ion Mobility-Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2023; 3:200-207. [PMID: 37360034 PMCID: PMC10288604 DOI: 10.1021/acsmeasuresciau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Anthocyanins are a subclass of plant-derived flavonoids that demonstrate immense structural heterogeneity which is challenging to capture in complex extracts by traditional liquid chromatography-mass spectrometry (MS)-based approaches. Here, we investigate direct injection ion mobility-MS as a rapid analytical tool to characterize anthocyanin structural features in red cabbage (Brassica oleracea) extracts. Within a 1.5 min sample run time, we observe localization of structurally similar anthocyanins and their isobars into discrete drift time regions based upon their degree of chemical modifications. Furthermore, drift time-aligned fragmentation enables simultaneous collection of MS, MS/MS, and collisional cross-section data for individual anthocyanin species down to a low picomole scale to generate structural identifiers for rapid identity confirmation. We finally identify anthocyanins in three other Brassica oleracea extracts based on red cabbage anthocyanin identifiers to demonstrate our high-throughput approach. Direct injection ion mobility-MS therefore provides wholistic structural information on structurally similar, and even isobaric, anthocyanins in complex plant extracts, which can inform the nutritional value of a plant and bolster drug discovery pipelines.
Collapse
Affiliation(s)
- River
J. Pachulicz
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Long Yu
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
| | - Blagojce Jovcevski
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
| | - Vincent Bulone
- School
of Agriculture, Food and Wine, University
of Adelaide, Adelaide, SA 5005, Australia
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova, University Centre, Stockholm 106 91, Sweden
| | - Tara L. Pukala
- Department
of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
116
|
Harrilal CP, Garimella SVB, Chun J, Devanathan N, Zheng X, Ibrahim YM, Larriba-Andaluz C, Schenter G, Smith RD. The Role of Ion Rotation in Ion Mobility: Ultrahigh-Precision Prediction of Ion Mobility Dependence on Ion Mass Distribution and Translational to Rotational Energy Transfer. J Phys Chem A 2023. [PMID: 37330993 DOI: 10.1021/acs.jpca.3c01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The role of ion rotation in determining ion mobilities is explored using the subtle gas phase ion mobility shifts based on differences in ion mass distributions between isotopomer ions that have been observed with ion mobility spectrometry (IMS) measurements. These mobility shifts become apparent for IMS resolving powers on the order of ∼1500 where relative mobilities (or alternatively momentum transfer collision cross sections; Ω) can be measured with a precision of ∼10 ppm. The isotopomer ions have identical structures and masses, differing only in their internal mass distributions, and their Ω differences cannot be predicted by widely used computational approaches, which ignore the dependence of Ω on the ion's rotational properties. Here, we investigate the rotational dependence of Ω, which includes changes to its collision frequency due to thermal rotation as well as the coupling of translational to rotational energy transfer. We show that differences in rotational energy transfer during ion-molecule collisions provide the major contribution to isotopomer ion separations, with only a minor contribution due to an increase in collision frequency due to ion rotation. Modeling including these factors allowed for differences in Ω to be calculated that precisely mirror the experimental separations. These findings also highlight the promise of pairing high-resolution IMS measurements with theory and computation for improved elucidation of subtle structural differences between ions.
Collapse
Affiliation(s)
- Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nikhil Devanathan
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, IUPUI, Indianapolis, Indiana 46202, United States
| | - Gregory Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| |
Collapse
|
117
|
Kemperman RHJ, Chouinard CD, Yost RA. Characterization of Bile Acid Isomers and the Implementation of High-Resolution Demultiplexing with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319333 DOI: 10.1021/jasms.3c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bile acids (BAs) are a complex suite of clinically relevant metabolites that include many isomers. Liquid chromatography coupled to mass spectrometry (LC-MS) is an increasingly popular technique due to its high specificity and sensitivity; nonetheless, acquisition times are generally 10-20 min, and isomers are not always resolved. In this study, the application of ion mobility (IM) spectrometry coupled to MS was investigated to separate, characterize, and measure BAs. A subset of 16 BAs was studied, including three groups of isomers belonging to unconjugated, glycine-conjugated, and taurine-conjugated BA classes. A variety of strategies were explored to increase BA isomer separation such as changing the drift gas, measuring different ionic species (i.e., multimers and cationized species), and enhancing the instrumental resolving power. In general, Ar, N2, and CO2 provided the best peak shape, resolving power (Rp), and separation, especially CO2; He and SF6 were less preferable. Furthermore, measuring dimers versus monomers improved isomer separation due to enhanced gas-phase structural differences. A variety of cation adducts other than sodium were characterized. Mobility arrival times and isomer separation were affected by the choice of adduct, which was shown to be used to target certain BAs. Finally, a novel workflow that involves high-resolution demultiplexing in combination with dipivaloylmethane ion-neutral clusters was implemented to improve Rp dramatically. A maximum Rp increase was observed with lower IM field strengths to obtain longer drift times, increasing Rp from 52 to 187. A combination of these separation enhancement strategies demonstrates great potential for rapid BA analysis.
Collapse
Affiliation(s)
- Robin H J Kemperman
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| | | | - Richard A Yost
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| |
Collapse
|
118
|
Cropley TC, Liu FC, Pedrete T, Hossain MA, Agar JN, Bleiholder C. Structure Relaxation Approximation (SRA) for Elucidation of Protein Structures from Ion Mobility Measurements (II). Protein Complexes. J Phys Chem B 2023. [PMID: 37311097 DOI: 10.1021/acs.jpcb.3c01024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Characterizing structures of protein complexes and their disease-related aberrations is essential to understanding molecular mechanisms of many biological processes. Electrospray ionization coupled with hybrid ion mobility/mass spectrometry (ESI-IM/MS) methods offer sufficient sensitivity, sample throughput, and dynamic range to enable systematic structural characterization of proteomes. However, because ESI-IM/MS characterizes ionized protein systems in the gas phase, it generally remains unclear to what extent the protein ions characterized by IM/MS have retained their solution structures. Here, we discuss the first application of our computational structure relaxation approximation [Bleiholder, C.; et al. J. Phys. Chem. B 2019, 123 (13), 2756-2769] to assign structures of protein complexes in the range from ∼16 to ∼60 kDa from their "native" IM/MS spectra. Our analysis shows that the computed IM/MS spectra agree with the experimental spectra within the errors of the methods. The structure relaxation approximation (SRA) indicates that native backbone contacts appear largely retained in the absence of solvent for the investigated protein complexes and charge states. Native contacts between polypeptide chains of the protein complex appear to be retained to a comparable extent as contacts within a folded polypeptide chain. Our computations also indicate that the hallmark "compaction" often observed for protein systems in native IM/MS measurements appears to be a poor indicator of the extent to which native residue-residue interactions are lost in the absence of solvent. Further, the SRA indicates that structural reorganization of the protein systems in IM/MS measurements appears driven largely by remodeling of the protein surface that increases its hydrophobic content by approximately 10%. For the systems studied here, this remodeling of the protein surface appears to occur mainly by structural reorganization of surface-associated hydrophilic amino acid residues not associated with β-strand secondary structure elements. Properties related to the internal protein structure, as assessed by void volume or packing density, appear unaffected by remodeling of the surface. Taken together, the structural reorganization of the protein surface appears to be generic in nature and to sufficiently stabilize protein structures to render them metastable on the time scale of IM/MS measurements.
Collapse
Affiliation(s)
- Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, 10 Leon St, Boston, Massachusetts 02115, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
119
|
Ross D, Bilbao A, Lee JY, Zheng X. mzapy: An Open-Source Python Library Enabling Efficient Extraction and Processing of Ion Mobility Spectrometry-Mass Spectrometry Data in the MZA File Format. Anal Chem 2023. [PMID: 37307589 DOI: 10.1021/acs.analchem.3c01653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analysis of ion mobility spectrometry (IMS) data has been challenging and limited the full utility of these measurements. Unlike liquid chromatography-mass spectrometry, where a plethora of tools with well-established algorithms exist, the incorporation of the additional IMS dimension requires upgrading existing computational pipelines and developing new algorithms to fully exploit the advantages of the technology. We have recently reported MZA, a new and simple mass spectrometry data structure based on the broadly supported HDF5 format and created to facilitate software development. While this format is inherently supportive of application development, the availability of core libraries in popular programming languages with standard mass spectrometry utilities will facilitate fast software development and broader adoption of the format. To this end, we present a Python package, mzapy, for efficient extraction and processing of mass spectrometry data in the MZA format, especially for complex data containing ion mobility spectrometry dimension. In addition to raw data extraction, mzapy contains supporting utilities enabling tasks including calibration, signal processing, peak finding, and generating plots. Being implemented in pure Python and having minimal and largely standardized dependencies makes mzapy uniquely suited to application development in the multiomics domain. The mzapy package is free and open-source, includes comprehensive documentation, and is structured to support future extension to meet the evolving needs of the MS community. The software source code is freely available at https://github.com/PNNL-m-q/mzapy.
Collapse
Affiliation(s)
- Dylan Ross
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Joon-Yong Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
120
|
Hollerbach AL, Ibrahim YM, Meras V, Norheim RV, Huntley AP, Anderson GA, Metz TO, Ewing RG, Smith RD. A Dual-Gated Structures for Lossless Ion Manipulations-Ion Mobility Orbitrap Mass Spectrometry Platform for Combined Ultra-High-Resolution Molecular Analysis. Anal Chem 2023. [PMID: 37307303 DOI: 10.1021/acs.analchem.3c00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform. The dual-gate setup was implemented by placing one ion gate before the SLIM module and a second ion gate after the module. The dual-gated ion injection approach allowed the new SLIM-Orbitrap platform to simultaneously perform an 11 m SLIM separation, Orbitrap mass analysis using the highest selectable mass resolution setting (up to 140 k), and high-energy collision-induced dissociation (HCD) in ∼25 min over an m/z range of ∼1500 amu. The SLIM-Orbitrap platform was initially characterized using a mixture of standard phosphazene cations and demonstrated an average SLIM CCS resolving power (RpCCS) of ∼218 and an SLIM peak capacity of ∼156, while simultaneously obtaining high mass resolutions. SLIM-Orbitrap analysis with fragmentation was then performed on mixtures of standard peptides and two reverse peptides (SDGRG1+, GRGDS1+, and RpCCS = 305) to demonstrate the utility of combined HR-IMS-MS/MS measurements for peptide identification. Our new HR-IMS-MS/MS capability was further demonstrated by analyzing a complex lipid mixture and showcasing SLIM separations on isobaric lipids. This new SLIM-Orbitrap platform demonstrates a critical new capability for proteomics and lipidomics applications, and the high-resolution multimodal data obtained using this system establish the foundation for reference-free identification of unknown ion structures.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Vanessa Meras
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Adam P Huntley
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Gordon A Anderson
- GAA Custom Engineering, LLC, Benton City, Washington 99320, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Robert G Ewing
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
121
|
Belova L, Poma G, Roggeman M, Jeong Y, Kim DH, Berghmans P, Peters J, Salamova A, van Nuijs ALN, Covaci A. Identification and characterization of quaternary ammonium compounds in Flemish indoor dust by ion-mobility high-resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2023; 177:108021. [PMID: 37307605 DOI: 10.1016/j.envint.2023.108021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Quaternary ammonium compounds (QACs) are a class of surfactants commonly used in disinfecting and cleaning products. Their use has substantially increased during the COVID-19 pandemic leading to increasing human exposure. QACs have been associated with hypersensitivity reactions and an increased risk of asthma. This study introduces the first identification, characterization and semi-quantification of QACs in European indoor dust using ion-mobility high-resolution mass spectrometry (IM-HRMS), including the acquisition of collision cross section values (DTCCSN2) for targeted and suspect QACs. A total of 46 indoor dust samples collected in Belgium were analyzed using target and suspect screening. Targeted QACs (n = 21) were detected with detection frequencies ranging between 4.2 and 100 %, while 15 QACs showed detection frequencies > 90 %. Semi-quantified concentrations of individual QACs showed a maximum of 32.23 µg/g with a median ∑QAC concentration of 13.05 µg/g and allowed the calculation of Estimated Daily Intakes for adults and toddlers. Most abundant QACs matched the patterns reported in indoor dust collected in the United States. Suspect screening allowed the identification of 17 additional QACs. A dialkyl dimethyl ammonium compound with mixed chain lengths (C16:C18) was characterized as a major QAC homologue with a maximum semi-quantified concentration of 24.90 µg/g. The high detection frequencies and structural variabilities observed call for more European studies on potential human exposure to these compounds. For all targeted QACs, drift tube IM-HRMS derived collision cross section values (DTCCSN2) are reported. Reference DTCCSN2 values allowed the characterization of CCS-m/z trendlines for each of the targeted QAC classes. Experimental CCS-m/z ratios of suspect QACs were compared with the CCS-m/z trendlines. The alignment between the two datasets served as an additional confirmation of the assigned suspect QACs. The use of the 4bit multiplexing acquisition mode with consecutive high-resolution demultiplexing confirmed the presence of isomers for two of the suspect QACs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Division for Environmental Health, Korea Environment Institute (KEI), Sicheong-daero 370, Sejong 30147, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
122
|
Li G, Jeon CK, Ma M, Jia Y, Zheng Z, Delafield DG, Lu G, Romanova EV, Sweedler JV, Ruotolo BT, Li L. Site-specific chirality-conferred structural compaction differentially mediates the cytotoxicity of Aβ42. Chem Sci 2023; 14:5936-5944. [PMID: 37293657 PMCID: PMC10246695 DOI: 10.1039/d3sc00678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Growing evidence supports the confident association between distinct amyloid beta (Aβ) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aβ toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aβ42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d-isomerized Aβ as natural mimics, ranging from fragments containing a single d residue to full length Aβ42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co-d-epimerization at Asp and Ser residues within Aβ42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aβ42 secondary structure.
Collapse
Affiliation(s)
- Gongyu Li
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Min Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Yifei Jia
- State Key Laboratory of Pharmaceutical Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhen Zheng
- School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Daniel G Delafield
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Gaoyuan Lu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| | - Elena V Romanova
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Jonathan V Sweedler
- Department of Chemistry and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison 777 Highland Ave. Madison WI 53705 USA
| |
Collapse
|
123
|
Olajide OE, Yi Y, Zheng J, Hamid AM. Strain-Level Discrimination of Bacteria by Liquid Chromatography and Paper Spray Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1125-1135. [PMID: 37249401 PMCID: PMC10407911 DOI: 10.1021/jasms.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Determining bacterial identity at the strain level is critical for public health to enable proper medical treatments and reduce antibiotic resistance. Herein, we used liquid chromatography, ion mobility, and tandem MS (LC-IM-MS/MS) to distinguish Escherichia coli (E. coli) strains. Numerical multivariate statistics (principal component analysis, followed by linear discriminant analysis) showed the capability of this method to perform strain-level discrimination with prediction rates of 96.1% and 100% utilizing the negative and positive ion information, respectively. The tandem MS and LC separation proved effective in discriminating diagnostic lipid isomers in the negative mode, while IM separation was more effective in resolving lipid conformational biomarkers in the positive ion mode. Because of the clinical importance of early detection for rapid medical intervention, a faster technique, paper spray (PS)-IM-MS/MS, was used to discriminate the E. coli strains. The achieved prediction rates of the analysis of E. coli strains by PS-IM-MS/MS were 62.5% and 73.5% in the negative and positive ion modes, respectively. The strategy of numerical data fusion of negative and positive ion data increased the classification rates of PS-IM-MS/MS to 80.5%. Lipid isomers and conformers were detected, which served as strain-indicating biomarkers. The two complementary multidimensional techniques revealed biochemical differences between the E. coli strains confirming the results obtained from comparative genomic analysis. Moreover, the results suggest that PS-IM-MS/MS is a rapid, highly selective, and sensitive method for discriminating bacterial strains in environmental and food samples.
Collapse
Affiliation(s)
- Orobola E. Olajide
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| | - Yuyan Yi
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Ahmed M. Hamid
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| |
Collapse
|
124
|
Shi Y, Jin HF, Jiao YH, Fei TH, Liu FM, Cao J. Enzyme activity- and chemometrics-assisted comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of honeysuckle. J Chromatogr A 2023; 1702:464090. [PMID: 37245356 DOI: 10.1016/j.chroma.2023.464090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
A unique and effective comprehensive two-dimensional liquid chromatography system was established and applied for the analysis of bioactive components in honeysuckle. Under the optimal conditions, Eclipse Plus C18 (2.1 × 100 mm, 3.5 μm, Agilent) and SB-C18 (4.6 × 50 mm, 1.8 μm, Agilent) columns were chosen for the first dimension (1D) and the second dimension (2D) separation. The optimal flow rates of 1D and 2D were 0.12 mL/min and 2.0 mL/min, respectively. Additionally, the proportion of organic solution was optimized to enhance orthogonality and integrated shift, and full gradient elution mode was adopted to improve chromatographic resolution. Furthermore, a total of 57 compounds were identified by molecular weight, retention time and collision cross-section value obtained from ion mobility mass spectrometry. Based on the data obtained from the principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis, the categories of honeysuckle in different regions were significantly different. Moreover, the half maximal inhibitory concentration values of most samples were between 0.37 and 1.55 mg/mL, and most samples were potent α-glucosidase inhibitors, which is better for the evaluation of the quality of drugs from two aspects of substance content and activity.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting-Hong Fei
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang-Ming Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
125
|
Zlibut E, May JC, Wei Y, Gessmann D, Wood CS, Bernat BA, Pugh TE, Palmer-Jones L, Cosquer RP, Dybeck E, McLean JA. Noncovalent Host-Guest Complexes of Artemisinin with α-, β-, and γ- Cyclodextrin Examined by Structural Mass Spectrometry Strategies. Anal Chem 2023; 95:8180-8188. [PMID: 37184072 DOI: 10.1021/acs.analchem.2c05076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, βCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping (n > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:βCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K+, Rb+, and Cs+. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:βCD + X]+ ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:βCD + Li]+ ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the βCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.
Collapse
Affiliation(s)
- Emanuel Zlibut
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Yansheng Wei
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Dennis Gessmann
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Constance S Wood
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Bryan A Bernat
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Teresa E Pugh
- Pfizer, R&D UK Ltd, PSSM ARD, Sandwich CT13 9NJ, U.K
| | | | | | - Eric Dybeck
- Worldwide Research, Development & Medical, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| |
Collapse
|
126
|
Capitain CC, Zischka M, Sirkeci C, Weller P. Evaluation of IMS drift tube temperature on the peak shape of high boiling fragrance compounds towards allergen detection in complex cosmetic products and essential oils. Talanta 2023; 257:124397. [PMID: 36858010 DOI: 10.1016/j.talanta.2023.124397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Gas chromatography-ion mobility spectrometry (GC-IMS) has recently gained increasing attention for the analysis of volatile compounds due to its high sensitivity, selectivity, and robust design. Peak shape distortion, including peak tailing or broadening, are well known challenges in chromatographic analysis that result in peak asymmetry and decreased resolution. However, in IMS analysis peak tailing, which is independent on the column separation technique, have also been observed. As high boiling substances, such as monoterpenes, are mainly affected by enlarged peak tailing in GC-IMS, we propose that condensation or adsorption effects within the "cold" IMS cell, which is commonly operated at 45 °C-90 °C, are the root cause. To avoid condensation and to decrease peak tailing, we used a prototypic high temperature ion mobility spectrometry (HTIMS) in this work, which allows an increase of the IMS drift tube temperature up to 180 °C. This HTIMS was coupled to a GC column separation and used to analyse the peak shape of homologues series of ketones, alcohols, aldehydes, as well as high boiling fragrance compounds, such as monoterpenes and phenylpropanoids. While we were able to show that an increased IMS drift tube temperatures correlates well with improved peak shapes, the GC parameters of the HS-GC-HTIMS method, however, were found to have little effect on the peak shapes in IMS spectra. In particular monoterpenes, which display intense peak tailing at lower IMS drift tube temperatures, show significant improvement of the peak shape at higher IMS drift tube temperatures. This leads to the assumption that high boiling substances indeed undergo condensation effects within the IMS cell at low drift tube temperatures. For many separation tasks, such as the separation of the phenylpropanoids eugenol and isoeugenol, comparably low IMS temperatures of 120 °C are already sufficient to achieve a resolution above 1.5. However, the optimal drift tube temperature is dependent on the substance class. While the aspect ratio increases steadily for most monoterpenes, phenylpropanoids and aldehyde monomer peaks investigated, an optimal aspect ratio was found for ketones between 140 °C and 160 °C and alcohols between 120 °C and 140 °C. Lastly, the change of the reduced mobility K0 with the increase of drift tube temperature was analysed. Compounds with similar chemical structure, such as the alcoholic monoterpenes citronellol and geraniol or the phenylpropanoids eugenol and isoeugenol show similar shifts of the K0 value. Substances which differ in their chemical structure, such as the aldehyde monoterpenes citral and cinnamal have substantially different shifts of the K0 value. With a future large substance database, the temperature dependant slope of the K0 value of a substance could be used to identify the substance groups of unknown molecules. Furthermore, substances with the same drift time but different chemical composition could be separable through a change in drift tube temperature.
Collapse
Affiliation(s)
- Charlotte C Capitain
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Martin Zischka
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Cengiz Sirkeci
- G.A.S. Gesellschaft für Analytische Sensorsysteme mbH, 44227 Dortmund, Germany
| | - Philipp Weller
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| |
Collapse
|
127
|
Li X, Wang H, Jiang M, Ding M, Xu X, Xu B, Zou Y, Yu Y, Yang W. Collision Cross Section Prediction Based on Machine Learning. Molecules 2023; 28:molecules28104050. [PMID: 37241791 DOI: 10.3390/molecules28104050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuetong Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
128
|
Habibi SC, Nagy G. General Method to Obtain Collision Cross-Section Values in Multipass High-Resolution Cyclic Ion Mobility Separations. Anal Chem 2023; 95:8028-8035. [PMID: 37163363 DOI: 10.1021/acs.analchem.3c00919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In recent years, ion mobility spectrometry-mass spectrometry (IMS-MS) has advanced the field of omics-based research, especially with the development of high-resolution platforms; however, these separations have generally been qualitative in nature. The rotationally averaged ion neutral collision cross section (CCS) is one of the only quantitative metrics available for aiding in characterizing biomolecules in IMS-MS. However, determining the CCS of an ion for multipass IMS systems, such as in cyclic ion mobility-mass spectrometry (cIMS-MS) and structures for lossless ion manipulations, has been challenging due to the lack of methods available for calculating CCS when more than a single pass is required for separation as well as the laborious nature of requiring calibrants and unknown compounds to be subjected to identical number of passes, which may not be possible in certain instances because of peak splitting, high levels of diffusion, etc. Herein, we present a general method that uses average ion velocities for calculating CCS values in cIMS-MS-based separations. Initially, we developed calibration curves using common CCS calibrants [i.e., tetra-alkylammonium salts, polyalanine, and hexakis(fluoroalkoxy)phosphazines] at different traveling wave (TW) conditions and the calculated cIMS CCS values were within ∼1% error or less compared to previously established drift tube IMS CCS measurements. Since it has been established that glycans can split into their α/β anomers, we utilized this method for two glycan species, 2α-mannobiose and melibiose. Both glycans were analyzed at the same TW conditions as the calibrants, and we observed anomer splitting at pathlengths of 20 m for 2α-mannobiose and 40 m for melibiose and thus assigned two unique CCS values for each glycan, which is the first time this has ever been done. We have demonstrated that the use of average ion velocities is a robust approach for obtaining CCS values with good agreement to CCS measurements from the previous literature and anticipate that this methodology can be applied to any IMS-MS platform that utilizes multipass separations. Our future work aims to incorporate this methodology for the development of a high-resolution CCS database to aid in the characterization of human milk oligosaccharides.
Collapse
Affiliation(s)
- Sanaz C Habibi
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
129
|
James VK, Sanders JD, Aizikov K, Fort KL, Grinfeld D, Makarov A, Brodbelt JS. Expanding Orbitrap Collision Cross-Section Measurements to Native Protein Applications Through Kinetic Energy and Signal Decay Analysis. Anal Chem 2023; 95:7656-7664. [PMID: 37133913 DOI: 10.1021/acs.analchem.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The measurement of collision cross sections (CCS, σ) offers supplemental information about sizes and conformations of ions beyond mass analysis alone. We have previously shown that CCSs can be determined directly from the time-domain transient decay of ions in an Orbitrap mass analyzer as ions oscillate around the central electrode and collide with neutral gas, thus removing them from the ion packet. Herein, we develop the modified hard collision model, thus deviating from the prior FT-MS hard sphere model, to determine CCSs as a function of center-of-mass collision energy in the Orbitrap analyzer. With this model, we aim to increase the upper mass limit of CCS measurement for native-like proteins, characterized by low charge states and presumed to be in more compact conformations. We also combine CCS measurements with collision induced unfolding and tandem mass spectrometry experiments to monitor protein unfolding and disassembly of protein complexes and measure CCSs of ejected monomers from protein complexes.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Kyle L Fort
- Thermo Fisher Scientific, Bremen 28199, Germany
| | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
130
|
Ben Faleh A, Warnke S, Van Wieringen T, Abikhodr AH, Rizzo TR. New Approach for the Identification of Isobaric and Isomeric Metabolites. Anal Chem 2023; 95:7118-7126. [PMID: 37119183 PMCID: PMC10173252 DOI: 10.1021/acs.analchem.2c04962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The structural elucidation of metabolite molecules is important in many branches of the life sciences. However, the isomeric and isobaric complexity of metabolites makes their identification extremely challenging, and analytical standards are often required to confirm the presence of a particular compound in a sample. We present here an approach to overcome these challenges using high-resolution ion mobility spectrometry in combination with cryogenic vibrational spectroscopy for the rapid separation and identification of metabolite isomers and isobars. Ion mobility can separate isomeric metabolites in tens of milliseconds, and cryogenic IR spectroscopy provides highly structured IR fingerprints for unambiguous molecular identification. Moreover, our approach allows one to identify metabolite isomers automatically by comparing their IR fingerprints with those previously recorded in a database, obviating the need for a recurrent introduction of analytical standards. We demonstrate the principle of this approach by constructing a database composed of IR fingerprints of eight isomeric/isobaric metabolites and use it for the identification of these isomers present in mixtures. Moreover, we show how our fast IR fingerprinting technology allows to probe the IR fingerprints of molecules within just a few seconds as they elute from an LC column. This approach has the potential to greatly improve metabolomics workflows in terms of accuracy, speed, and cost.
Collapse
Affiliation(s)
- Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, CH-1025 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, CH-1025 Lausanne, Switzerland
| | - Teun Van Wieringen
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, CH-1025 Lausanne, Switzerland
| | - Ali H Abikhodr
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, CH-1025 Lausanne, Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, CH-1025 Lausanne, Switzerland
| |
Collapse
|
131
|
Bilbao A, Munoz N, Kim J, Orton DJ, Gao Y, Poorey K, Pomraning KR, Weitz K, Burnet M, Nicora CD, Wilton R, Deng S, Dai Z, Oksen E, Gee A, Fasani RA, Tsalenko A, Tanjore D, Gardner J, Smith RD, Michener JK, Gladden JM, Baker ES, Petzold CJ, Kim YM, Apffel A, Magnuson JK, Burnum-Johnson KE. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements. Nat Commun 2023; 14:2461. [PMID: 37117207 PMCID: PMC10147702 DOI: 10.1038/s41467-023-37031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Collapse
Affiliation(s)
- Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | | | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Karl Weitz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan Burnet
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Rosemarie Wilton
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ethan Oksen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Gee
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Rick A Fasani
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Anya Tsalenko
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Deepti Tanjore
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James Gardner
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua K Michener
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John M Gladden
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Sandia National Laboratory, Livermore, CA, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher J Petzold
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Alex Apffel
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Kristin E Burnum-Johnson
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| |
Collapse
|
132
|
Williamson DL, Trimble TK, Nagy G. Hydrogen-Deuterium-Exchange-Based Mass Distribution Shifts in High-Resolution Cyclic Ion Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37098274 DOI: 10.1021/jasms.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mass distribution of ions influences separations in ion mobility spectrometry-mass spectrometry (IMS-MS). Herein, we introduce a method to induce mass distribution shifts for various analytes using hydrogen-deuterium exchange (HDX) immediately prior to ionization using a dual syringe approach. By replacing labile hydrogens on analytes with deuteriums, we were able to differentiate isomers using separations of isotopologues. For each analyte studied, every possible level of deuteration (from undeuterated to fully deuterated) was generated and then separated using cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS). The information gained from such separations (relative arrival times; tRel. values) was found to be orthogonal to conventional IMS-MS separations. Additionally, the observed shifts were linearly additive with increasing deuteration, suggesting that this methodology could be extended to analytes with a larger number of labile hydrogens. For one isomer pair, as few as two deuteriums were able to produce a large enough mass distribution shift to differentiate isomers. In another experiment, we found that the mass distribution shift was large enough to overcome the reduced mass contribution, resulting in a "flipped" arrival time where the heavier deuterated isotopologue arrived before the lighter one. In this work, we present a proof-of-concept demonstration that mass-distribution-based shifts, tRel. values, could potentially act as an added dimension to characterize molecules in IMS-MS. We anticipate, along with future work in this area, that mass-distribution-based shifts could enable the identification of unknown molecules through a database-driven approach in an analogous fashion to collision cross section (CCS) measurements.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Tyson K Trimble
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
133
|
Díaz-Galiano FJ, Murcia-Morales M, Monteau F, Le Bizec B, Dervilly G. Collision cross-section as a universal molecular descriptor in the analysis of PFAS and use of ion mobility spectrum filtering for improved analytical sensitivities. Anal Chim Acta 2023; 1251:341026. [PMID: 36925298 DOI: 10.1016/j.aca.2023.341026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The massive usage of per- and polyfluoroalkyl substances (PFAS), as well as their high chemical stability, have led to their ubiquitous presence in environmental matrices and direct human exposure through contaminated food, particularly fish. In the analysis of this large group of substances, the use of ion mobility coupled to mass spectrometry is of particular relevance because it uses an additional descriptor, the collision cross-section (CCS), which results in increased selectivity. In the present work, the TWCCSN2 of 24 priority PFAS were experimentally obtained, and the reproducibility of these measurements was evaluated over seven weeks. The average values were employed to critically assess previously reported data and theoretical calculations. This gain in selectivity made it possible to increase the sensitivity of the detection on complex matrices (biota, food and human serum) by using the drift time associated to each analyte as a filter, thus reducing the interferences and background noise and allowing their detection at trace levels.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- ONIRIS, INRAE, LABERCA, Nantes, 44000, France; University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Murcia-Morales
- ONIRIS, INRAE, LABERCA, Nantes, 44000, France; University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | | | | | | |
Collapse
|
134
|
Chakraborty P, Neumaier M, Weis P, Kappes MM. Exploring Isomerism in Isolated Cyclodextrin Oligomers through Trapped Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:676-684. [PMID: 36952473 DOI: 10.1021/jasms.2c00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cyclodextrin (CD) macrocycles are used to create a wide range of supramolecular architectures which are also of interest in applications such as selective gas adsorption, drug delivery, and catalysis. However, predicting their assemblies and identifying the possible isomers in CD oligomers have always remained challenging due to their dynamic nature. Herein, we interacted CDs (α, β, and γ) with a divalent metal ion, Cu2+, to create a series of Cu2+-linked CD oligomers, from dimers to pentamers. We characterized these oligomers using electrospray ionization mass spectrometry and probed isomerism in each of these isolated oligomers using high resolution trapped ion mobility spectrometry. Using this technique, we separated multiple isomers for each of the Cu2+-interlinked CD oligomers and estimated their relative population, which was not accessible previously using other characterization techniques. We further carried out structural analysis of the observed isomers by comparing the experimental collision cross sections (CCSs) to that of modeled structures. We infer that the isomeric heterogeneity reflects size-specific packing patterns of individual CDs (e.g., close-packed/linear). In some cases, we also reveal the existence of kinetically trapped structures in the gas phase and study their transformation to thermodynamically controlled forms by examining the influence of activation of the ions on isomer interconversion.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
135
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
136
|
Kirschbaum C, Young RSE, Greis K, Menzel JP, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Causon T, Narreddula VR, Poad BLJ, Blanksby SJ, Pagel K. Establishing carbon-carbon double bond position and configuration in unsaturated fatty acids by gas-phase infrared spectroscopy. Chem Sci 2023; 14:2518-2527. [PMID: 36908944 PMCID: PMC9993887 DOI: 10.1039/d2sc06487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Fatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and carbon-carbon double bonds present highly sensitive probes for regiochemistry and configuration through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained from unsaturated fatty acids are shown to discriminate between isomers and enable the first unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid metabolism.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna 1190 Vienna Austria
| | - Venkateswara R Narreddula
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
137
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
138
|
Mu H, Wang J, Chen L, Hu H, Wang J, Gu C, Ren H, Wu B. Identification and characterization of diverse isomers of per- and polyfluoroalkyl substances in Chinese municipal wastewater. WATER RESEARCH 2023; 230:119580. [PMID: 36638730 DOI: 10.1016/j.watres.2023.119580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Linear and branched isomers of per- and polyfluoroalkyl substances (PFASs) are simultaneously present in the environment. However, isomer profiles of PFASs in municipal wastewater treatment plants (WWTPs) are still unknown because of the limitations of standards. Here, influent and effluent samples from 148 municipal WWTPs in China were collected. Ion mobility spectrometry was introduced into high-resolution mass spectrometry-based suspect screening methods to identify the target and suspect PFAS isomers. A total of 38 branched isomers of 14 typical PFASs were identified in wastewater samples. Linear PFASs had higher detection rates (22.3%-100%) than branched isomers (2.0%-98%). Compared to the influents, proportions of branched isomers of most PFASs (except for perfluoropentanoic acid and perfluorohexanoic acid) increased in the effluents. The conventional biological treatment processes (such as anaerobic-anoxic-aerobic and oxidation ditch treatments) had poor removal efficiency for linear PFASs (<21.4%) and branched isomers (<13.4%). No difference on removal efficiency among treatment processes was found. Furthermore, isomer composition in the WWTPs showed obvious differences between East China region and other regions, and the usage of short-chain PFASs (perfluorobutanesulfonic acid and perfluorohexanesulfonic acid) may be a key factor for driving this difference. This study sheds lights on the identification and characterization of PFAS isomers in WWTPs, which would be useful for development of monitoring and control strategies of PFASs.
Collapse
Affiliation(s)
- Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jiawei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
139
|
Leyva D, Tariq MU, Jaffé R, Saeed F, Fernandez-Lima F. Description of Dissolved Organic Matter Transformational Networks at the Molecular Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2672-2681. [PMID: 36724500 PMCID: PMC11834952 DOI: 10.1021/acs.est.2c04715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dissolved Organic Matter (DOM) is an important component of the global carbon cycle. Unscrambling the structural footprint of DOM is key to understand its biogeochemical transformations at the mechanistic level. Although numerous studies have improved our knowledge of DOM chemical makeup, its three-dimensional picture remains largely unrevealed. In this work, we compare four solid phase extracted (SPE) DOM samples from three different freshwater ecosystems using high resolution mobility and ultrahigh-resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR MS/MS). Structural families were identified based on neutral losses at the level of nominal mass using continuous accumulation of selected ions-collision induced dissociation (CASI-CID)FT-ICR MS/MS. Comparison of the structural families indicated dissimilarities in the structural footprint of this sample set. The structural family representation using Cytoscape software revealed characteristic clustering patterns among the DOM samples, thus confirming clear differences at the structural level (Only 10% is common across the four samples.). The analysis at the level of neutral loss-based functionalities suggests that hydration and carboxylation are ubiquitous transformational processes across the three ecosystems. In contrast, transformation mechanisms involving methoxy moieties may be constrained in estuarine systems due to extensive upstream lignin biodegradation. The inclusion of the isomeric content (mobility measurements at the level of chemical formula) in the structural family description suggests that additional transformation pathways and/or source variations are possible and account for the dissimilarities observed. While the structural character of more and diverse types of DOM samples needs to be assessed and added to this database, the results presented here demonstrate that Graph-DOM is a powerful tool capable of providing novel information on the DOM chemical footprint, based on structural interconnections of precursor molecules generated by fragmentation pathways and collisional cross sections.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Muhammad Usman Tariq
- School of Computing and Information Science, Florida International University, Miami, FL, 33199, United States
| | - Rudolf Jaffé
- Institute of Environment and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Fahad Saeed
- School of Computing and Information Science, Florida International University, Miami, FL, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| |
Collapse
|
140
|
Su P, Warneke Z, Volke D, Espenship MF, Hu H, Kawa S, Kirakci K, Hoffmann R, Laskin J, Wiebeler C, Warneke J. Gas Phase Reactivity of [Mo 6X 14] 2- Dianions (X = Cl - I). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:161-170. [PMID: 36630296 DOI: 10.1021/jasms.2c00243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigate collision-induced dissociation (CID) of [Mo6X14]2- (X = Cl, Br, I) and the reactivity of fragment ions of these precursors with background gases. Ion mobility measurements and theoretical calculations provide structural information for some of the observed ions. Sequential losses of MoX2 units dominate the dissociation pathways of [Mo6Cl14]2-. Meanwhile, loss of X radicals is the main channel for X = Br and I. Ion mobility measurements and computational investigations indicate minor structural changes in the octahedral Mo6 unit for [Mo6Im]- (m = 6-13) fragments. We observe that mass spectra obtained using CID substantially vary among mass spectrometers: Specifically, ions with molecular formula [Mo6Xm(O2)n]- (X = Br and I) are observed as dominant species produced through reactions with O2 in several mass spectrometers, but also adduct free fragment ions were observed in other instruments, depending on the background conditions. Ion-trap fragmentation combined with theoretical investigations indicates that spontaneous losses of X radicals occur upon binding of O2 to [Mo6Im]- fragments (m ≤ 12). Theoretical investigations indicate that both oxygen atoms are bound to the vacant sites of the Mo6 units. This study opens up a new vista to generate and study a large variety of hexanuclear Mo6Xm(O2)n anions.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Ziyan Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig04103Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103Leipzig, Germany
| | - Michael F Espenship
- Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Sebastian Kawa
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103Leipzig, Germany
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i, Husinec-R̆ez̆ 1001, 250 68R̆ez̆, Czech Republic
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig04103Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103Leipzig, Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Christian Wiebeler
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103Leipzig, Germany
- Institut für Analytische Chemie, Universität Leipzig, 04103Leipzig, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103Leipzig, Germany
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstrasse 15, 04318Leipzig, Germany
| |
Collapse
|
141
|
Ni Z, Wölk M, Jukes G, Mendivelso Espinosa K, Ahrends R, Aimo L, Alvarez-Jarreta J, Andrews S, Andrews R, Bridge A, Clair GC, Conroy MJ, Fahy E, Gaud C, Goracci L, Hartler J, Hoffmann N, Kopczyinki D, Korf A, Lopez-Clavijo AF, Malik A, Ackerman JM, Molenaar MR, O'Donovan C, Pluskal T, Shevchenko A, Slenter D, Siuzdak G, Kutmon M, Tsugawa H, Willighagen EL, Xia J, O'Donnell VB, Fedorova M. Guiding the choice of informatics software and tools for lipidomics research applications. Nat Methods 2023; 20:193-204. [PMID: 36543939 PMCID: PMC10263382 DOI: 10.1038/s41592-022-01710-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.
Collapse
Affiliation(s)
- Zhixu Ni
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Geoff Jukes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Lucila Aimo
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Jorge Alvarez-Jarreta
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Robert Andrews
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alan Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Geremy C Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew J Conroy
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Eoin Fahy
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Caroline Gaud
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- Field of Excellence BioHealthe-University of Graz, Graz, Austria
| | - Nils Hoffmann
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Dominik Kopczyinki
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Ansgar Korf
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | | | - Adnan Malik
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denise Slenter
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA, USA
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Egon L Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
142
|
Xi Y, Sohn AL, Joignant AN, Cologna SM, Prentice BM, Muddiman DC. SMART: A data reporting standard for mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4904. [PMID: 36740651 PMCID: PMC10078510 DOI: 10.1002/jms.4904] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Mass spectrometry imaging (MSI) is an important analytical technique that simultaneously reports the spatial location and abundance of detected ions in biological, chemical, clinical, and pharmaceutical studies. As MSI grows in popularity, it has become evident that data reporting varies among different research groups and between techniques. The lack of consistency in data reporting inherently creates additional challenges in comparing intra- and inter-laboratory MSI data. In this tutorial, we propose a unified data reporting system, SMART, based on the common features shared between techniques. While there are limitations to any reporting system, SMART was decided upon after significant discussion to more easily understand and benchmark MSI data. SMART is not intended to be comprehensive but rather capture essential baseline information for a given MSI study; this could be within a study (e.g., effect of spot size on the measured ion signals) or between two studies (e.g., different MSI platform technologies applied to the same tissue type). This tutorial does not attempt to address the confidence with which annotations are made nor does it deny the importance of other parameters that are not included in the current SMART format. Ultimately, the goal of this tutorial is to discuss the necessity of establishing a uniform reporting system to communicate MSI data in publications and presentations in a simple format to readily interpret the parameters and baseline outcomes of the data.
Collapse
Affiliation(s)
- Ying Xi
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexandria L Sohn
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Alena N Joignant
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
143
|
Lee J, Chai M, Bleiholder C. Differentiation of Isomeric, Nonseparable Carbohydrates Using Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2023; 95:747-757. [PMID: 36547374 PMCID: PMC10126951 DOI: 10.1021/acs.analchem.2c02844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates play important roles in biological processes, but their identification remains a significant analytical problem. While mass spectrometry has increasingly enabled the elucidation of carbohydrates, current approaches are limited in their abilities to differentiate isomeric carbohydrates when these are not separated prior to tandem-mass spectrometry analysis. This analytical challenge takes on increased relevance because of the pervasive presence of isomeric carbohydrates in biological systems. Here, we demonstrate that TIMS2-MS2 workflows enabled by tandem-trapped ion mobility spectrometry-mass spectrometry (tTIMS/MS) provide a general approach to differentiate isomeric, nonseparated carbohydrates. Our analysis shows that (1) cross sections measured by TIMS are sufficiently precise and robust for ion identification; (2) fragment ion cross sections from TIMS2 analysis can be analytically exploited to identify carbohydrate precursors even if the precursor ions are not separated by TIMS; (3) low-abundant fragment ions can be exploited to identify carbohydrate precursors even if the precursor ions are not separated by IMS. (4) MS2 analysis of fragment ions produced by TIMS2 can be used to validate and/or further characterize carbohydrate structures. Taken together, our analysis underlines the opportunities that tandem-ion mobility spectrometry/MS methods offer for the characterization of mixtures of isomeric carbohydrates.
Collapse
Affiliation(s)
- Jusung Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
144
|
Gadkari VV, Juliano BR, Mallis CS, May JC, Kurulugama RT, Fjeldsted JC, McLean JA, Russell DH, Ruotolo BT. Performance evaluation of in-source ion activation hardware for collision-induced unfolding of proteins and protein complexes on a drift tube ion mobility-mass spectrometer. Analyst 2023; 148:391-401. [PMID: 36537590 PMCID: PMC10103148 DOI: 10.1039/d2an01452a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
145
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
146
|
Butalewicz JP, Sanders JD, Clowers BH, Brodbelt JS. Improving Ion Mobility Mass Spectrometry of Proteins through Tristate Gating and Optimization of Multiplexing Parameters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:101-108. [PMID: 36469482 DOI: 10.1021/jasms.2c00274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coupling drift tube ion mobility (IM) to Fourier transform mass spectrometry (FT-MS) affords the opportunity for gas-phase separation of ions based on size and conformation with high-resolution mass analysis. However, combining IM and FT-MS is challenging because ions exit the drift tube on a much faster time scale than the rate of mass analysis. Fourier transform (FT) and Hadamard transform multiplexing methods have been implemented to overcome the duty-cycle mismatch, offering new avenues for obtaining high-resolution, high-mass-accuracy analysis of mobility-selected ions. The gating methods used to integrate the drift tube with the FT mass analyzer discriminate against the transmission of large, low-mobility ions owing to the well-known gate depletion effect. Tristate gating strategies have been shown to increase ion transmission for drift tube IM-FT-MS systems through implementation of dual ion gating, controlling the quantity and timing of ions through the drift tube to reduce losses of slow-moving ions. Here we present an optimized set of multiplexing parameters for tristate gating ion mobility of several proteins on an Orbitrap mass spectrometer and further report parameters for increased ion transmission and mobility resolution as well as decreased experimental times from 15 min down to 30 s. On average, peak intensities in the arrival time distributions (ATDs) for ubiquitin increased 2.1× on average, while those of myoglobin increased by 1.5× with a resolving power increase on average of 11%.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
147
|
Cowart A, Brük ML, Žoglo N, Roithmeyer H, Uudsemaa M, Trummal A, Selke K, Aav R, Kalenius E, Adamson J. Solution- and gas-phase study of binding of ammonium and bisammonium hydrocarbons to oxacalix[4]arene carboxylate. RSC Adv 2023; 13:1041-1048. [PMID: 36686943 PMCID: PMC9812018 DOI: 10.1039/d2ra07614d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Oxacalixarenes represent a distinctive class of macrocyclic compounds, which are closely related to the parent calixarene family, offering binding motifs characteristic of calixarenes and crown ethers. Nevertheless, they still lack extensive characterization in terms of molecular recognition properties and the subsequent practical applicability. We present here the results of binding studies of an oxacalix[4]arene carboxylate macrocycle toward a variety of organic ammonium cationic species. Our results show that the substituents attached to the guest ammonium compound largely influence the binding strengths of the host. Furthermore, we show that the characteristic binding pattern changes upon transition from the gas phase to solution in terms of the governing intermolecular interactions. We identify the key factors affecting host-guest binding efficacy and suggest rules for the important molecular structural motifs of the interacting parts of ammonium guest species and the macrocycle to facilitate sensing of ammonium cations.
Collapse
Affiliation(s)
- Anna Cowart
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Mari-Liis Brük
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Nikita Žoglo
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Helena Roithmeyer
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Merle Uudsemaa
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Aleksander Trummal
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Kaspar Selke
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Elina Kalenius
- Department of Chemistry, NanoScience Center, University of JyväskyläSurvontie 9BFI-40014 JYFinland
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| |
Collapse
|
148
|
Ye LH, Dong X, Cao J. A highly sensitive method (supercritical fluid chromatography coupled with ion mobility mass spectrometry) for determination of multiple compounds in radix curcumae. Biomed Chromatogr 2023; 37:e5514. [PMID: 36181280 DOI: 10.1002/bmc.5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022]
Abstract
A highly sensitive method was developed for simultaneously separating and identifying multiple compounds in radix curcumae. The determination of these compounds was achieved by combining supercritical fluid chromatography with drift tube ion mobility quadrupole time-of-flight MS. Related parameters were optimized: the RX-SIL column was used as the stationary phase, methanol was selected as the organic modifier, back pressure was 120 bar, back temperature was 60°C, the mobile phase flow rate was 1.75 mL/min, the makeup solvent was 0.2% formic acid/methanol with a flow rate of 0.7 mL/min. Under optimal conditions, multipolar compounds were separated. Furthermore, these compounds were identified by the values of collision sectional areas. The established method was verified by related parameters and exhibited good linearity, sensitivity, precision and accuracy. It could be extended to analyze other curcuminoids and sesquiterpenoids in natural products.
Collapse
Affiliation(s)
- Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, P. R. China
| | - Xin Dong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
149
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
150
|
Rainey MA, Watson CA, Asef CK, Foster MR, Baker ES, Fernández FM. CCS Predictor 2.0: An Open-Source Jupyter Notebook Tool for Filtering Out False Positives in Metabolomics. Anal Chem 2022; 94:17456-17466. [PMID: 36473057 PMCID: PMC9772062 DOI: 10.1021/acs.analchem.2c03491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolite annotation continues to be the widely accepted bottleneck in nontargeted metabolomics workflows. Annotation of metabolites typically relies on a combination of high-resolution mass spectrometry (MS) with parent and tandem measurements, isotope cluster evaluations, and Kendrick mass defect (KMD) analysis. Chromatographic retention time matching with standards is often used at the later stages of the process, which can also be followed by metabolite isolation and structure confirmation utilizing nuclear magnetic resonance (NMR) spectroscopy. The measurement of gas-phase collision cross-section (CCS) values by ion mobility (IM) spectrometry also adds an important dimension to this workflow by generating an additional molecular parameter that can be used for filtering unlikely structures. The millisecond timescale of IM spectrometry allows the rapid measurement of CCS values and allows easy pairing with existing MS workflows. Here, we report on a highly accurate machine learning algorithm (CCSP 2.0) in an open-source Jupyter Notebook format to predict CCS values based on linear support vector regression models. This tool allows customization of the training set to the needs of the user, enabling the production of models for new adducts or previously unexplored molecular classes. CCSP produces predictions with accuracy equal to or greater than existing machine learning approaches such as CCSbase, DeepCCS, and AllCCS, while being better aligned with FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Another unique aspect of CCSP 2.0 is its inclusion of a large library of 1613 molecular descriptors via the Mordred Python package, further encoding the fine aspects of isomeric molecular structures. CCS prediction accuracy was tested using CCS values in the McLean CCS Compendium with median relative errors of 1.25, 1.73, and 1.87% for the 170 [M - H]-, 155 [M + H]+, and 138 [M + Na]+ adducts tested. For superclass-matched data sets, CCS predictions via CCSP allowed filtering of 36.1% of incorrect structures while retaining a total of 100% of the correct annotations using a ΔCCS threshold of 2.8% and a mass error of 10 ppm.
Collapse
Affiliation(s)
- Markace A. Rainey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chandler A. Watson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carter K. Asef
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Makayla R. Foster
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department of Chemistry and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States; Petit Institute of Bioengineering and Biotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|