101
|
Zhang Y, Zhang Z, Liu W, Chen Y. New applications of quinone redox mediators: Modifying nature-derived materials for anaerobic biotransformation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140652. [PMID: 32693271 DOI: 10.1016/j.scitotenv.2020.140652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Due to their wide-distribution, high-biocompatibility and low-cost, nature-derived quinone redox mediators (NDQRM) have shown great potential in bioremediation through mediating electron transfers between microorganisms and between microorganisms and contaminants in anaerobic biotransformation processes. It is obvious that their performance in bioremediation was limited by the availability of quinone-based groups in NDQRM. A sustainable solution is to enhance the electron transfer capacity and retention capacity by the modification of NDQRM. Therefore, this review comprehensively summarized the modification techniques of NDQRM according to their multiple roles in anaerobic biotransformation systems. In addition, their potential applications in greenhouse gas mitigation, contaminant degradation in anaerobic digestion, contaminant bioelectrochemical remediation and energy recovery were discussed. And the problems that need to be addressed in the future were pointed out. The obtained knowledge would promote the exploration of novel NDQRM, and provide suggestions for the design of anaerobic consortia in biotransformation systems.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weiguo Liu
- College of Resources and Environment Science, Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
102
|
Lu Y, Fu L, Tang L, Zhang J, Zhang Y, Wang J, Xie Q, Yang Z, Fan C, Zhang S. Shifts in short-chain fatty acid profile, Fe(III) reduction and bacterial community with biochar amendment in rice paddy soil. FEMS Microbiol Ecol 2020; 96:5780222. [PMID: 32129838 DOI: 10.1093/femsec/fiaa034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Abstract
Biochar, a valuable product from the pyrolysis of agricultural and forestry residues, has been widely applied as soil amendment. However, the effect of different types of biochar on soil microorganisms and associated biochemical processes in paddy soil remains ambiguous. In this study, we investigated the impact of biochars derived from different feedstocks (rice straw, orange peel and bamboo powder) on the dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in paddy soil within 90 days of anaerobic incubation. Results showed that biochar amendment overall inhibited the accumulation of SCFAs while accelerating the Fe(III) reduction process in paddy soil. In addition, 16S rRNA gene sequencing results demonstrated that the α-diversity of the bacterial community significantly decreased in response to biochar amendments at day 1 but was relatively unaffected at the end of incubation, and incubation time was the major driver for the succession of the bacterial community. Furthermore, significant correlations between parameters (e.g. SCFAs and iron concentration) and bacterial taxa (e.g. Clostridia, Syntrophus, Syntrophobacter and Desulfatiglans) were observed. Overall, our findings demonstrated amendment with different types of biochar altered SCFA profile, Fe(III) reduction and bacterial biodiversity in rice paddy soil.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Leiling Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jingjing Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Shoujuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
103
|
Ji M, Zhou L, Zhang S, Luo G, Sang W. Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140725. [PMID: 32679498 DOI: 10.1016/j.scitotenv.2020.140725] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Biochar can be used as a soil amendment. However, it generally possesses unique physicochemical properties and complex organics, which could affect soil methanogenesis. In this study,straw-based biochars obtained at 300 °C (BC300), 500 °C (BC500) and 700 °C (BC700) were added to the paddy soil. Compared with the blank group, BC300 significantly increased paddy soil methane emissions by about 38%. However, this promoting effect gradually disappeared with the increase of pyrolysis temperature, and the inhibition even appeared in the BC700 group with the methane reduction by 18.2%. This might be related to the organics released from biochar. Van Krevelen (VK) diagram showed that the aromaticity of BC700 and BC500 were significantly higher than BC300. Fluorescent analysis further revealed that BC300 increased the amount of degradable fluorescent organics in the soil, which could provide more substrate for methane production. Moreover, as pyrolysis temperature increased, the fluorescent organics released were more likely to be non-biodegradable humus. In addition, it was shown that BC700 could adsorb some inherent organics in the soil, and thus reduced the total organic content and inhibited soil methane emissions. Microbial analysis showed that methanogenesis had a positive correlation with the abundance of syntrophic bacteria (e.g. Desulfobacca and Clostridium) which had ability to further degrade various types of organics and provided substrates to the methanogens. This article provides a deeper understanding regarding for the effects of biochar on methane emission from paddy soil in terms of organics and microbial perspectives.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
104
|
Feng S, Zhang P, Duan W, Li H, Chen Q, Li J, Pan B. P-nitrophenol degradation by pine-wood derived biochar: The role of redox-active moieties and pore structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140431. [PMID: 32615434 DOI: 10.1016/j.scitotenv.2020.140431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Biochar can both adsorb and degrade p-nitrophenol (PNP); however, the PNP degradation mechanism has not been well investigated. We prepared two biochars at pyrolysis temperatures of 500 °C (B500) and 700 °C (B700). Although B500 showed much stronger free radical signals (which are associated with organic degradation, according to previous studies), the apparent PNP degradation was approximately 3 times higher in the B700 system. The degradation increased significantly after the biochars were washed with water. According to a quantitative analysis of the sorption and degradation and two-compartment first-order kinetics modeling of the apparent removal kinetics, sorption occurred mainly in the initial period, whereas degradation continued throughout the removal process. The PNP degradation rate constant depended mainly on the external surface area at a relatively low concentration (200 mg/L) and was controlled by the microporous surface area at a relatively high concentration (800 mg/L). In addition, the apparent degradation did not depend on the biochar particle size. Therefore, PNP degradation may be related to the three-dimensional structure of the biochar in addition to the exposed external surface. The well-developed pore structure, more accessible surface, and larger electron exchange capacity of B700 may promote electron transfer between the biochar and PNP, and thus accelerate PNP degradation. This study demonstrates that various properties of the biochar may contribute to PNP degradation.
Collapse
Affiliation(s)
- Shihui Feng
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.
| | - Wenyan Duan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Quan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Jing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.
| |
Collapse
|
105
|
Sun WX, Fu SF, Zhu R, Wang ZY, Zou H, Zheng Y. Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator. BIORESOURCE TECHNOLOGY 2020; 313:123648. [PMID: 32563791 DOI: 10.1016/j.biortech.2020.123648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
High-solid anaerobic digestion (AD) faces the problems of easy acidification and low methane production efficiency. In this study, activated carbon (AC)-enhanced direct interspecies electron transfer (DIET) was investigated to overcome such problems. Results showed the conversion of volatile fatty acids (VFAs) into methane rate was increased with AC addition, which led improved methane production efficiency. The methane yields from the early AD stage improved by 124.0-146.3% with AC addition. The T80 shortened by 8-9 days with AC addition. The relative abundances of Geobacter, Syntrophomonas and Methanosaeta that associated with DIET improved for 63.65%, 256.3% and 4.35% by AC addition, which reflected the enhanced DIET with AC addition. The redox activity of AC might be responsible for the enhanced DIET. This study would advance the understanding of DIET and provide a potential solution to the problems existed in high-solid AD.
Collapse
Affiliation(s)
- Wen-Xin Sun
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Shan-Fei Fu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Rong Zhu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Zhen-Yu Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Hua Zou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| |
Collapse
|
106
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
107
|
Wang H, Zhao HP, Zhu L. Role of Pyrogenic Carbon in Parallel Microbial Reduction of Nitrobenzene in the Liquid and Sorbed Phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8760-8769. [PMID: 32525663 DOI: 10.1021/acs.est.0c01061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface functional groups and graphitic carbons make up the electroactive components of pyrogenic carbon. The role of pyrogenic carbon with different contents of electroactive components in mediating electron transfer in biochemical reactions has not been systematically studied. Here, we determined the electron exchange capacity (EEC) of pyrogenic carbon to be 0.067-0.120 mmol e-·(g of pyrogenic carbon)-1, and the maximum electrical conductivity (EC) was 4.85 S·cm-1. Nitrobenzene was simultaneously reduced in both the liquid and sorbed phases by Shewanella oneidensis MR-1 in the presence of pyrogenic carbon. Pyrogenic carbon did not affect the aqueous nitrobenzene reduction, and the reduction of sorbed nitrobenzene was much slower than that of the aqueous species. Enhancing contents of oxygenated functional moieties in pyrogenic carbon with HNO3 oxidation elevated bioreduction rates of the aqueous and sorbed species. Anthraquinone groups were deemed as the most likely oxygenated functional redox compounds on the basis of both voltammetric curve tests and spectroscopic analysis. The reactivity of pyrogenic carbon in mediating the reduction of sorbed nitrobenzene was positively correlated with its EC, which was demonstrated to be related to condensed aromatic structures. This work elucidates the mechanism for pyrogenic carbon-mediated biotransformation of nitrobenzene and helps properly evaluate the role of pyrogenic carbon in biogeochemical redox processes happening in nature.
Collapse
Affiliation(s)
- Hefei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
108
|
Yang YP, Tang XJ, Zhang HM, Cheng WD, Duan GL, Zhu YG. The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122200. [PMID: 32044634 DOI: 10.1016/j.jhazmat.2020.122200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Straw biochar and straw application to paddy soil dramatically altered arsenic (As) biogeochemical cycling in soil-rice system, but it remains unknown how As biotransformation microbes (ABMs) contribute to these processes. In this study, rice pot experiments combining terminal restriction fragment length polymorphism (T-RFLP) analysis and clone library were performed to characterize ABMs. Through linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis, results revealed that arrA-harbouring iron-reducing bacteria (e.g., Geobacter and Shewanella) and arsC-harbouring Gammaproteobacteria (e.g., fermentative hydrogen-producing and lignin-degrading microorganisms) potentially mediated arsenate [As(V)] reduction under biochar and straw amendments, respectively. Methanogens and sulfate-reducing bacteria (SRB) carrying arsM gene might regulate methylated As concentration in soil-rice system. Network analysis demonstrated that the association among ABMs in rhizosphere was significantly stronger than that in bulk soil. Arsenite [As(III)] methylators carrying arsM gene exhibited much stronger co-occurrence pattern with arsC-harbouring As(V) reducers than with arrA-harbouring As(V) reducers. This study would broaden our insights for the dramatic variation of As biogeochemical cycling in soil-rice system after straw biochar and straw amendments through the activities of ABMs, which could contribute to the safe rice production and high rice yield in As-contaminated fields.
Collapse
Affiliation(s)
- Yu-Ping Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hong-Mei Zhang
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, China
| | - Wang-Da Cheng
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing 314016, China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
109
|
Li Y, Lu Y, Zhang W, Wu H, Zhang C, Wang L, Niu L, Zhang H. Enhanced biological nitrogen removal from sediment by graphene derivative-mediated community assembly. BIORESOURCE TECHNOLOGY 2020; 306:123187. [PMID: 32213451 DOI: 10.1016/j.biortech.2020.123187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Understanding the underlying mechanism that drives the microbial community mediated by graphene derivative is crucial for achieving the enhancement of biological nitrogen removal by external stimulation. The main objectives of this study were to identify the bacterial community assembly mechanism via null model test and molecular ecological network analysis in the sediment culture system. Results showed graphene derivative increased biological nitrogen removal efficiency by 125%. The high electron transfer efficiency and denitrifying enzyme activities were achieved. Deterministic assembly is dominate (>90%) in all the community assembly while the stochastic assembly process only existed in graphene derivative system (6.67%). The nitrogen removal was enhanced due to the intensification of the interaction on the microbial community between stochastic assembly and deterministic assembly. Keystone taxa in the graphene derivative systems, including Sulfuricella, Rhodobacter, and Comamonadaceae, drove the alteration of community structure relating to the nitrogen removal.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yumiao Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hainan Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
110
|
Ren S, Usman M, Tsang DCW, O-Thong S, Angelidaki I, Zhu X, Zhang S, Luo G. Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5755-5766. [PMID: 32259430 DOI: 10.1021/acs.est.0c00112] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acceleration of the anaerobic digestion (AD) process is crucial to achieving energy-efficient recycling of organic wastes. Hydrochar is produced by hydrothermal liquefaction of biomass, yet its application in the AD process is rarely reported. The present study showed that sewage sludge-derived hydrochar (SH) enhanced the methane production rate of glucose by 37%. SH increased the methane production rate from acetate but did not affect acidification and the methane production rate from H2/CO2. SH enhanced hydrogenotrophic methanogenesis, which could be due to direct interspecies electron transfer (DIET) by converting H+, e-, and CO2 to methane. Trichococcus and Methanosaeta were dominant in the AD process with SH. Label-free proteomic analysis showed Methanosaeta was involved in DIET as reflected by the up-regulation of proteins involved in hydrogenotrophic methanogenesis. Hydrochars derived from corn straw (CH), Enteromorpha algae (EH), and poplar wood (PH), as well as activated carbon (AC), were also tested in the AD process. SH, CH, and EH obviously increased the methane production rates, which were 39%, 15%, and 20% higher than the control experiment, respectively. It was neither electrical conductivity nor the total redox property of hydrochars and AC but the abundances of surface oxygen-containing functional groups that correlated to the methane production rates.
Collapse
Affiliation(s)
- Shuang Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sompong O-Thong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110, Thailand
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
111
|
Guo F, Zhang J, Yang X, He Q, Ao L, Chen Y. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. BIORESOURCE TECHNOLOGY 2020; 303:122908. [PMID: 32028219 DOI: 10.1016/j.biortech.2020.122908] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Biochar is widely used for nutrient removal in constructed wetlands (CWs); however, its influence on greenhouse gas (GHG) emissions from CWs remains unclear. Here, biochar was used to mitigate the global warming potential (GWP) from CWs and promote the removal of contaminants from simulated domestic wastewater under different influent chemical oxygen demand to nitrogen ratios (COD/N = 3, 6, 9, 12). Results demonstrated that biochar could improve the removal of COD, NH4+- N, and TN. The average N2O and CO2 fluxes were significantly lower and CH4 fluxes were higher in biochar-added CWs than those in none-biochar CWs. Biochar reduced GWP values of N2O and CH4 from 18.5% to 24.0%. N2O fluxes and GWP decreased, while CH4 and CO2 fluxes increased as COD/N ratios increased. Additionally, biochar increased the abundance of Geobacter and denitrifiers such as Hydrogenophaga. Overall, biochar could not only promote the removal of nutrients but also mitigate GWP in CWs.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Junmao Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lianggen Ao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Chongqing Municipal Institute of Municipal Design and Research, Chongqing 400044, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
112
|
Wang AO, Ptacek CJ, Blowes DW, Finfrock YZ, Paktunc D, Mack EE. Use of hardwood and sulfurized-hardwood biochars as amendments to floodplain soil from South River, VA, USA: Impacts of drying-rewetting on Hg removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136018. [PMID: 32050399 DOI: 10.1016/j.scitotenv.2019.136018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Periodic flooding and drying conditions in floodplains affect the mobility and bioavailability of Hg in aquatic sediments and surrounding soils. Sulfurized materials have been recently proposed as Hg sorbents due to their high affinity to bind Hg, while sulfurizing organic matter may enhance methylmercury (MeHg) production, offsetting the beneficial aspects of these materials. This study evaluated hardwood biochar (OAK) and sulfurized-hardwood biochar (MOAK) as soil amendments for controlling Hg release in a contaminated floodplain soil under conditions representative of periodic flooding and drying in microcosm experiments in three stages: (1) wet biochar amended-systems with river water in an anoxic environment up to 200 d; (2) dry selected reaction vessels in an oxic environment for 90 d; (3) rewet such vessels with river water in an anoxic environment for 90 d. In Stage 1, greater Hg removal (17-98% for unfiltered total Hg (THg) and 47-99% for 0.45-μm THg) and lower MeHg concentrations (<20 ng L-1) were observed in MOAK-amended systems (10%MOAKs). In Stage 3, release of Hg in 10%MOAKs was eight-fold lower than in soil controls (SedCTRs), while increases in aqueous (up to 21 ng L-1) and solid (up to 88 ng g-1) MeHg concentrations were observed. The increases in MeHg corresponded to elevated aqueous concentrations of Mn, Fe, SO42-, and HS- in Stage 3. Results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest oxidation of S in Stage 2 and formation of polysulfur in Stage 3. Results of pyrosequencing analysis indicate sulfate-reducing bacteria (SRB) became abundant in Stage 3 in 10%MOAKs. The shifts in biogeochemical conditions in 10%MOAKs in Stage 3 may increase the bioavailability of Hg to methylating bacteria. The results suggest limited impacts on Hg removal during drying and rewetting, while changes in biogeochemical conditions may affect MeHg production in sulfurized biochar-amended systems.
Collapse
Affiliation(s)
- Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada.
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- CLS@APS, Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA; Science Division, Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Dogan Paktunc
- CanmetMINING, Natural Resource Canada, Ottawa, ON K1A 0G1, Canada
| | - E Erin Mack
- Formerly E. I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805, USA
| |
Collapse
|
113
|
Guo XX, Liu HT, Zhang J. The role of biochar in organic waste composting and soil improvement: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:884-899. [PMID: 31837554 DOI: 10.1016/j.wasman.2019.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
Large amounts of organic wastes, which pose a severe threat to the environment, can be thermally pyrolyzed to produce biochar. Biochar has many potential uses owing to its unique physicochemical properties and attracts increasing attentions. Therefore, this review focuses on the agronomic functions of biochar used as compost additives and soil amendments. As a compost additive, biochar provides multiple benefits including improving composting performance and humification process, enhancing microbial activities, reducing greenhouse gas and NH4 emissions, immobilizing heavy metals and organic pollutants. As a soil amendment, biochar shows a good performance in improving soil properties and plant growth, alleviating drought and salinity stresses, interacting with heavy metals and organic pollutants and changing their fate of being uptaken from soils to plants. Furthermore, combined application of biochar and compost shows a good performance and a high agricultural value when applied to soils. Objectively and undeniably, there are still negative or ineffective cases of biochar amendment on crop yield and heavy metal immobilization, which is worthy of further attention. The medium-long term field monitoring of biochar-specific agricultural functions, as well as the exploration of wider sources for biochar feedstocks, are still needed.
Collapse
Affiliation(s)
- Xiao-Xia Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
114
|
Liu Y, Gu M, Yin Q, Du J, Wu G. Thermodynamic analysis of direct interspecies electron transfer in syntrophic methanogenesis based on the optimized energy distribution. BIORESOURCE TECHNOLOGY 2020; 297:122345. [PMID: 31706892 DOI: 10.1016/j.biortech.2019.122345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the syntrophic methanogenesis from the perspective of energy transfer and competition. Effects of redox materials and redox potential on direct interspecies electron transfer (DIET) were examined through thermodynamic analysis based on the energy distribution principle. Types of redox materials could affect the efficiency of DIET via changing the total energy supply of the syntrophic methanogenesis. Decreasing system redox potential could facilitate DIET through increasing the total available energy. The competition between hydrogenotrophic methanogens and DIET methanogens might be the reason for the low proportion of the DIET pathway in the syntrophic methanogenesis. A facilitation mechanism of DIET was proposed based on the energy distribution. Providing sufficient electrons, inhibiting hydrogenotrophic methanogens and adding more competitive redox couples to avoid hydrogen generation might be beneficial for the facilitation of DIET.
Collapse
Affiliation(s)
- Yu Liu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jin Du
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
115
|
Wu Y, Wang S, Liang D, Li N. Conductive materials in anaerobic digestion: From mechanism to application. BIORESOURCE TECHNOLOGY 2020; 298:122403. [PMID: 31761622 DOI: 10.1016/j.biortech.2019.122403] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
Collapse
Affiliation(s)
- Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Danhui Liang
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
116
|
Wu B, Yang Q, Yao F, Chen S, He L, Hou K, Pi Z, Yin H, Fu J, Wang D, Li X. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. BIORESOURCE TECHNOLOGY 2019; 294:122235. [PMID: 31610493 DOI: 10.1016/j.biortech.2019.122235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study compared the effects of sewage sludge-derived pyrochar (PC300, PC500, and PC700) and hydrochar (HC180, HC240, and HC300) on mesophilic anaerobic digestion of waste activated sludge (WAS). It was demonstrated that hydrochar can better promote the methane production compared with pyrochar. The highest accumulative methane yield of 132.04 ± 4.41 mL/g VSadded was obtained with HC180 addition. In contrast, the PC500 and PC700 showed a slightly negative effect on methane production. Sludge-derived HC not only accelerated the solubilization and hydrolysis of sludge floc, but also improved the production of acetic acid and propionate, further resulting in improved methane production. Simultaneously, the syntrophic microbes facilitating direct interspecies electron transfer (DIET) such as Syntrophomonas, Peptococcaceae, Methanosaeta and Methanobacterium bred rapidly with the addition of HCs. These results indicated that the hydrochar is more ideal as the accelerant to promote the methane production from mesophilic anaerobic digestion of WAS than the pyrochar.
Collapse
Affiliation(s)
- Bo Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huanyu Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
117
|
Yin Q, Wu G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol Adv 2019; 37:107443. [DOI: 10.1016/j.biotechadv.2019.107443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
118
|
Dai H, Gao S, Lai C, He H, Han F, Pan X. Biochar enhanced microbial degradation of 17β-estradiol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1736-1744. [PMID: 31498354 DOI: 10.1039/c9em00168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Steroid estrogens (SEs), especially 17β-estradiol (E2), can be a serious threat to the health of organisms. The removal of E2 from the natural environment is mainly carried out by microbial degradation partly mediated by biochar, which contains quinone structures. In this study, reed straw biochar samples made at four different heat treatment temperatures (HTTs) were used to mediate E2 microbial degradation by Shewanella oneidensis MR-1. The removal efficiency of E2 (95%) was highest in the presence of HTT - 500 °C biochar under anaerobic conditions after 120 h of microbial degradation. The effect of biochar on promoting microbial degradation was far more superior under anaerobic conditions than under aerobic conditions. The redox-activity and types of surface functional groups of biochar reveal that biochar can accept electrons generated by microorganisms in a timely manner. This mechanism promotes the metabolic process of cells and microbial degradation of E2 (exponential increase). Biochar particles rather than biochar-derived water-soluble organic compounds are responsible for this stimulating effect. These results highlight the impact that biochar has on microbial degradation of trace pollutants in a natural environment.
Collapse
Affiliation(s)
- Han Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | |
Collapse
|
119
|
Duan X, Chen Y, Yan Y, Feng L, Chen Y, Zhou Q. New method for algae comprehensive utilization: Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. BIORESOURCE TECHNOLOGY 2019; 289:121637. [PMID: 31207411 DOI: 10.1016/j.biortech.2019.121637] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Interest in the resource utilization of algae has gradually increased due to the frequent occurrence of harmful algal blooms. Here, biochar derived from algae was applied to algae anaerobic fermentation for short-chain fatty acids (SCFAs) production. In the presence of algae-derived biochar, the concentration of SCFAs within 4 d (4334 mg COD/L) was approximately doubled compared to the control (2016 mg COD/L), and the fermentation time for maximal SCFAs yield was shortened. Biochar improved the disruption of algae to release more intracellular macromolecular organics. Altering algae hydrolysis, the activity of hydrolase and the contents of functional gene were advantageous to SCFAs accumulation by providing more micromolecular organics in the presence of biochar. Additionally, the relative abundance and survival of acid-forming bacteria were enhanced significantly. Furthermore, biochar accelerated the electron transport and energy synthesis in the biological system, driving the biological reactions that allow microorganisms to function and life to flourish.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunzhi Chen
- Maanshan Municipal Ecological Environment Bureau, 360 Yingcui Road, Maanshan, Anhui Province 243000, China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|