101
|
Synthesis, characterization, and bioactivity of new bisamidrazone derivatives as possible anticancer agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2158-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
102
|
Yang T, Zhang J, Zhou J, Zhu M, Wang L, Yan L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomed Pharmacother 2018; 99:766-773. [PMID: 29710474 DOI: 10.1016/j.biopha.2018.01.153] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies show that migration and invasion are the primary causes of death in patients with gastric carcinoma. Increasing evidences have been shown Interleukin-6 could stimulate cancer cells invasion and be associated with cancer development. However, its role in gastric cancer has never been investigated. As an anticancer drug isolated from Chinese medicine, resveratrol was reported to inhibit cancer cells growth and induce apoptosis, but its roles in gastric cancer have not been well understood. In this study, we found that Interleukin-6 was upregulated in blood of gastric cancer patients by enzyme-linked immunosorbent assay. In gastric cancer cell line model, we found that non-cytotoxic concentration of resveratrol inhibited the Interleukin-6 induced SGC7901 cell invasion and matrix metalloproteinases activation. Our studies showed that IL-6 induced SGC7901 cell invasion depends on the Raf/MAPK pathway activation, resveratrol could inhibit this pathway activation. We further showed that resveratrol inhibits the IL-6 induced metastasis by vein injection of luciferase-labeled cancer cells. In conclusion, these results indicate that Interleukin-6 promotes tumor growth and metastasis in gastric cancer, resveratrol has the potential to prevent the Interleukin-6 induced gastric cancer metastasis by blocking the Raf/MAPK signaling activation.
Collapse
Affiliation(s)
- Tingting Yang
- Division of Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China
| | - Jianmei Zhang
- Division of Gastroenterology, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China
| | - Junting Zhou
- Division of Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China
| | - Meixiao Zhu
- Division of Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China
| | - Li Wang
- Division of Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China
| | - Lianhe Yan
- Division of Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical College, People's Hospital of Lishui City, Lishui, Zhejiang, China.
| |
Collapse
|
103
|
Bregman-Cohen A, Deri B, Maimon S, Pazy Y, Fishman A. Altering 2-Hydroxybiphenyl 3-Monooxygenase Regioselectivity by Protein Engineering for the Production of a New Antioxidant. Chembiochem 2018; 19:583-590. [DOI: 10.1002/cbic.201700648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Almog Bregman-Cohen
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Batel Deri
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Shiran Maimon
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Yael Pazy
- Technion Center for Structural Biology; Lorry I. Lokey Center for Life Sciences and Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
104
|
Park KS, Ahn SH, Lee KP, Park SY, Cheon JH, Choi JY, Kim K. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression. Pharmacogn Mag 2018; 13:S868-S874. [PMID: 29491646 PMCID: PMC5822513 DOI: 10.4103/pm.pm_112_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). Objective: To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. Materials and Methods: The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. Results: We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Conclusion: Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. SUMMARY Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) mice DSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) mice DSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed.
Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator-activated receptor γ, HO-1: Heme oxygenase-1, CVD: Cardiovascular diseases
Collapse
Affiliation(s)
- Kang-Seo Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon-si, Chungcheongbuk-do, Republic of Korea
| | - Kang Pa Lee
- Department of Medical Science, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Young Park
- Department of Physiology, College of Korean Medicine, Semyung University, Jecheon-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Hong Cheon
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | - Kibong Kim
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
105
|
Zhang Z, Wang Z, Mu H, Wang X, Li Y, Yan J, Wang Z. A novel approach to 1,2,3-triazole grafted chitosans via modified Wolff’s cyclocondensation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
106
|
Mehmood A, Zhao L, Wang C, Nadeem M, Raza A, Ali N, Shah AA. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Crit Rev Food Sci Nutr 2017; 59:1433-1455. [PMID: 29278921 DOI: 10.1080/10408398.2017.1412939] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hyperuricemia, a condition due to high serum uric acid level and is notorious to health. It is considered to be a potent risk factor for gout and dramatically associated in the development of many chronic diseases such as malignant tumor, cardiovascular disorders and renal failure. Modern innovative medicinal and therapeutic interventions are underlying these days to combat hyperuricemia. Previously reported studies revealed the significant impact of dietary polyphenols (e.g. anthocyanins, phenolic acids, flavonoids etc.) against hyperurecemia disorder. Dietary plant polyphenols, unlike anti- hyperuricemic agents, are not reported to have any side effects in curing hyperuricemia. The current comprehensive review figure outs the use of dietary polyphenols as a natural remedy for the management of hyperuricemia. The sources, affiliated pathways, mode of actions and factors affecting their efficiency to prevent hyperuricemia are deeply discussed in this article. Additionally, limitations and suggestions regarding previously reported studies are also highlighted.
Collapse
Affiliation(s)
- Arshad Mehmood
- a Beijing Advance Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing , China.,b Beijing Engineering and Technology Research Center of Food Additives , School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China.,c Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| | - Lei Zhao
- a Beijing Advance Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing , China.,b Beijing Engineering and Technology Research Center of Food Additives , School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Chengtao Wang
- a Beijing Advance Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing , China.,b Beijing Engineering and Technology Research Center of Food Additives , School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Muhammad Nadeem
- c Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| | - Ali Raza
- a Beijing Advance Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing , China.,b Beijing Engineering and Technology Research Center of Food Additives , School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Nawazish Ali
- a Beijing Advance Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing , China.,b Beijing Engineering and Technology Research Center of Food Additives , School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Amjad Abbas Shah
- c Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| |
Collapse
|
107
|
Gao Y, Ma Q, Ma YB, Ding L, Xu XL, Wei DF, Wei L, Zhang JW. Betulinic acid induces apoptosis and ultrastructural changes in MDA-MB-231 breast cancer cells. Ultrastruct Pathol 2017; 42:49-54. [PMID: 29192840 DOI: 10.1080/01913123.2017.1383548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study is to investigate the effects of betulinic acid (BA) on triple-negative breast cancer MDA-MB-231 cells and observe the ultrastructural changes. The concentration of BA required to induce apoptosis in MDA-MB-231 cells has been previously reported. In this study, a cell counting kit-8 proliferation assay was used to measure cell viability and the apoptosis rate. Western blotting was performed to observe the protein expression levels of Bcl-2. Cell morphology and changes in cell density were observed by microscopy. Electron microscopy revealed pyknotic nuclei as well as vacuoles. Collectively, our results showed the morphological mechanisms by which BA impairs the ultrastructure of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yang Gao
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Qing Ma
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Yan-Bin Ma
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Liang Ding
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Xiao-Long Xu
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - De-Fei Wei
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Lei Wei
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Jing-Wei Zhang
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
108
|
Bostanghadiri N, Pormohammad A, Chirani AS, Pouriran R, Erfanimanesh S, Hashemi A. Comprehensive review on the antimicrobial potency of the plant polyphenol Resveratrol. Biomed Pharmacother 2017; 95:1588-1595. [PMID: 28950659 DOI: 10.1016/j.biopha.2017.09.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 02/09/2023] Open
Abstract
Treatment of some infectious diseases are becoming more complicated because of increasing drug resistance rate and lack of proper antibiotics. Because of the rapid increase in drug-resistance trend, there is an urgent need for alternative microbicides to control infectious diseases. Resveratrol (RSV) is a small plant polyphenol that is naturally produced and distributed in 72 particular families of plants. The usage of natural derivatives such as RSV, have become popular among researchers for curing acute and chronic diseases. The purpose of the preset study was to comprehensively review and survey the antimicrobial potency of RSV. The present study demonstrates RSV as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Erfanimanesh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
109
|
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res 2017; 124:126-145. [DOI: 10.1016/j.phrs.2017.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
|
110
|
Kumar A, Naaz A, Prakasham AP, Gangwar MK, Butcher RJ, Panda D, Ghosh P. Potent Anticancer Activity with High Selectivity of a Chiral Palladium N-Heterocyclic Carbene Complex. ACS OMEGA 2017; 2:4632-4646. [PMID: 30023727 PMCID: PMC6044915 DOI: 10.1021/acsomega.7b00688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/08/2017] [Indexed: 05/06/2023]
Abstract
Five enantiomeric pairs of palladium complexes of 1,2,4-triazole-derived chiral N-heterocyclic carbene ligands were investigated to probe the influence of chirality on the compound's anticancer activity. Although no chirality-related influence was observed for any of the enantiomeric pair, strong anticancer activity was seen for a particular pair, (1S,2S,5R)-1c and (1R,2R,5S)-1c, which was significantly more active than the benchmark drug cisplatin for human breast cancer cells, MCF-7 (ca. 24-27-fold), and human cervical cancer cells, HeLa (ca. three- to fourfold). Broadening its scope of application, (1R,2R,5S)-1c also exhibited antiproliferative activity against lung cancer (A549), skin cancer (B16F10), and multidrug-resistant mammary tumor (EMT6/AR1) cell lines. Interestingly, (1R,2R,5S)-1c displayed 8- and 16-fold stronger antiproliferative activity toward B16F10 and MCF-7 relative to their respective noncancerous counterparts, L929 (fibroblast skin cells) and MCF10A (epithelial breast cells), thereby upholding the potential of these complexes for further development as anticancer agents. (1R,2R,5S)-1c inhibited tumor-cell proliferation by blocking the cells at the G2 phase. (1R,2R,5S)-1c caused DNA damage in MCF-7 cells, leading to mitochondrial reactive oxygen species production and subsequently cell death. We also present evidence indicating that (1R,2R,5S)-1c induced p53-dependent programmed cell death in MCF-7 cells.
Collapse
Affiliation(s)
- Anuj Kumar
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Afsana Naaz
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - A. P. Prakasham
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manoj Kumar Gangwar
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raymond J. Butcher
- Department
of Chemistry, Howard University, Washington, DC 20059, United States
| | - Dulal Panda
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- E-mail: . Fax: +91 22 2572 3480 (D.P.)
| | - Prasenjit Ghosh
- Department
of Chemistry and Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- E-mail: (P.G.)
| |
Collapse
|
111
|
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene. Antimicrob Agents Chemother 2017; 61:AAC.00408-17. [PMID: 28652233 DOI: 10.1128/aac.00408-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations.
Collapse
|
112
|
Gao P, Qiao X, Sun H, Huang Y, Lin J, Li L, Wang X, Li C. Activated spleen tyrosine kinase promotes malignant progression of oral squamous cell carcinoma via mTOR/S6 signaling pathway in an ERK1/2-independent manner. Oncotarget 2017; 8:83900-83912. [PMID: 29137391 PMCID: PMC5663563 DOI: 10.18632/oncotarget.19911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 02/05/2023] Open
Abstract
Spleen tyrosine kinase (SYK), a non-receptor cytoplasmic tyrosine enzyme, is well known for its ability in certain pathways through immune receptors. Recently, SYK role in cancer has been widely studied. SYK plays a dual role as a tumor suppressor and tumor promoter. Nevertheless, its role in oral squamous cell carcinoma (OSCC) has not been fully investigated. In the current study, samples from OSCC tumors and adjacent normal counterparts were collected and SYK expression was evaluated by real-time qPCR. SYK mRNA expression in tumors was higher than the normal tissues. And high SYK expression was confirmed by immunohistochemistry analysis and closely related to worse overall survival. The expression of SYK mRNA and protein was detected in 2 of 4 OSCC cell lines. SYK pharmacological suppression and RNAi-mediated knockdown inhibited proliferation, migration, and invasion of SYK-positive cells by reducing phosphorylated ERK1/2 and mTOR levels. One inhibitor of MEK, PD98059, also suppressed the same cancer-associated phenotypes of SYK-positive cells by decreasing phosphorylated ERK1/2 but increasing phosphorylated mTOR. Piceatannol, one pharmacological inhibitor of SYK, attenuated tumor growth in vivo. Overall, our results revealed a novel mechanism triggered by SYK to increase OSCC tumoriogenesis and tumor progression.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haibin Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Huang
- Department of Oral and Maxillofacial Surgery, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Dental Anesthesiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
113
|
Gerszon J, Walczak A, Rodacka A. Attenuation of H2O2-induced neuronal cell damage by piceatannol. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
114
|
Mizuno CS, Ampomaah W, Mendonça FR, Andrade GC, da Silva AMN, Goulart MO, dos Santos RA. Cytotoxicity and genotoxicity of stilbene derivatives in CHO-K1 and HepG2 cell lines. Genet Mol Biol 2017; 40:656-664. [PMID: 28696482 PMCID: PMC5596366 DOI: 10.1590/1678-4685-gmb-2016-0214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/29/2017] [Indexed: 12/19/2022] Open
Abstract
The cytotoxicity and genotoxicity of the stilbenes (E)-methyl-4-(3-5-dimethoxystyryl)benzoate (ester), (E)-4-(3-5-dimethoxystyryl)aniline (amino), (Z)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (cis-TMS) and (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene (trans-TMS) were investigated in this work. Structural modifications of resveratrol, a naturally occurring stilbene, have been previously performed, including the replacement of hydroxyl by different functional groups. Such modifications resulted in significant improvement of target-specific effects on cell death and antiproliferative responses. The parameters were evaluated using XTT assay, clonogenic survival assay and the cytokinesis-block micronucleus assay in CHO-K1 and HepG2 cell lines. The results showed that cis-TMS is approximately 250-fold more cytotoxic than the amino and ester, and 128-fold more cytotoxic than trans-TMS. When genotoxicity was evaluated, only the trans-TMS did not significantly increase the frequency of micronucleus (MN). While the cis-TMS induced a mean of 5.2 and 5.9 MN/100 cells at 0.5 μM in CHO-K1 and HepG2, respectively, the amino and ester induced 3.1 and 3.6 MN/100 cells at 10 μM in CHO-K1, respectively, and 3.5 and 3.8 in HepG2. Trans-TMS is genotoxic only in HepG2 cells. Based on these results, the cis-TMS was the most cytotoxic and genotoxic compound in both cell lines.
Collapse
Affiliation(s)
- Cassia Suemi Mizuno
- Department of Pharmaceutical Sciences, University of New England - College of Pharmacy, Portland, ME, USA
| | - Winnifred Ampomaah
- Department of Pharmaceutical Sciences, University of New England - College of Pharmacy, Portland, ME, USA
| | | | | | | | - Mirian Oliveira Goulart
- Department of Pharmaceutical Sciences, University of New England - College of Pharmacy, Portland, ME, USA
| | | |
Collapse
|
115
|
Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Mérillon JM, Richard T. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4952-4960. [PMID: 28551990 DOI: 10.1021/acs.jafc.7b01254] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Grapevine stem extracts are viticulture byproducts rich in stilbenes that are increasingly studied for their potential biological activities. This study aimed to investigate some biological activities of a grape byproduct with high stilbenoid content and to point out the molecules responsible of these beneficial activities. As a consequence, the extract was subjected to a bioguided fractionation and separation by centrifugal partition chromatography. The obtained fractions were characterized by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance. Fractions were purified further by column chromatography and resulted in the purification of the main constituents. Thirteen stilbenes have been quantified. The most abundant compounds were ε-viniferin, resveratrol, and, in lesser amounts, isohopeaphenol and ampelopsin A. The extract, fractions, and major stilbenes were tested for their antioxidant activity by oxygen radical absorbance capacity and their cyprotective effects against β-amyloid on rat pheochromocytoma cells. Among them, fraction 5 showed significant antioxidant activity and fraction 2 had a significant cytoprotective effect against β-amyloid-induced toxicity. Two putative inhibitors of β-amyloid toxicity have been identified: ampelopsin A and piceatannol.
Collapse
Affiliation(s)
- Benoit Biais
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Stéphanie Krisa
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Stéphanie Cluzet
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Grégory Da Costa
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Pierre Waffo-Teguo
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Jean-Michel Mérillon
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| | - Tristan Richard
- EA 4577, Unité de Recherche Oenologie, Université Bordeaux, ISVV , F-33882 Villenave d'Ornon, France
- Unité de Recherche Oenologie, INRA, USC 1366, ISVV , F-33882 Villenave d'Ornon, France
| |
Collapse
|
116
|
Surh YJ, Na HK. Therapeutic Potential and Molecular Targets of Piceatannol in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:185-211. [PMID: 27671818 DOI: 10.1007/978-3-319-41334-1_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Piceatannol (3,3',4,5'-tetrahydroxy-trans-stilbene; PIC) is a naturally occurring stilbene present in diverse plant sources. PIC is a hydroxylated analog of resveratrol and produced from resveratrol by microsomal cytochrome P450 1A11/2 and 1B1 activities. Like resveratrol, PIC has a broad spectrum of health beneficial effects, many of which are attributable to its antioxidative and anti-inflammatory activities. PIC exerts anticarcinogenic effects by targeting specific proteins involved in regulating cancer cell proliferation, survival/death, invasion, metastasis, angiogenesis, etc. in tumor microenvironment. PIC also has other health promoting and disease preventing functions, such as anti-obese, antidiabetic, neuroptotective, cardioprotective, anti-allergic, anti-aging properties. This review outlines the principal biological activities of PIC and underlying mechanisms with special focus on intracellular signaling molecules/pathways involved.
Collapse
Affiliation(s)
- Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, 142-732, South Korea.
| |
Collapse
|
117
|
In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1399-1410. [DOI: 10.1016/j.msec.2017.03.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/04/2017] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
|
118
|
Wu J, Zheng W, Rong L, Xing Y, Hu D. Bicyclol exerts an anti-tumor effect via ROS-mediated endoplasmic reticulum stress in human renal cell carcinoma cells. Biomed Pharmacother 2017; 91:1184-1192. [PMID: 28535587 DOI: 10.1016/j.biopha.2017.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common subtype of kidney cancer. Currently, there is a lack of efficient treatment for RCC. Bicyclol, an anti-hepatitis drug, has been demonstrated to possess anti-tumor properties. However, the effect of bicyclol in RCC remains elusive. Therefore, the aim of this study is to investigate the biological effects of bicyclol on RCC and the underlying mechanisms. The data from this study indicated that bicyclol markedly induced cell apoptosis and cell cycle arrest and increased the production of reactive oxygen species (ROS) in RCC cells. Moreover, bicyclol induced ER stress in a ROS-dependent manner, since the ROS scavenger NAC could block this effect. Taken together, the results of this study provide evidence that bicyclol may serve as a potential therapeutic agent for the treatment of human RCC.
Collapse
Affiliation(s)
- Jing Wu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Weichao Zheng
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Ling Rong
- Department of Respiratory Medicine, People's Hospital of Bozhou, Bozhou, China
| | - Yingru Xing
- Affiliated Tumor Hospital, Anhui University of Science and Technology, Huainan, China
| | - Dong Hu
- Medical School, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
119
|
Kershaw J, Kim KH. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J Med Food 2017; 20:427-438. [PMID: 28387565 DOI: 10.1089/jmf.2017.3916] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolic disease comprises a set of risk factors highly associated with obesity and insulin resistance and is a consequence of central adiposity, hyperglycemia, and dyslipidemia. Furthermore, obesity increases the risk of the development of metabolic disease due to ectopic fat deposition, low-grade inflammation, and systemic energy disorders caused by dysregulated adipose tissue function. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and has been reported to exhibit anticancer and anti-inflammatory properties. In addition, recently reported beneficial effects of piceatannol on hypercholesterolemia, atherosclerosis, and angiogenesis underscore its therapeutic potential in cardiovascular disease. However, investigation of its role in metabolic disease is still in its infancy. This review intensively summarizes in vitro and in vivo studies supporting the potential therapeutic effects of piceatannol in metabolic disease, including inhibition of adipogenesis and lipid metabolism in adipocytes, and regulation of hyperlipidemia, hyperglycemia, insulin resistance, and fatty acid-induced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jonathan Kershaw
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA
| | - Kee-Hong Kim
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA .,2 Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana, USA
| |
Collapse
|
120
|
Wang C, Zhi S, Liu C, Xu F, Zhao A, Wang X, Ren Y, Li Z, Yu M. Characterization of Stilbene Synthase Genes in Mulberry (Morus atropurpurea) and Metabolic Engineering for the Production of Resveratrol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1659-1668. [PMID: 28168876 DOI: 10.1021/acs.jafc.6b05212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stilbenes have been recognized for their beneficial physiological effects on human health. Stilbene synthase (STS) is the key enzyme of resveratrol biosynthesis and has been studied in numerous plants. Here, four MaSTS genes were isolated and identified in mulberry (Morus atropurpurea Roxb.). The expression levels of MaSTS genes and the accumulation of trans-resveratrol, trans-oxyresveratrol, and trans-mulberroside A were investigated in different plant organs. A novel coexpression system that harbored 4-coumarate:CoA ligase gene (Ma4CL) and MaSTS was established. Stress tests suggested that MaSTS genes participate in responses to salicylic acid, abscisic acid, wounding, and NaCl stresses. Additionally, overexpressed MaSTS in transgenic tobacco elevated the trans-resveratrol level and increased tolerance to drought and salinity stresses. These results revealed the major MaSTS gene, and we evaluated its function in mulberry, laying the foundation for future research on stilbene metabolic pathways in mulberry.
Collapse
Affiliation(s)
- Chuanhong Wang
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Shuang Zhi
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Changying Liu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Fengxiang Xu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Aichun Zhao
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Xiling Wang
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Yanhong Ren
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences , Mengzi, Yunnan 661100, China
| | - Maode Yu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| |
Collapse
|
121
|
Singh MP, Han J, Kang SC. 3',5-dihydroxy-3,4',7-trimethoxyflavone-induces ER-stress-associated HCT-116 programmed cell death via redox signaling. Biomed Pharmacother 2017; 88:151-161. [PMID: 28103509 DOI: 10.1016/j.biopha.2017.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Quercetin, a well cognized bioactive flavone possessing great medicinal value, has limited usage. The rapid gastrointestinal digestion of quercetin is also a major obstacle for its clinical implementation due to low bioavailability and poor aqueous solubility. 3',5-dihydroxy-3,4',7-trimethoxyflavone (DTMF), a novel semi-synthetic derivative of quercetin, is known to modulate several biological activities. Therefore, in the present study we examined the cytotoxic mechanism of DTMF in concentration-dependent manner (25, 50, and 100μM; 24h) against HCT-116 human colon carcinoma cells. The cytotoxic potential of DTMF was characterized based on deformed cell morphology, increased ROS accumulation, loss of mitochondrial membrane potential (ΔѰm), increased mitochondrial mass, chromatin condensation, and typical DNA-fragmentation in HCT-116 cells. The results showed that DTMF-induced enhanced ROS production at higher concentration (100μM) as evidenced by upregulated expression of ER stress and apoptotic proteins with concomitant increase in PERK, CHOP, and JNK levels, when compared to N-acetyl cysteine (NAC, ROS inhibitor) treated HCT-116 cells, which depicts that DTMF might act as a crucial mediator of apoptosis signaling. Collectively, our results suggest that DTMF stimulates ROS-mediated oxidative stress, which in turn induces PERK-CHOP and JNK pathway of apoptosis to promote HCT-116 cell death.
Collapse
Affiliation(s)
- Mahendra Pal Singh
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
122
|
Health-beneficial nutraceuticals—myth or reality? Appl Microbiol Biotechnol 2017; 101:951-961. [DOI: 10.1007/s00253-016-8068-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 01/11/2023]
|
123
|
Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression. Amino Acids 2016; 49:735-745. [DOI: 10.1007/s00726-016-2375-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023]
|
124
|
Luo R, Fang D, Chu P, Wu H, Zhang Z, Tang Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed Pharmacother 2016; 84:1321-1330. [DOI: 10.1016/j.biopha.2016.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023] Open
|
125
|
Choi SY, Piao ZH, Jin L, Kim JH, Kim GR, Ryu Y, Lin MQ, Kim HS, Kee HJ, Jeong MH. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS One 2016; 11:e0167340. [PMID: 27902771 PMCID: PMC5130266 DOI: 10.1371/journal.pone.0167340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
Piceatannol, a resveratrol metabolite, is a phenolic compound found in red wine and grapes. We investigated the effect of piceatannol on renal fibrosis and histone deacetylase (HDAC) expression in a mouse model of unilateral ureteral obstruction (UUO). Fibrosis was established by UUO and piceatannol was intraperitoneally injected for 2 weeks. Piceatannol suppressed extracellular matrix (ECM) protein deposition including collagen type I and fibronectin as well as connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in UUO kidneys. However, the expressions of epithelial-mesenchymal transition (EMT) marker genes, such as N-cadherin and E-cadherin, were not changed in the kidneys after UUO. Masson’s trichrome staining and fluorescence immunostaining showed that piceatannol administration attenuated collagen deposition in UUO kidneys. HDAC1, HDAC4, HDAC5, HDAC6, and HDAC10 protein expression was upregulated in UUO kidneys, whereas that of HDAC8 was downregulated. Piceatannol treatment significantly reduced HDAC4 and HDAC5 protein expression. Further, piceatannol attenuated phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) in UUO kidneys, but not that of transforming growth factor beta1-Smad2/3. These results suggest that class I HDACs and class IIa/b HDACs are involved in renal fibrosis development. Piceatannol may be a beneficial therapeutic agent for treating renal fibrosis via reduction of HDAC4 and HDAC5 protein expression or suppression of the p38-MAPK signaling pathway.
Collapse
Affiliation(s)
- Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Zhe Hao Piao
- The Second Hospital of Jilin University, Changchun, China
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Jilin Hospital Affiliated with Jilin University, Jilin, China
| | - Jung Ha Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ming Quan Lin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Yanbian University Hospital, Jilin Yanbian, China
| | - Hyung-Seok Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- * E-mail: (HJK); (MHJ)
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- * E-mail: (HJK); (MHJ)
| |
Collapse
|
126
|
Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2016; 30:13-37. [PMID: 27617882 PMCID: PMC5241708 DOI: 10.1021/acs.chemrestox.6b00256] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
127
|
Biersack B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 2016; 1:12-34. [PMID: 30159408 PMCID: PMC6096431 DOI: 10.1016/j.ncrna.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.
Collapse
Key Words
- 1,25-D, 1,25-dihydroxyvitamin D3
- 18-AGA, 18α-glycyrrhetinic acid
- 3,6-DHF, 3,6-dihydroxyflavone
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- CAPE, caffeic acid phenethyl ester
- CDODA-Me, methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
- Dox, doxorubicin
- EGCG, (−)-epigallocatechin-3-O-gallate
- MicroRNA
- PEG, polyethylene glycol
- PPAP, polycyclic polyprenylated acylphloroglucinol
- Polyphenols
- RA, retinoic acid
- ROS, reactive oxygen species
- TQ, thymoquinone
- Terpenes
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
128
|
Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016; 21:molecules21070901. [PMID: 27409600 PMCID: PMC6273793 DOI: 10.3390/molecules21070901] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.
Collapse
Affiliation(s)
- Eva Brglez Mojzer
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Mojca Škerget
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
129
|
Matencio A, García-Carmona F, López-Nicolás JM. Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct 2016; 7:2367-73. [PMID: 27142512 DOI: 10.1039/c6fo00557h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, an in-depth study of the interaction between piceatannol (a type of stilbene with high biological activity) and different natural and modified cyclodextrins (CDs) is made, using steady state fluorescence. This bioactive molecule forms a 1 : 1 complex with all the natural (α-CD, β-CD and γ-CD) and modified (HP-β-CD, HE-β-CD and M-β-CD) CDs tested. Among natural CDs, the interaction of piceatannol with β-CD was the most efficient. However, the modified CDs showed higher encapsulation constants (KF) than β-CD, except M-β-CD; the highest KF being found for HP-β-CD (14 048 ± 702 M(-1)). The encapsulation of piceatannol in the internal cavity of CDs showed a strong dependence on pH and temperature. The interaction between HP-β-CD and piceatannol was less effective in the pH region where the stilbene begins to suffer the deprotonation of its hydroxyl group. Moreover, the values of KF decreased as the system temperature increased. To obtain information on the mechanism involved in the piceatannol affinity for CD, the thermodynamic parameters of the complexation (ΔH°, ΔS° and ΔG°) were studied, the results showed a negative entropy (-3.7 ± 0.2 J mol(-1) K(-1)), enthalpy (-24.6 ± 1.2 kJ mol(-1)) and Gibbs free energy change at 25 °C (-23.5 ± 1.2 J mol(-1)). Finally, molecular docking calculations provided further insights into how the different interactions influence the complexation constant. A high degree of correlation was observed between the computed scores and experimental values.
Collapse
Affiliation(s)
- Adrián Matencio
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Campus de Espinardo, 30071, Murcia, Spain.
| | | | | |
Collapse
|