101
|
Wanasinghe SV, Schreiber EM, Thompson AM, Sparks JL, Konkolewicz D. Dynamic covalent chemistry for architecture changing interpenetrated and single networks. Polym Chem 2021. [DOI: 10.1039/d1py00198a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic single and interpenetrated materials were developed, with post polymerization network exchange enhancing the material properties.
Collapse
Affiliation(s)
| | | | - Adam M. Thompson
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jessica L. Sparks
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | | |
Collapse
|
102
|
Jones BH, Staiger C, Powers J, Herman JA, Román-Kustas J. Selectively Depolymerizable Polyurethanes from Unsaturated Polyols Cleavable by Olefin Metathesis. Macromol Rapid Commun 2020; 42:e2000571. [PMID: 33300207 DOI: 10.1002/marc.202000571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Indexed: 12/14/2022]
Abstract
This communication describes a novel series of linear and crosslinked polyurethanes (PUs) and their selective depolymerization under mild conditions. Two unique polyols are synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis (RCM) to five- and six-membered cycloalkenes. These polyols are co-polymerized with toluene diisocyanate to generate linear PUs and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked PUs. The polyol design is such that the RCM reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs' catalyst under ambient conditions, the PUs are rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enable further re-polymerization by traditional strategies for polymerization of double bonds. It is anticipated that this general approach can be expanded to develop a range of chemically recyclable condensation polymers that are readily depolymerized by orthogonal metathesis chemistry.
Collapse
Affiliation(s)
- Brad H Jones
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Chad Staiger
- Department of Photovoltaics and Materials Technology, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jackson Powers
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jeremy A Herman
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jessica Román-Kustas
- Department of Materials Reliability, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
103
|
Gu R, Lehn J. Metal Ion‐Driven Constitutional Adaptation in Dynamic Covalent C=C/C=N Organo‐Metathesis. Chem Asian J 2020. [DOI: 10.1002/asia.202001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruirui Gu
- School of Chemistry Sun Yat-Sen University Lehn Institute of Functional Materials Guangzhou 510275 P. R. China
- Université de Strasbourg Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires (ISIS) 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean‐Marie Lehn
- School of Chemistry Sun Yat-Sen University Lehn Institute of Functional Materials Guangzhou 510275 P. R. China
- Université de Strasbourg Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires (ISIS) 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
104
|
Zheng H, Wang S, Lu C, Ren Y, Liu Z, Ding D, Wu Z, Wang X, Chen Y, Zhang Q. Thermal, Near-Infrared Light, and Amine Solvent Triple-Responsive Recyclable Imine-Type Vitrimer: Shape Memory, Accelerated Photohealing/Welding, and Destructing Behaviors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Shenqiang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Chuan Lu
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan Province 610213, China
| | - Yafeng Ren
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Zhao Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Dongliang Ding
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Zhiqiang Wu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Xiangyi Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Yanhui Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
| |
Collapse
|
105
|
|
106
|
Wang S, Teng N, Dai J, Liu J, Cao L, Zhao W, Liu X. Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
107
|
Cui C, Chen X, Ma L, Zhong Q, Li Z, Mariappan A, Zhang Q, Cheng Y, He G, Chen X, Dong Z, An L, Zhang Y. Polythiourethane Covalent Adaptable Networks for Strong and Reworkable Adhesives and Fully Recyclable Carbon Fiber-Reinforced Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47975-47983. [PMID: 32986410 DOI: 10.1021/acsami.0c14189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of adhesives with superior optical and mechanical performance, solvent resistance, and reworkability is gaining increasing attention in recent years. However, traditional materials do not possess reprocessability and healing characteristics for sustainable development. Here, a superior dynamic polythiourethane (PTU) adhesive with high reprocessability was developed by introducing covalent adaptable networks (CANs). Specifically, dynamic thiocarbamate bonds (TCB) were used to prepare PTU CANs, which showed dramatically enhanced malleability and recyclability. The Young's modulus of the material was 2.0 GPa and the tensile strength was 62.7 MPa. The reprocessing temperature of CANs was reduced to 80 °C while more than 90% of their mechanical properties were retained, even after being reprocessed several times. Moreover, the highly transparent and water-resistant PTU CANs featured an excellent bonding property and reworkability for various materials including glass, with a lap shear strength of 2.9 MPa, metal (5.1 MPa), and wood (6.3 MPa), compared with commercially available adhesives. Additionally, carbon fiber-reinforced composites constructed with PTU CANs were capable of being fully recycled and reused. Importantly, laminated glass with a toughened PTU-PU elastomer interface exhibited an outstanding impact fatigue-resistance behavior, sustaining thousands of impacts. These features demonstrate that PTU CANs show great potential as sustainable materials.
Collapse
Affiliation(s)
- Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingxing Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianyun Zhong
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhen Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | | | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhen Dong
- Inose Corporation, 72A, Kunminghunanlu, Haidian, Beijing 100089, China
| | - Le An
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
108
|
Chen L, Zhu S, Toendepi I, Jiang Q, Wei Y, Qiu Y, Liu W. Reprocessable, Reworkable, and Mechanochromic Polyhexahydrotriazine Thermoset with Multiple Stimulus Responsiveness. Polymers (Basel) 2020; 12:E2375. [PMID: 33076573 PMCID: PMC7602728 DOI: 10.3390/polym12102375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023] Open
Abstract
Developing recyclable, reworkable, and intelligent thermosetting polymers, as a long-standing challenge, is highly desirable for modern manufacturing industries. Herein, we report a polyhexahydrotriazine thermoset (PHT) prepared by a one-pot polycondensation between 4-aminophenyl disulfide and paraformaldehyde. The PHT has a glass transition temperature of 135 °C and good solvent resistance. The incorporation of dual stimuli-responsive groups (disulfide bond and hexahydrotriazine ring) endows the PHT with re-processability, re-workability, and damage monitoring function. The PHT can be repeatedly reprocessed by hot pressing, and a near 100% recovery of flexural strength is achieved. The PHT can also degrade in inorganic acid or organic thiol solutions at room temperature. The thermally reworkable test demonstrates that, after heating the PHT at 200 °C for 1 h, the residuals can be easily wiped off. Finally, the PHT exhibits a reversible mechanochromic behavior when damaged.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (L.C.); (S.Z.); (I.T.); (Y.W.)
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| | - Siyao Zhu
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (L.C.); (S.Z.); (I.T.); (Y.W.)
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| | - Innocent Toendepi
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (L.C.); (S.Z.); (I.T.); (Y.W.)
| | - Qiuran Jiang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| | - Yi Wei
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (L.C.); (S.Z.); (I.T.); (Y.W.)
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| | - Yiping Qiu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| | - Wanshuang Liu
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (L.C.); (S.Z.); (I.T.); (Y.W.)
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; (Q.J.); (Y.Q.)
| |
Collapse
|
109
|
Elling B, Dichtel WR. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable? ACS CENTRAL SCIENCE 2020; 6:1488-1496. [PMID: 32999924 PMCID: PMC7517108 DOI: 10.1021/acscentsci.0c00567] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 05/03/2023]
Abstract
Covalent adaptable networks (CANs) are covalently cross-linked polymers that may be reshaped via cross-linking and/or strand exchange at elevated temperatures. They represent an exciting and rapidly developing frontier in polymer science for their potential as stimuli-responsive materials and to make traditionally nonrecyclable thermosets more sustainable. CANs whose cross-links undergo exchange via associative intermediates rather than dissociating to separate reactive groups are termed vitrimers. Vitrimers were postulated to be an attractive subset of CANs, because associative cross-link exchange mechanisms maintain the original cross-link density of the network throughout the exchange process. As a result, associative CANs demonstrate a gradual, Arrhenius-like reduction in viscosity at elevated temperatures while maintaining mechanical integrity. In contrast, CANs reprocessed by dissociation and reformation of cross-links have been postulated to exhibit a more rapid decrease in viscosity with increasing temperature. Here, we survey the stress relaxation behavior of all dissociative CANs for which variable temperature stress relaxation or viscosity data are reported to date. All exhibit an Arrhenius relationship between temperature and viscosity, as only a small percentage of the cross-links are broken instantaneously under typical reprocessing conditions. As such, dissociative and associative CANs show nearly identical reprocessing behavior over broad temperature ranges typically used for reprocessing. Given that the term vitrimer was coined to highlight an Arrhenius relationship between viscosity and temperature, in analogy to vitreous glasses, we discourage its continued use to describe associative CANs. The realization that the cross-link exchange mechanism does not greatly influence the practical reprocessing behavior of most CANs suggests that exchange chemistries can be considered with fewer constraints, focusing instead on their activation parameters, synthetic convenience, and application-specific considerations.
Collapse
Affiliation(s)
- Benjamin
R. Elling
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - William R. Dichtel
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| |
Collapse
|
110
|
Yu S, Wu S, Zhang C, Tang Z, Luo Y, Guo B, Zhang L. Catalyst-Free Metathesis of Cyclic Acetals and Spirocyclic Acetal Covalent Adaptable Networks. ACS Macro Lett 2020; 9:1143-1148. [PMID: 35653205 DOI: 10.1021/acsmacrolett.0c00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the exchangeability of dynamic covalent bonds in the covalent adaptable networks (CANs) at elevated temperature, they possess recyclability while still maintaining many of the superior properties of thermosets. The exploration of dynamic covalent chemistry is of great significance to the expansion of CANs library and hence the sustainable development of thermosets. In this work, we discovered that, in absence of catalyst, the direct metathesis of the cyclic acetals proceeds while the acyclic acetals cannot. The metathesis kinetics of the cyclic acetals were fully revealed with model compounds. For the CANs demonstration, a series of cross-linked spirocyclic acetal polymers with excellent reprocessability, high thermal stability, and high refractivity were prepared via thiol-ene click polymerization. We envisage that the uncovering of the catalyst-free metathesis of cyclic acetals will enrich the dynamic chemistry of acetals and greatly promote the development of acetal-based CANs and their potential applications in optical devices.
Collapse
Affiliation(s)
- Shuangjian Yu
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Siwu Wu
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengfeng Zhang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanlong Luo
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
111
|
Shoda Y, Aoki D, Tsunoda K, Otsuka H. Polybutadiene rubbers with urethane linkages prepared by a dynamic covalent approach for tire applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
112
|
Melchor Bañales AJ, Larsen MB. Thermal Guanidine Metathesis for Covalent Adaptable Networks. ACS Macro Lett 2020; 9:937-943. [PMID: 35648604 DOI: 10.1021/acsmacrolett.0c00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We demonstrate that a dynamic chemical reaction that we term thermal guanidine metathesis (TGM) can serve as the basis for covalent adaptable network (CAN) materials. CANs are a class of cross-linked polymers that transition from thermoset to thermoplastic-like rheological behavior upon significant activation of reversible exchange reactions within the network and thus can be reprocessed. Small molecule studies indicate the TGM reaction proceeds by a dissociative mechanism, and guanidine-cross-linked network polymers can be reprocessed at elevated temperature. These TGM-based CANs exhibit dynamic behavior, such as dissolution in the presence of monofunctional exchange partners and stress relaxation above Tg. Additionally, differences in the activation energies obtained by small molecule kinetic studies and stress relaxation analysis are consistent with key predictions of the Semenov-Rubinstein model of thermoreversible gelation of highly cross-linked networks.
Collapse
Affiliation(s)
| | - Michael B. Larsen
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
113
|
Dynamic transfer auto-catalysis of epoxy vitrimers enabled by the carboxylic acid/epoxy ratio based on facilely synthesized trifunctional monoesterified cyclic anhydrides. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
114
|
Timmer BJJ, Kravchenko O, Ramström O. Selective Cross‐Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202002220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University SE 39182 Kalmar Sweden
| |
Collapse
|
115
|
Peng WL, Zhang ZP, Rong MZ, Zhang MQ. Reversibly Interlocked Macromolecule Networks with Enhanced Mechanical Properties and Wide pH Range of Underwater Self-Healability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27614-27624. [PMID: 32468811 DOI: 10.1021/acsami.0c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel strategy for developing homogeneous reversibly interlocking polymer networks (RILNs) with enhanced mechanical properties and underwater self-healing ability is proposed. The RILNs are prepared by the topological reorganization of two preformed cross-linked polymers containing reversible catechol-Fe3+ coordinate bonds and imine bonds and exhibit enhanced mechanical properties, superior underwater self-healing effect within a wide pH range, and water-assisted recycling ability through synergetic action between the reversible catechol-Fe3+ and imine bonds. At higher pH values, the catechol-Fe3+ coordinate bonds are responsible for self-healing, while the imine bonds maintain the stability of the materials. In neutral water, the imine bonds mainly account for self-healing, and hydrogen bonds and entanglements between the two networks prevent the material from collapsing. Under a lower pH value, intermolecular hydrogen bonds and entanglements contribute to self-healing. The outcomes of this work provide a new idea for developing robust multifunctional underwater self-healing materials.
Collapse
Affiliation(s)
- Wei Li Peng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
116
|
Yue L, Guo H, Kennedy A, Patel A, Gong X, Ju T, Gray T, Manas-Zloczower I. Vitrimerization: Converting Thermoset Polymers into Vitrimers. ACS Macro Lett 2020; 9:836-842. [PMID: 35648515 DOI: 10.1021/acsmacrolett.0c00299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermoset polymers with permanently cross-linked networks have outstanding mechanical properties and solvent resistance, but they cannot be reprocessed or recycled. On the other hand, vitrimers with covalent adaptable networks can be recycled. Here we provide a simple and practical method coined as "vitrimerization" to convert the permanent cross-linked thermosets into vitrimer polymers without depolymerization. The vitrimerized thermosets exhibit comparable mechanical properties and solvent resistance with the original ones. This method allows recycling and reusing the unrecyclable thermoset polymers with minimum loss in mechanical properties and enables closed-loop recycling of thermosets with the least environmental impact.
Collapse
Affiliation(s)
- Liang Yue
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Haochen Guo
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Alison Kennedy
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Ammar Patel
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Xuehui Gong
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, 2102 Adelbert Road, A.W. Smith Building, Cleveland, Ohio 44106, United States
| | - Tianxiong Ju
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Ica Manas-Zloczower
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| |
Collapse
|
117
|
Fang H, Ye W, Ding Y, Winter HH. Rheology of the Critical Transition State of an Epoxy Vitrimer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00843] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huagao Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei, Anhui 230009, China
- Department of Chemical Engineering and Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wujin Ye
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei, Anhui 230009, China
| | - H. Henning Winter
- Department of Chemical Engineering and Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
118
|
Fan CJ, Wen ZB, Xu ZY, Xiao Y, Wu D, Yang KK, Wang YZ. Adaptable Strategy to Fabricate Self-Healable and Reprocessable Poly(thiourethane-urethane) Elastomers via Reversible Thiol–Isocyanate Click Chemistry. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng-Jie Fan
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhi-Bin Wen
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, Mons B-7000, Belgium
| | - Zhi-Yuan Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Xiao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Di Wu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
119
|
Jadhav T, Fang Y, Liu CH, Dadvand A, Hamzehpoor E, Patterson W, Jonderian A, Stein RS, Perepichka DF. Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. J Am Chem Soc 2020; 142:8862-8870. [PMID: 32311256 DOI: 10.1021/jacs.0c01990] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2 + 2] cycloaddition cross-linking of the π-stacked layers in 3D COFs. The reaction is reversible, and heating to 200 °C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-vis absorption, altered luminescence, modified band structure, and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant room-temperature ion conductivity of 1.8 × 10-4 S/cm and 3.5 × 10-5 S/cm, respectively. Even higher room-temperature proton conductivity of 1.7 × 10-2 S/cm and 2.2 × 10-3 S/cm was found for H2SO4-treated 2D and 3D COFs, respectively.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Yuan Fang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Cheng-Hao Liu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Afshin Dadvand
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - William Patterson
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Antranik Jonderian
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
120
|
Guo Z, Liu B, Zhou L, Wang L, Majeed K, Zhang B, Zhou F, Zhang Q. Preparation of environmentally friendly bio-based vitrimers from vanillin derivatives by introducing two types of dynamic covalent C N and S–S bonds. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
121
|
|
122
|
Podgórski M, Fairbanks BD, Kirkpatrick BE, McBride M, Martinez A, Dobson A, Bongiardina NJ, Bowman CN. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906876. [PMID: 32057157 DOI: 10.1002/adma.201906876] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Indexed: 05/15/2023]
Abstract
Covalent adaptable networks (CANs), unlike typical thermosets or other covalently crosslinked networks, possess a unique, often dormant ability to activate one or more forms of stimuli-responsive, dynamic covalent chemistries as a means to transition their behavior from that of a viscoelastic solid to a material with fluid-like plastic flow. Upon application of a stimulus, such as light or other irradiation, temperature, or even a distinct chemical signal, the CAN responds by transforming to a state of temporal plasticity through activation of either reversible addition or reversible bond exchange, either of which allows the material to essentially re-equilibrate to an altered set of conditions that are distinct from those in which the original covalently crosslinked network is formed, often simultaneously enabling a new and distinct shape, function, and characteristics. As such, CANs span the divide between thermosets and thermoplastics, thus offering unprecedented possibilities for innovation in polymer and materials science. Without attempting to comprehensively review the literature, recent developments in CANs are discussed here with an emphasis on the most effective dynamic chemistries that render these materials to be stimuli responsive, enabling features that make CANs more broadly applicable.
Collapse
Affiliation(s)
- Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, pl. Marii Curie-Sklodowskiej 5, Lublin, 20-031, Poland
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Bruce E Kirkpatrick
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew McBride
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Alina Martinez
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Nicholas J Bongiardina
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| |
Collapse
|
123
|
Kato R, Mirmira P, Sookezian A, Grocke GL, Patel SN, Rowan SJ. Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives. ACS Macro Lett 2020; 9:500-506. [PMID: 35648505 DOI: 10.1021/acsmacrolett.0c00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cross-linked polymer electrolytes containing structurally dynamic disulfide bonds have been synthesized to investigate their combined ion transport and adhesive properties. Dynamic network polymers of varying cross-link densities are synthesized via thiol oxidation of a bisthiol monomer, 2,2'-(ethylenedioxy)diethanethiol, and tetrathiol cross-linker, pentaerythritol tetrakis(3-mercaptopropionate). At optimal loading of lithium bis(trifluoromethane-sulfonyl-imide) (LiTFSI) salt, the ionic conductivities (σ) at 90 °C are about 1 × 10-4 and 1 × 10-5 S/cm at the lowest and highest cross-linking, respectively. Notably, in comparison to the equivalent nondynamic network, the dynamic network shows a positive deviation in σ above 90 °C, which suggests the enhancement of ion transport occurs from the difference in structural relaxation on account of the dissociation of disulfide bonds. Lap shear adhesion and conductivity tests on ITO-coated glass substrates reveal the dynamic network exhibits a higher adhesive shear strength of 0.2 MPa (vs 0.03 MPa for the nondynamic network) and higher σ after the application of external stimulus (UV light or heat). The adhesive strength and σ are stable over multiple debonding/rebonding cycles and, thus, demonstrating the utility of these structurally dynamic networks as solid polymer electrolyte adhesives.
Collapse
Affiliation(s)
- Ryo Kato
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Priyadarshini Mirmira
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arvin Sookezian
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Garrett L. Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shrayesh N. Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
124
|
Self JL, Sample CS, Levi AE, Li K, Xie R, de Alaniz JR, Bates CM. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials. J Am Chem Soc 2020; 142:7567-7573. [PMID: 32227998 DOI: 10.1021/jacs.0c01467] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We introduce a design strategy to expand the range of accessible mechanical properties in covalent adaptable networks (CANs) using bottlebrush polymer building blocks. Well-defined bottlebrush polymers with rubbery poly(4-methylcaprolactone) side chains were cross-linked in formulations that include a bislactone and strong Lewis acid (tin ethylhexanoate). The resulting materials exhibit tunable stress-relaxation rates at elevated temperatures (160-180 °C) due to dynamic ester cross-links that undergo transesterification with residual hydroxy groups. Varying the cross-linker loading or bottlebrush backbone degree of polymerization yields predictable low-frequency shear moduli ca. 10-100 kPa, well below values typical of linear polymer CANs (1 MPa). These extensible networks can be stretched to strains as large as 350% before failure and undergo efficient self-healing to recover >85% of their original toughness upon repeated fracture and melt processing. In summary, molecular architecture creates new opportunities to tailor the mechanical properties of CANs in ways that are otherwise difficult to achieve.
Collapse
|
125
|
Mao J, Hai Y, Ye H, You L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J Org Chem 2020; 85:5351-5361. [PMID: 32250630 DOI: 10.1021/acs.joc.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive chemistry allows transformation and selection within molecular networks, and adaptive systems composed of different types of dynamic covalent reactions (DCRs) are challenging. Herein, we demonstrate dual reactivity-based covalent networks encompassing the regulation of and switching between C-N- and C-S-based reversible covalent assemblies. The creation and exchange of C-N- or C-S-derived assemblies exhibiting diverse architectures, including linear structures, macrocycles, and cages, were achieved. The shift of reactivity then permitted the interconversion between C-N- and C-S-containing assemblies. Moreover, the adaption of intramolecular and intermolecular scaffolds was feasible via linker design. The latent hemiaminal chirality center offered a pathway for the induction of chirality within assemblies. Finally, switchable structural change and controlled extraction of ions were realized with Hg2+ as a guest for macrocycles. The remarkable complexity of networks described herein could open the door for the utility in sophisticated functional systems.
Collapse
Affiliation(s)
- Jialin Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
126
|
Zhao L, Yin Y, Jiang B, Guo Z, Qu C, Huang Y. Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics. J Colloid Interface Sci 2020; 573:105-114. [PMID: 32278169 DOI: 10.1016/j.jcis.2020.03.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Siloxane elastomers having simultaneously high stretchability, fast and efficient self-healing abilities at room temperature and excellent mechanical properties have broad application prospects in many fields. However, it is still challenging to satisfy this request. In this work, a stretchable, fast self-healing siloxane elastomer was successfully synthesized by introducing aromatic disulfides into a siloxane matrix. The resulting siloxane elastomer exhibited a tensile stress of 0.5 MPa, an elongation at break over 1000%, and a healing efficiency above 95% at room temperature. The healed siloxane elastomer could recover an elongation at break of 357 ± 15% after healing for only one minute at room temperature. A healing efficiency higher than 90% was achieved even after surface aging or by overlap contact, which was due to the presence of the dynamic disulfide bonds. Furthermore, the elastomer was successfully deployed as the substrate for self-healing stretchable electronics. As a proof-of-concept, stretchable electrode and stretchable strain sensors were produced, and they all showed high stretchability, fast self-healing properties at room temperature and high durability and stability, paving the way to promising applications in stretchable and wearable electronics.
Collapse
Affiliation(s)
- Liwei Zhao
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Chunyan Qu
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
127
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020; 59:5278-5283. [DOI: 10.1002/anie.201913893] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
128
|
Jourdain A, Asbai R, Anaya O, Chehimi MM, Drockenmuller E, Montarnal D. Rheological Properties of Covalent Adaptable Networks with 1,2,3-Triazolium Cross-Links: The Missing Link between Vitrimers and Dissociative Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02204] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Antoine Jourdain
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Rawnaq Asbai
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
- Univ Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, F-69003 Lyon, France
| | - Omaima Anaya
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Mohamed M. Chehimi
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182, F-94320 Thiais, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Damien Montarnal
- Univ Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, F-69003 Lyon, France
| |
Collapse
|
129
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
130
|
Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O. Dynamic Covalent Polymers for Biomedical Applications. MATERIALS CHEMISTRY FRONTIERS 2020; 4:489-506. [PMID: 33791102 PMCID: PMC8009197 DOI: 10.1039/c9qm00598f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rapid development of supramolecular polymer chemistry and constitutional dynamic chemistry over the last decades has made tremendous impact on the emergence of dynamic covalent polymers. These materials are formed through reversible covalent bonds, endowing them with adaptive and responsive features that have resulted in high interest throughout the community. Owing to their intriguing properties, such as self-healing, shape-memory effects, recyclability, degradability, stimuli-responsiveness, etc., the materials have found multiple uses in a wide range of areas. Of special interest is their increasing use for biomedical applications, and many examples have been demonstrated in recent years. These materials have thus been used for the recognition and sensing of biologically active compounds, for the modulation of enzyme activity, for gene delivery, and as materials for cell culture, delivery, and wound-dressing. In this review, some of these endeavors are discussed, highlighting the many advantages and unique properties of dynamic covalent polymers for use in biology and biomedicine.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université of Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854, USA
- Department of Chemical and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
131
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020; 59:4294-4298. [DOI: 10.1002/anie.201913430] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
132
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
133
|
Wang Z, Gu Y, Ma M, Chen M. Strong, Reconfigurable, and Recyclable Thermosets Cross-Linked by Polymer–Polymer Dynamic Interaction Based on Commodity Thermoplastics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
134
|
Levy A, Goldstein H, Brenman D, Diesendruck CE. Effect of intramolecular crosslinker properties on the mechanochemical fragmentation of covalently folded polymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Avishai Levy
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Hadar Goldstein
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Dolev Brenman
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
| | - Charles E. Diesendruck
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200008 Israel
- Russell‐Berrie Nanotechnology InstituteTechnion – Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
135
|
Xiang L, Liu X, Zhang H, Zhao N, Zhang K. Thermoresponsive self-healable and recyclable polymer networks based on a dynamic quinone methide–thiol chemistry. Polym Chem 2020. [DOI: 10.1039/d0py01008a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new type of thermoresponsive dynamic covalent polymer network was developed with excellent self-healable and recyclable properties based on a new thermoresponsive dynamic covalent chemistry between a para-quinone methide and thiol nucleophiles.
Collapse
Affiliation(s)
- Lue Xiang
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Xianfeng Liu
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Huan Zhang
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Ning Zhao
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
136
|
Liu Y, Tang Z, Chen J, Xiong J, Wang D, Wang S, Wu S, Guo B. Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree. Polym Chem 2020. [DOI: 10.1039/c9py01826c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imine bond crosslinked networks with tunable mechanical and dynamic properties are prepared by varying the precursor molecular weight and network crosslinking degree.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Junlong Chen
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jikang Xiong
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Dong Wang
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shu Wang
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Siwu Wu
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
137
|
Heat driven self-healing isocyanate-based crosslinked three-arm Star-shaped polyglycolide based on dynamic transesterification. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
138
|
Abstract
Advances in polymer actuators containing covalent adaptable networks (CANs) are summarized and discussed in this review.
Collapse
Affiliation(s)
- Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
139
|
Markwart JC, Battig A, Urbaniak T, Haag K, Koschek K, Schartel B, Wurm FR. Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials. Polym Chem 2020. [DOI: 10.1039/d0py00275e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitrimers are a promising alternative to conventional composite materials as they can be recycled and reshaped but still need additives. Herein, intrinsic flame-retardant phosphorus-containing vitrimers are presented, which were used in composites.
Collapse
Affiliation(s)
| | - Alexander Battig
- Bundesanstalt für Materialforschung und -prüfung (BAM)
- 12205 Berlin
- Germany
| | - Tobias Urbaniak
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Katharina Haag
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Katharina Koschek
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | - Bernhard Schartel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
- 28359 Bremen
- Germany
| | | |
Collapse
|
140
|
Wu B, Liu Z, Lei Y, Wang Y, Liu Q, Yuan A, Zhao Y, Zhang X, Lei J. Mutually-complementary structure design towards highly stretchable elastomers with robust strength and autonomous self-healing property. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Tang Z, Huang Q, Liu Y, Chen Y, Guo B, Zhang L. Uniaxial Stretching-Induced Alignment of Carbon Nanotubes in Cross-Linked Elastomer Enabled by Dynamic Cross-Link Reshuffling. ACS Macro Lett 2019; 8:1575-1581. [PMID: 35619384 DOI: 10.1021/acsmacrolett.9b00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fascinating properties of carbon nanotubes (CNTs) make them highly promising in fabricating polymer composites. Yet, the property enhancements of polymer/CNTs composites remain far behind the theoretical predictions. A critical issue to resolve this dilemma is to align CNTs in polymer matrices. Thus far, the state of art approaches to create CNT alignment either require complicated preparation processes and specific apparatuses, or is limited to thermoplastic polymers. Here, inspired by the network rearrangement ability of vitrimer in the solid state, we bring forth a facile methodology to align CNT in covalently cross-linked polymers by uniaxially stretching dynamic. Specifically, dynamic boronic ester bond-cross-linked epoxidized natural rubber/CNTs vitrimer composites with randomly dispersed CNTs are prepared, which are able to rearrange the network topologies and release stress at elevated temperatures through boronic ester transesterifications. The alignment of CNTs is performed by the uniaxial stretching of the composites and subsequent cross-link reshuffling at elevated temperatures, which results in anisotropic composites with remarkably enhanced mechanical properties and reduced electrical conductivity along the stretching direction. Furthermore, the mechanical properties of the composites can be readily adjusted by changing the applied strain, relaxation time and temperature due to the modulated CNT alignment degree. With this example, we envisage that this work offers a conceptual and facile approach to align anisotropic fillers in covalently cross-linked polymers.
Collapse
Affiliation(s)
- Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Qingyi Huang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yingjun Liu
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yi Chen
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
142
|
Lessard JJ, Scheutz GM, Sung SH, Lantz KA, Epps TH, Sumerlin BS. Block Copolymer Vitrimers. J Am Chem Soc 2019; 142:283-289. [PMID: 31794219 DOI: 10.1021/jacs.9b10360] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this report, we merge block copolymers with vitrimers in an effort to realize the prospect of higher-order, nanoscale control over associative cross-link exchange and flow. We show the use of controlled polymerization as a vital tool to understand fundamental structure-property effects through the precise control of polymer architecture and molecular weight. Vitrimers derived from self-assembling block copolymers exhibit superior resistance to macroscopic deformation in comparison to their analogs generated from statistical copolymers. Our results suggest that the enhanced creep resistance achieved by control over chain topology in block vitrimers can be used to tune viscoelastic properties. The resistance to macroscopic deformation that arises from a microphase-separated structure in this new class of materials differentiates block vitrimers from their statistical counterparts and introduces the potential of topology-control over viscoelastic flow.
Collapse
Affiliation(s)
- Jacob J Lessard
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Georg M Scheutz
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Seung Hyun Sung
- Center for Research in Soft matter & Polymers, Department of Chemical & Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Kayla A Lantz
- Center for Research in Soft matter & Polymers, Department of Chemical & Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Thomas H Epps
- Center for Research in Soft matter & Polymers, Department of Chemical & Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States.,Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
143
|
Impact of Dynamic Bond Concentration on the Viscoelastic and Mechanical Properties of Dynamic Poly(alkylurea‐
co
‐urethane) Networks. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
144
|
Hu J, Mo R, Jiang X, Sheng X, Zhang X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121912] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
145
|
Tretbar CA, Neal JA, Guan Z. Direct Silyl Ether Metathesis for Vitrimers with Exceptional Thermal Stability. J Am Chem Soc 2019; 141:16595-16599. [DOI: 10.1021/jacs.9b08876] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chase A. Tretbar
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - James A. Neal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
146
|
Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1673406] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wouter Post
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Arijana Susa
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Rolf Blaauw
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Karin Molenveld
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | | |
Collapse
|
147
|
Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J Am Chem Soc 2019; 141:16181-16196. [PMID: 31525287 DOI: 10.1021/jacs.9b07922] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical division of polymeric materials into thermoplastics and thermosets based on covalent network structure often implies that these categories are distinct and irreconcilable. Yet, the past two decades have seen extensive development of materials that bridge this gap through incorporation of dynamic crosslinks, enabling them to behave as both robust networks and moldable plastics. Although their potential utility is significant, the growth of covalent adaptable networks (CANs) has obscured the line between "thermoplastic" and "thermoset" and erected a conceptual barrier to the growing number of new researchers entering this discipline. This Perspective aims to both outline the fundamental theory of CANs and provide a critical assessment of their current status. We emphasize throughout that the unique properties of CANs emerge from the network chemistry, and particularly highlight the role that the crosslink exchange mechanism (i.e., dissociative exchange or associative exchange) plays in the resultant material properties under processing conditions. Predominant focus will be on thermally induced dynamic behavior, as the majority of presently employed exchange chemistries rely on thermal stimulus, and it is simple to apply to bulk materials. Lastly, this Perspective aims to identify current issues and address possible solutions for better fundamental understanding within this field.
Collapse
Affiliation(s)
- Georg M Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Jacob J Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Michael B Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
148
|
Zhao W, Feng Z, Liang Z, Lv Y, Xiang F, Xiong C, Duan C, Dai L, Ni Y. Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36090-36099. [PMID: 31487144 DOI: 10.1021/acsami.9b11991] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitrimer, the third category of polymer materials, combines the properties of traditional thermosets and thermoplastics and has gained much interest from industry since the first report in 2011. Currently, many researchers focus on the exploration of new chemistry for novel vitrimer synthesis but pay less attention to the fabrication of vitrimer composites based on known vitrimer systems. The latter can not only largely decrease the cost of vitrimers but also provide a facile way to increase the variety of vitrimer-based materials and extend the applications of vitrimers in different fields. In this study, we developed a new class of vitrimer composite using polycarbonate as a matrix and natural cellulose paper as the reinforcing framework for the first time. The resultant materials possess exceptional mechanical properties and great thermal/chemical stability, simultaneously exhibiting a series of smart properties, such as shape-memory, reshaping, self-healing, and reprocessing. Noteworthily, the two main components of the resultant materials, polycarbonate and natural cellulose, can be easily recycled under mild conditions; thus, these new vitrimer composites qualify as novel green and sustainable materials.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Paper Based Functional Materials , China National Light Industry , Xi'an 710021 , People's Republic of China
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development , Xi'an 710021 , People's Republic of China
| | - Zihao Feng
- Key Laboratory of Paper Based Functional Materials , China National Light Industry , Xi'an 710021 , People's Republic of China
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development , Xi'an 710021 , People's Republic of China
| | | | | | | | | | | | | | - Yonghao Ni
- Department of Chemical Engineering , University of New Brunswick , Fredericton E3B 5A3 , New Brunswick , Canada
| |
Collapse
|
149
|
Liang B, Zhong Z, Jia E, Zhang G, Su Z. Transparent and Scratch-Resistant Antifogging Coatings with Rapid Self-Healing Capability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30300-30307. [PMID: 31386333 DOI: 10.1021/acsami.9b09610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Typical antifogging coatings based on hydrophilic polymers are soft and susceptible to mechanical damage. In this paper, an antifogging coating that is both scratch-resistant and self-healing is fabricated by copolymerizing sulfobetaine methacrylate and 2-hydroxyethyl methacrylate in the presence of sulfobetaine-modified silica nanoparticles in one pot. The coating is highly efficient in preventing fog formation at the surface and reducing ice adhesion, and is resistant to fouling by oil and protein, due to the strong hydration ability of the zwitterionic moieties. The composite coating is resistant to scratching and abrasion under normal use conditions to maintain its transparency due to increased hardness by the filled silica nanoparticles and is able to heal completely within several minutes severe scratches and cuts inflicted in harsh conditions, owing to the water-assisted reversibility of the electrostatic and hydrogen-bonding interactions holding together the polymer components and the silica nanoparticles. The multiple desirable properties demonstrated and the simple fabrication process of the coating offers great potential in many practical applications.
Collapse
Affiliation(s)
- Bang Liang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Zhenxing Zhong
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Erna Jia
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangyu Zhang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
150
|
Liu W, Fang C, Wang S, Huang J, Qiu X. High-Performance Lignin-Containing Polyurethane Elastomers with Dynamic Covalent Polymer Networks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01413] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|