101
|
Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv 2013; 10:927-55. [DOI: 10.1517/17425247.2013.762354] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
102
|
Neuroprotective Effects of Resveratrol Against Aβ Administration in Rats are Improved by Lipid-Core Nanocapsules. Mol Neurobiol 2013; 47:1066-80. [DOI: 10.1007/s12035-013-8401-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
103
|
Jayasuriya AC, Darr AJ. Controlled release of cisplatin and cancer cell apoptosis with cisplatin encapsulated poly(lactic-co-glycolic acid) nanoparticles. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.65074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
104
|
Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2012; 441:202-12. [PMID: 23220081 DOI: 10.1016/j.ijpharm.2012.11.042] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/24/2023]
Abstract
Low levels of isoniazid gain access into plasma following oral administration due to its high aqueous solubility, poor permeability and rapid and extensive hepatic metabolism. Further, a small t(1/2) of 1-4 h indicates its short stay in plasma and the need for repetitive or high doses which may subsequently result in hepatotoxicity and neurotoxicity associated with its use. Isoniazid-solid lipid nanoparticles (SLNs) were prepared to achieve improved bioavailability and prolonged effect, thus minimizing pulsatile plasma concentrations (and associated side effects at peak plasma concentrations). Developed SLNs showed high entrapment efficiency (69%) and small size (d(90) 48.4 nm) such that they are expected to bypass reticulo-endothelial system (RES) pickup resulting in prolonged circulation times and since liver is the major site of metabolism of isoniazid, RES avoidance will reduce its elimination from the body. Single dose (25 mg/kg BW) oral pharmacokinetic studies were performed in plasma and various tissues of rats. A significant improvement (p<0.001) in relative bioavailability in plasma (6 times) and brain (4 times) was observed after administration of isoniazid-SLNs with respect to the free drug solution at the same dose. Insignificant changes in liver concentration coupled with bypass of first pass metabolism and slow release of isoniazid (60%, in 24 h) indicate low incidence of hepatotoxicity. Isoniazid-SLNs showed a 3 times higher LD50.
Collapse
|
105
|
|
106
|
Gil ES, Wu L, Xu L, Lowe TL. β-Cyclodextrin-poly(β-Amino Ester) Nanoparticles for Sustained Drug Delivery across the Blood–Brain Barrier. Biomacromolecules 2012; 13:3533-41. [DOI: 10.1021/bm3008633] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eun Seok Gil
- Department of Surgery, Pennsylvania State University, Hershey, Pennsylvania
17033, United States
| | - Linfeng Wu
- Department of Surgery, Pennsylvania State University, Hershey, Pennsylvania
17033, United States
- Department
of Pharmaceutical
Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lichong Xu
- Department of Surgery, Pennsylvania State University, Hershey, Pennsylvania
17033, United States
| | - Tao Lu Lowe
- Department of Surgery, Pennsylvania State University, Hershey, Pennsylvania
17033, United States
- Department
of Pharmaceutical
Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
107
|
Bommana MM, Kirthivasan B, Squillante E. In vivobrain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Deliv 2012; 19:298-306. [DOI: 10.3109/10717544.2012.714812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
108
|
Gulati V, Wallace R. Rafts, Nanoparticles and Neural Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2012; 2:217-250. [PMID: 28348305 PMCID: PMC5304588 DOI: 10.3390/nano2030217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/17/2022]
Abstract
This review examines the role of membrane rafts in neural disease as a rationale for drug targeting utilizing lipid-based nanoparticles. The article begins with an overview of methodological issues involving the existence, sizes, and lifetimes of rafts, and then examines raft function in the etiologies of three major neural diseases-epilepsy, Parkinson's disease, and Alzheimer's disease-selected as promising candidates for raft-based therapeutics. Raft-targeting drug delivery systems involving liposomes and solid lipid nanoparticles are then examined in detail.
Collapse
Affiliation(s)
- Vishal Gulati
- Ross University School of Medicine, Miami Beach Community Health Center, 11645 Biscayne Boulevard, North Miami, FL 33181, USA.
| | - Ron Wallace
- Department of Anthropology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
109
|
Lalatsa A, Schätzlein AG, Uchegbu* IF. Nanostructures Overcoming the Blood-Brain Barrier: Physiological Considerations and Mechanistic Issues. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
110
|
Polymeric nanocarriers for controlled and enhanced delivery of therapeutic agents to the CNS. Ther Deliv 2012; 3:875-87. [DOI: 10.4155/tde.12.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polymeric nanocarriers are versatile structures that can be engineered to obtain high drug loading, good delivery yields and tunable release kinetics. Moreover, the particle surface can be modified for selective targeting of organs or tissues. In particular, polymeric nanocarriers can be conjugated with functional groups promoting translocation through the blood–brain barrier, thus providing a promising system to deliver therapeutic agents and/or diagnostic probes to the brain. Here we review recent literature on the preparation and characterization of polymeric nanoparticles as potential agents for drug delivery to the CNS, with an emphasis on materials chemistry and functionalization strategies for improved selectivity and delivery. Finally, we underline the immunotoxicological aspects of this class of nanostructured materials in view of potential clinical applications.
Collapse
|
111
|
Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul 2012; 30:49-54. [PMID: 22676632 DOI: 10.3109/02652048.2012.692491] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In 1995 it was reported for the first time that nanoparticles could be used for the delivery of drugs across the blood-brain barrier (BBB) following intravenous injection. In vitro and in vivo experiments show that the underlying mechanism is receptor-mediated endocytosis followed by transcytosis. No opening of the tight junctions was observed. Due to the overcoating of the nanoparticles with polysorbate 80 or poloxamers 188, apolipoproteins A-I and/or E are adsorbed from the blood on to the particle surface after injection. These apolipoproteins mediate the interaction with LDL or scavenger receptors on the BBB followed by the above brain uptake processes. Likewise, covalent attachment of these apolipoproteins or of transferrin, insulin or antibodies against the respective receptors also enables a similar nanoparticle-mediated drug transport across the BBB. From these results it can be concluded that the nanoparticles act as "Trojan Horses" taking advantage of physiological receptor-mediated transport processes across the BBB.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institute of Pharmaceutical Technology, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
112
|
Wang Y, Wang C, Gong C, Wang Y, Guo G, Luo F, Qian Z. Polysorbate 80 coated poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) micelles for paclitaxel delivery. Int J Pharm 2012; 434:1-8. [PMID: 22609127 DOI: 10.1016/j.ijpharm.2012.05.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 02/05/2023]
Abstract
In this article, polysorbate 80 coated poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) (PCEC) micelles were successfully prepared for paclitaxel (PTX) delivery. The particle size distribution, morphology, drug loading, encapsulation efficiency and sustained release profile of the micelles were studied in detail. The safety of the micelle formulation was evaluated by MTT assay on HEK293 cells. And the encapsulated PTX in the micelles remained potent antitumor effect on C6 glioma cells. The pharmacokinetic study showed that the PCEC micelles coated with polysorbate 80 altered the biodistribution pattern and increased PTX concentration in the brain significantly compared to the uncoated micelles and the free drug after intravenous injection. The results indicated that polysorbate 80 coated PCEC micelles might be a candidate for PTX delivery for brain tumor chemotherapy.
Collapse
Affiliation(s)
- Yujun Wang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
113
|
Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang JY. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. NANOTECHNOLOGY 2012; 23:165101. [PMID: 22460562 DOI: 10.1088/0957-4484/23/16/165101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles have been successfully applied to deliver small-molecule drugs to the central nervous system (CNS). However, it is unclear whether PBCA nanoparticles can be used as the delivery system for large molecules to potentially treat traumatic brain injury (TBI). In this study, we tested the capacity of PBCA nanoparticles in passing through the blood-brain barrier (BBB) and transporting large molecules into normal and injured brains in the rat. We first synthesized PBCA nanoparticles by dispersion polymerization and then loaded the particles with either horseradish peroxidase (HRP, 44 kDa) or enhanced green fluorescent protein (EGFP, 29 kDa), which were further coated with polysorbate 80. Next, the polysorbate 80-coated HRP or EGFP-loaded PBCA nanoparticles were intravenously injected into the normal and brain-injured rats. We found that, at 45 min after injection, PBCA nanoparticle-delivered HRP or EGFP was hardly detected in the normal brains of the rats, but a small amount of EGFP carried by PBCA nanoparticles was noted in the normal brains 48 h after administration, which was further confirmed by immunolocalization with anti-EGFP antibodies. In contrast, at 4 h after TBI with a circulation time of 45 min, although the penetration of HRP or EGFP alone was hampered by the BBB, the PBCA nanoparticle-delivered HRP or EGFP was widely distributed near injured sites. Together, our findings provide histological evidence that PBCA nanoparticles can be used as an efficient delivery system for large molecules to overcome the barrier in the brain with TBI.
Collapse
Affiliation(s)
- Yong Lin
- Department of Neurological Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, People's Republic of China
| | | | | | | | | | | |
Collapse
|
114
|
Costantino L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 2012; 17:367-78. [DOI: 10.1016/j.drudis.2011.10.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/06/2011] [Accepted: 10/31/2011] [Indexed: 01/07/2023]
|
115
|
Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm 2012; 430:266-75. [PMID: 22486964 DOI: 10.1016/j.ijpharm.2012.03.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/29/2012] [Accepted: 03/25/2012] [Indexed: 12/12/2022]
Abstract
Polysorbate 80 coated temozolomide-loaded PLGA-based superparamagnetic nanoparticles (P80-TMZ/SPIO-NPs) were successfully synthesized and characterized as drug carriers and diagnosis agent for malignant brain glioma. The mean size of P80-TMZ/SPIO-NPs was 220 nm with narrow hydrodynamic particle size distribution. The superparamagnetic characteristic of P80-TMZ/SPIO-NPs was proved by vibration simple magnetometer. P80-TMZ/SPIO-NPs exhibited high drug loading and encapsulation efficiency as well as good sustained drug release performance for 15 days. MTT assay demonstrated the antiproliferative effect of P80-TMZ/SPIO-NPs for C6 glioma cells. Significant cellular uptake of P80-TMZ/SPIO-NPs was evaluated in C6 glioma cells by fluorescence microscopy, Prussian blue staining, and atomic absorption spectrophotometer (AAS) for qualitative and quantitative study, respectively. MRI scanning analyses in vitro indicated that P80-TMZ/SPIO-NPs could be used as a good MRI contrast agent. Polysorbate 80 coated temozolomide-loaded PLGA-based superparamagnetic nanoparticles could be able to promise a multifunctional theragnostic carrier of brain cancer.
Collapse
Affiliation(s)
- You Ling
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | | | | | | |
Collapse
|
116
|
Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, Worek F, Pietrzik CU, Kreuter J, von Briesen H. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One 2012; 7:e32568. [PMID: 22396775 PMCID: PMC3291552 DOI: 10.1371/journal.pone.0032568] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Sylvia Wagner
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Anja Zensi
- Institute of Pharmaceutical Technology, Goethe-University, Frankfurt am Main, Germany
| | - Sascha L. Wien
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Sabrina E. Tschickardt
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wladislaw Maier
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tikva Vogel
- Laboratory of Pathology and Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Franz Worek
- Bundeswehr Institute of Pharmacology und Toxicology, München, Germany
| | - Claus U. Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jörg Kreuter
- Institute of Pharmaceutical Technology, Goethe-University, Frankfurt am Main, Germany
| | - Hagen von Briesen
- Department of Cell Biology and Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
- * E-mail:
| |
Collapse
|
117
|
Gaoe H, Pang Z, Pan S, Cao S, Yang Z, Chen C, Jiang X. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 2012; 35:333-41. [PMID: 22370788 DOI: 10.1007/s12272-012-0214-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/08/2011] [Accepted: 06/26/2011] [Indexed: 12/11/2022]
Abstract
Docetaxel, an inhibitor of microtubule depolymerization, has been used for many malignancies. Due to its toxicity and the non-selective distribution of its commercial formulation, Taxotere®, new formulations with less toxicity and tumor targeting need to be explored. For its safety and ease of factory scale production, nanoemulsion, was selected to encapsulate docetaxel. The particle size of docetaxel loaded nanoemulsion (DNE) was 72.3 nm, the average zeta potential was -6.38 mV, the encapsulation efficiency was 93.1% and the drug loading capacity was 2.87%. Although DNE presented similar antiproliferation effects on both U87 cells and bEnd.3 cells, its in vivo toxicity was significantly lower than Taxotere®. In vivo fluorescent imaging suggested nanoemulsions loaded with a fluorescent probe could distribute to the brain and accumulate at the glioma site. The pharmacological experiments also confirmed that the DNE could target glioma sites and prolong the median survival time of mice with gliomas. In conclusion, DNE is a new, less toxic, drug formulation that is effective for brain glioma therapy.
Collapse
Affiliation(s)
- Huil Gaoe
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Development of nanoparticles for drug delivery has progressed by leaps and bounds over the last few decades, facilitating the possibility of an efficacious therapy for some fatal diseases. This development has stemmed from either the unsuitable physicochemical characteristics of the existing drug molecules, such as limited solubility and hence poor bioavailability, or the inadequacy of the conventional delivery systems to provide safe and efficient delivery. This chapter focuses on the precise need for the development of these novel nanoparticulate drug carriers and reasons for their popularity with the drug delivery scientists. The text also discusses the various strategies, including different formulation and targeting approaches, which have been adopted to overcome the challenges presented by the inherent properties of the drug molecules. Examples of nanoparticulate drug delivery systems which have already gained market approval have been cited in the discussion, wherever applicable.
Collapse
|
119
|
Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood–brain barrier. J Biomater Appl 2011; 27:909-22. [DOI: 10.1177/0885328211429495] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we developed a nanoparticle system for drug delivery across the blood–brain barrier (BBB). The nanoparticle consisting of loperamide and poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer were prepared by the nanoprecipitation method; then the nanoparticles were coated with poloxamer 188 or polysorbate 80. The effects of poloxamer 188 or polysorbate 80 on the physicochemical and pharmaceutical properties of the coated nanoparticles were investigated. Loperamide, which does not cross the blood–brain barrier (BBB) but exerts antinociceptive effects after direct injection into the brain, was encapsulated by different polymeric materials and used as a model drug. The in vitro BBB penetration study shows that the surfactant-coated PLGA-PEG-PLGA nanoparticles could have penetration of 14.4–21.2%, which was better than the PLGA-PEG-PLGA nanoparticles (PEP) (8.2%) and the PLGA nanoparticles (PN) (4.3%). The biopsy studies also confirm that the PEP coated by surfactant could increase the penetration. The results of nanoparticles accumulation in brain tissue show that the PEP coated by surfactant had a much higher concentration than both the PEP and the PN. Moreover, the maximal possible antinociception effect (MPE) for the surfactant-coated PEP was 21–35% at 150 min after administering the drug intravenously, which was significantly better than just the PEP (MPE: 11.6%). The results of the formalin test show that the surfactant-coated PEP administered intravenously 150 min prior to the formalin injection could greatly reduce the pain response in the first phase. The results demonstrate that the surfactant-coated PEP could help to deliver loperamide across the BBB.
Collapse
Affiliation(s)
- Yung-Chu Chen
- Tissue Regeneration Product Technology Division, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Wen-Yuan Hsieh
- Tissue Regeneration Product Technology Division, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Wen-Fu Lee
- Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan
| | - Ding-Tai Zeng
- Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan
| |
Collapse
|
120
|
Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A 2011; 108:18837-42. [PMID: 22065785 DOI: 10.1073/pnas.1111405108] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several imaging modalities are suitable for in vivo molecular neuroimaging, but the blood-brain barrier (BBB) limits their utility by preventing brain delivery of most targeted molecular probes. We prepared biodegradable nanocarrier systems made up of poly(n-butyl cyanoacrylate) dextran polymers coated with polysorbate 80 (PBCA nanoparticles) to deliver BBB-impermeable molecular imaging probes into the brain for targeted molecular neuroimaging. We demonstrate that PBCA nanoparticles allow in vivo targeting of BBB-impermeable contrast agents and staining reagents for electron microscopy, optical imaging (multiphoton), and whole brain magnetic resonance imaging (MRI), facilitating molecular studies ranging from individual synapses to the entire brain. PBCA nanoparticles can deliver BBB-impermeable targeted fluorophores of a wide range of sizes: from 500-Da targeted polar molecules to 150,000-Da tagged immunoglobulins into the brain of living mice. The utility of this approach is demonstrated by (i) development of a "Nissl stain" contrast agent for cellular imaging, (ii) visualization of amyloid plaques in vivo in a mouse model of Alzheimer's disease using (traditionally) non-BBB-permeable reagents that detect plaques, and (iii) delivery of gadolinium-based contrast agents into the brain of mice for in vivo whole brain MRI. Four-dimensional real-time two-photon and MR imaging reveal that brain penetration of PBCA nanoparticles occurs rapidly with a time constant of ∼18 min. PBCA nanoparticles do not induce nonspecific BBB disruption, but collaborate with plasma apolipoprotein E to facilitate BBB crossing. Collectively, these findings highlight the potential of using biodegradable nanocarrier systems to deliver BBB-impermeable targeted molecular probes into the brain for diagnostic neuroimaging.
Collapse
|
121
|
Bukreeva TV, Marchenko IV, Borodina TN, Degtev IV, Sitnikov SL, Moiseeva YV, Gulyaeva NV, Kovalchuk MV. Calcium carbonate and titanium dioxide particles as a basis for container fabrication for brain delivery of compounds. DOKLADY PHYSICAL CHEMISTRY 2011. [DOI: 10.1134/s001250161109003x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
122
|
Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 2011; 38:387-411. [PMID: 21954902 DOI: 10.3109/03639045.2011.608191] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT It is well-known fact that blood brain barrier (BBB) hinders the penetrance and access of many pharmacotherapeutic agents to central nervous system (CNS). Many diseases of the CNS remain undertreated and the inability to treat most CNS disorders is not due to the lack of effective CNS drug discovery, rather, it is due to the ineffective CNS delivery. Therefore, a number of nanostructured drug delivery carriers have been developed and explored over the past couple of years to transport the drugs to brain. OBJECTIVE The present review will give comprehensive details of extensive research being done in field of nanostructured carriers to transport the drugs through the BBB in a safe and effective manner. METHODS The method includes both the polymeric- and lipid-based nanocarriers with emphasis on their utility, methodology, advantages, and the drugs which have been worked on using a particular approach to provide a noninvasive method to improve the drug transport through BBB. RESULTS Polymeric- and lipid-based nanocarriers enter brain capillaries before reaching the surface of the brain microvascular endothelial cells without the disruption of BBB. These systems are further modified with specific ligands vectors and pegylation aiming to target and enhance their binding with surface receptors of the specific tissues inside brain and increase long circulatory time which favors interaction and penetration into brain endothelial cells. CONCLUSION This review would give an insight to the researchers working on neurodegenerative and non-neurodegenerative diseases of the CNS including brain tumor.
Collapse
|
123
|
Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 2011; 161:264-73. [PMID: 21872624 DOI: 10.1016/j.jconrel.2011.08.017] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/16/2023]
Abstract
The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases.
Collapse
|
124
|
Malakoutikhah M, Teixidó M, Giralt E. Schleuservermittelter Transport von Wirkstoffen ins Gehirn. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
Malakoutikhah M, Teixidó M, Giralt E. Shuttle-Mediated Drug Delivery to the Brain. Angew Chem Int Ed Engl 2011; 50:7998-8014. [DOI: 10.1002/anie.201006565] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/17/2011] [Indexed: 12/12/2022]
|
126
|
Xu QL, Li HX, Wang GC. Preparation of polyalkylcyanoacrylate nanoparticles with various morphologies. CHINESE JOURNAL OF POLYMER SCIENCE 2011. [DOI: 10.1007/s10118-011-1033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
127
|
Tian XH, Lin XN, Wei F, Feng W, Huang ZC, Wang P, Ren L, Diao Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine 2011; 6:445-52. [PMID: 21445277 PMCID: PMC3061435 DOI: 10.2147/ijn.s16570] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Polybutylcyanoacrylate (PBCA) nanoparticles coated with polysorbate-80 have been extensively proposed for delivering drugs into the animal brain and have shown great potential for therapeutic applications. In this study, we made an attempt to deliver the chemotherapeutic drug, temozolomide, into the brain by using PBCA nanoparticles. The physicochemical characteristics, in vitro release, and brain targeting ability of the drug-loaded nanoparticles were investigated. RESULTS Our results show that a significantly higher concentration of temozolomide in the form of polysorbate-80-coated PBCA nanoparticles was observed in the brain (P < 0.05) in comparison with the free drug. CONCLUSION This study indicates that polysorbate-80 coated PBCA nanoparticles could be a feasible carrier for temozolomide delivery to the brain. It is anticipated that the developed formulation may improve on targeted therapy for malignant brain tumors in the future.
Collapse
Affiliation(s)
- Xin-Hua Tian
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Salgado AJ, Oliveira JM, Pirraco RP, Pereira VH, Fraga JS, Marques AP, Neves NM, Mano JF, Reis RL, Sousa N. Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in central nervous systems-regenerative medicine: effects on neuron/glial cell viability and internalization efficiency. Macromol Biosci 2011; 10:1130-40. [PMID: 20602413 DOI: 10.1002/mabi.201000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere-like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent-probe FITC for tracing purposes. Post-natal hippocampal neurons and cortical glial cells were both able to internalize the FITC-labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC-labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.
Collapse
Affiliation(s)
- António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
|
130
|
Kasongo KW, Jansch M, Müller RH, Walker RB. Evaluation of thein vitrodifferential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J Liposome Res 2010; 21:245-54. [DOI: 10.3109/08982104.2010.539186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
131
|
Guerrero S, Araya E, Fiedler JL, Arias JI, Adura C, Albericio F, Giralt E, Arias JL, Fernández MS, Kogan MJ. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine (Lond) 2010; 5:897-913. [PMID: 20735225 DOI: 10.2217/nnm.10.74] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND & AIMS Gold nanoparticles (GNPs) have promising applications for drug delivery as well as for the diagnosis and treatment of several pathologies, such as those related to the CNS. However, GNPs are retained in a number of organs, such as the liver and spleen. Owing to their negative charge and/or processes of opsonization, GNPs are retained by the reticuloendothelial system, thereby decreasing their delivery to the brain. It is therefore crucial to modify the nanoparticle surface in order to increase its lipophilicity and reduce its negative charge, thus achieving enhanced delivery to the brain. RESULTS In this article, we have shown that conjugation of 12 nm GNPs with the amphipathic peptide CLPFFD increases the in vivo penetration of these particles to the rat brain. The C(GNP)-LPFFD conjugates showed a smaller negative charge and a greater hydrophobic character than citrate-capped GNPs of the same size. We administered intraperitoneal injections of citrate GNPs and C(GNP)-LPFFD in rats, and determined the gold content in the tissues by neutron activation. Compared with citrate GNPs, the C(GNP)-LPFFD conjugate improved the delivery to the brain, increasing the concentration of gold by fourfold, while simultaneously reducing its retention by the spleen 1 and 2 h after injection. At 24 h, the conjugate was partially cleared from the brain, and mainly accumulated in the liver. The C(GNP)-LPFFD did not alter the integrity of the blood-brain barrier, and had no effect on cell viability.
Collapse
Affiliation(s)
- Simon Guerrero
- Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Al-Hallak MHDK, Sarfraz MK, Azarmi S, Kohan MHG, Roa WH, Löbenberg R. Microcalorimetric method to assess phagocytosis: macrophage-nanoparticle interactions. AAPS JOURNAL 2010; 13:20-9. [PMID: 21057907 DOI: 10.1208/s12248-010-9240-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 10/12/2010] [Indexed: 11/30/2022]
Abstract
This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage-nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage-NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage-NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage-NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.
Collapse
Affiliation(s)
- M H D Kamal Al-Hallak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 3126 Dentistry/Pharmacy Centre, Edmonton, Alberta, Canada T6G 2N8
| | | | | | | | | | | |
Collapse
|
133
|
Poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) micelles for brain-targeting drug delivery: in vitro and in vivo valuation. Pharm Res 2010; 27:2657-69. [PMID: 20848303 DOI: 10.1007/s11095-010-0265-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/30/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this work was to investigate the potential of poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) (PCL-PEEP) micelles for brain-targeting drug delivery. METHOD The coumarin-6-loaded PCL-PEEP micelles (CMs) were prepared and characterized. The cellular uptake of CMs was evaluated on in vitro model of brain-blood barrier (BBB), and the brain biodistribution of CMs in ICR mice was investigated. RESULTS PCL-PEEP could self-assemble into 20 nm micelles in water with the critical micelle concentration (CMC) 0.51 μg/ml and high coumarin-6 encapsulation efficiency (92.5 ± 0.7%), and the micelles were stable in 10% FBS with less than 25% leakage of incorporated coumarin-6 during 24 h incubation at 37°C. The cellular uptake of CMs by BBB model was significantly higher and more efficient than coumarin-6 solution (CS) at 50 ng/ml. Compared with CS, 2.6-fold of coumarin-6 was found in the brains of CM-treated mice, and C(max) of CMs was 4.74% of injected dose/g brain. The qualitative investigation on the brain distribution of CMs indicated that CMs were prone to accumulate in hippocampus and striatum. CONCLUSION These results suggest that PCL-PEEP micelles could be a promising brain-targeting drug delivery system with low toxicity.
Collapse
|
134
|
Lin LN, Liu Q, Song L, Liu FF, Sha JX. Recent advances in nanotechnology based drug delivery to the brain. Cytotechnology 2010; 62:377-80. [PMID: 20700653 DOI: 10.1007/s10616-010-9295-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/27/2010] [Indexed: 12/19/2022] Open
Abstract
Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release.
Collapse
Affiliation(s)
- Li-Na Lin
- Department of Neurology, First Hospital of Ji Lin University, 17 Xin Min Street, 130021, Changchun, China
| | | | | | | | | |
Collapse
|
135
|
Strategy for effective brain drug delivery. Eur J Pharm Sci 2010; 40:385-403. [DOI: 10.1016/j.ejps.2010.05.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/15/2010] [Accepted: 05/10/2010] [Indexed: 12/20/2022]
|
136
|
Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010; 1199:221-30. [PMID: 20633128 DOI: 10.1111/j.1749-6632.2009.05361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
Collapse
Affiliation(s)
- Gabriel A Silva
- Departments of Bioengineering, Ophthalmology and Neurosciences Program, University of California, San Diego, California, USA.
| |
Collapse
|
137
|
Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010; 27:1759-71. [PMID: 20593303 DOI: 10.1007/s11095-010-0141-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 03/29/2010] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) diseases represent the largest and fastest-growing area of unmet medical need. Nanotechnology plays a unique instrumental role in the revolutionary development of brain-specific drug delivery, imaging, and diagnosis. With the aid of nanoparticles of high specificity and multifunctionality, such as dendrimers and quantum dots, therapeutics, imaging agents, and diagnostic molecules can be delivered to the brain across the blood-brain barrier (BBB), enabling considerable progress in the understanding, diagnosis, and treatment of CNS diseases. Nanoparticles used in the CNS for drug delivery, imaging, and diagnosis are reviewed, as well as their administration routes, toxicity, and routes to cross the BBB. Future directions and major challenges are outlined.
Collapse
|
138
|
Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target 2010; 19:125-32. [DOI: 10.3109/10611861003734001] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
139
|
Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev 2010; 31:716-56. [DOI: 10.1002/med.20201] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
140
|
|
141
|
Pathak Y, Thassu D, Deleers M. Pharmaceutical Applications of Nanoparticulate Drug-Delivery Systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420008449.ch13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
142
|
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17:564-74. [PMID: 19694610 DOI: 10.1080/10611860903112842] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The nerve growth factor (NGF) is essential for the survival of both peripheral ganglion cells and central cholinergic neurons in the basal forebrain. The accelerated loss of central cholinergic neurons during Alzheimer's disease may be a determinant cause of dementia, and this observation may suggest a possible therapeutic benefit from treatment with NGF. In recent years, convincing data have been published involving neurotrophic factors for the modulation of dopaminergic transmission within the brain and concerning the ability of NGF to prevent the degeneration of dopaminergic neurons. In this connection, the administration of NGF may slow down the progression of Parkinson's disease. However, NGF, as well as other peptidic neurotrophic factors, does not significantly penetrate the blood-brain barrier (BBB) from the circulation. Therefore, any clinical usefulness of NGF as a potential CNS therapy will depend on the use of a suitable carrier system that enhances its transport through the BBB. The present study investigates brain delivery of NGF adsorbed on poly(butyl cyanoacrylate) (PBCA) nanoparticles coated with polysorbate 80 and the pharmacological efficacy of this delivery system in the model of acute scopolamine-induced amnesia in rats as well as in the model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonian syndrome. As shown by the passive avoidance reflex (PAR) test, the intravenous administration of the nanoparticle-bound NGF successfully reversed scopolamine-induced amnesia and improved recognition and memory. This formulation also demonstrated a significant reduction of the basic symptoms of Parkinsonism (oligokinesia, rigidity, tremor). In addition, the efficient transport of NGF across the BBB was confirmed by direct measurement of NGF concentrations in the murine brain. These results demonstrate that the PBCA nanoparticles coated with polysorbate 80 are an effective carrier system for the transport of NGF to the central nervous system across the BBB following intravenous injection. This approach may improve the NGF-based therapy of age-related neurodegenerative diseases.
Collapse
|
143
|
Dhanikula RS, Hammady T, Hildgen P. On the Mechanism and Dynamics of Uptake and Permeation of Polyether-Copolyester Dendrimers Across an In Vitro Blood–Brain Barrier Model. J Pharm Sci 2009; 98:3748-60. [DOI: 10.1002/jps.21669] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
144
|
Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharm 2009; 379:285-92. [DOI: 10.1016/j.ijpharm.2009.04.035] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 11/21/2022]
|
145
|
Graf A, McDowell A, Rades T. Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics – is there real potential? Expert Opin Drug Deliv 2009; 6:371-87. [DOI: 10.1517/17425240902870413] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
146
|
Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009; 23:35-58. [PMID: 19062774 DOI: 10.2165/0023210-200923010-00003] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Being the most delicate organ of the body, the brain is protected against potentially toxic substances by the blood-brain barrier (BBB), which restricts the entry of most pharmaceuticals into the brain. The developmental process for new drugs for the treatment of CNS disorders has not kept pace with progress in molecular neurosciences because most of the new drugs discovered are unable to cross the BBB. The clinical failure of CNS drug delivery may be attributed largely to a lack of appropriate drug delivery systems. Localized and controlled delivery of drugs at their desired site of action is preferred because it reduces toxicity and increases treatment efficiency. The present review provides an insight into some of the recent advances made in the field of brain drug delivery.The various strategies that have been explored to increase drug delivery into the brain include (i) chemical delivery systems, such as lipid-mediated transport, the prodrug approach and the lock-in system; (ii) biological delivery systems, in which pharmaceuticals are re-engineered to cross the BBB via specific endogenous transporters localized within the brain capillary endothelium; (iii) disruption of the BBB, for example by modification of tight junctions, which causes a controlled and transient increase in the permeability of brain capillaries; (iv) the use of molecular Trojan horses, such as peptidomimetic monoclonal antibodies to transport large molecules (e.g. antibodies, recombinant proteins, nonviral gene medicines or RNA interference drugs) across the BBB; and (v) particulate drug carrier systems. Receptor-mediated transport systems exist for certain endogenous peptides, such as insulin and transferrin, enabling these molecules to cross the BBB in vivo.The use of polymers for local drug delivery has greatly expanded the spectrum of drugs available for the treatment of brain diseases, such as malignant tumours and Alzheimer's disease. In addition, various drug delivery systems (e.g. liposomes, microspheres, nanoparticles, nanogels and bionanocapsules) have been used to enhance drug delivery to the brain. Recently, microchips and biodegradable polymers have become important in brain tumour therapy.The intense search for alternative routes of drug delivery (e.g. intranasal drug delivery, convection-enhanced diffusion and intrathecal/intraventricular drug delivery systems) has been driven by the need to overcome the physiological barriers of the brain and to achieve high drug concentrations within the brain. For more than 30 years, considerable efforts have been made to enhance the delivery of therapeutic molecules across the vascular barriers of the CNS. The current challenge is to develop drug delivery strategies that will allow the passage of drug molecules through the BBB in a safe and effective manner.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad, India
| | | | | | | | | |
Collapse
|
147
|
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009; 17:2950-62. [DOI: 10.1016/j.bmc.2009.02.043] [Citation(s) in RCA: 490] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
148
|
Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:369-77. [PMID: 19341816 DOI: 10.1016/j.nano.2009.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/19/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED The pharmacological treatment of neurological disorders is often complicated by the inability of drugs to pass the blood-brain barrier. Recently we discovered that polymeric nanoparticles (NPs) made of poly(D,L-lactide-co-glycolide), surface-decorated with the peptide Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-Ser(O-beta-D-glucose)-CONH2 are able to deliver, after intravenous administration, the model drug loperamide into the central nervous system (CNS). This new drug delivery agent is able to ensure a strong and long-lasting pharmacological effect, far greater than that previously observed with other nanoparticulate carriers. Here we confirmed the effectiveness of this carrier for brain targeting, comparing the effect obtained by the administration of loperamide-loaded NPs with the effect of an intracerebroventricular administration of the drug; moreover, the biodistribution of these NPs showed a localization into the CNS in a quantity about two orders of magnitude greater than that found with the other known NP drug carriers. Thus, a new kind of NPs that target the CNS with very high specificity was discovered. FROM THE CLINICAL EDITOR This paper discusses a nanoparticle-based technique of targeted drug delivery through the blood-brain barrier. The biodistribution of these novel nanoparticles showed two orders of magnitude greater efficiency compared to other known NP drug carriers.
Collapse
Affiliation(s)
- Anna Valeria Vergoni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
149
|
Wang CX, Huang LS, Hou LB, Jiang L, Yan ZT, Wang YL, Chen ZL. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 2009; 1261:91-9. [DOI: 10.1016/j.brainres.2009.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 01/21/2023]
|
150
|
Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 2009; 71:161-72. [DOI: 10.1016/j.ejpb.2008.09.003] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/28/2022]
|