101
|
Becker EW. Biomechanical model of the P-type ion pumps of the cell. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1994; 81:21-7. [PMID: 8127374 DOI: 10.1007/bf01138556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanisms of the Na/K pump and of the primary Ca pumps of the cell have not yet been clarified. A biomechanical model of these so-called p-type ion pumps is proposed here. It is based on the assumption that the Na+ and Ca2+ ions are occluded by a contracting protein chain cooperating with the ATPase section of the pump. After transfer of the chain into the region of high Na+ or Ca2+ concentrations, the ions are released through stretching of the chain by the ATPase. In the backward transfer of the chain, a retrograde transport of Na+ ions is prevented through occlusion of K+ ions by another region of the same chain. In the case of Ca2+ ions, a similar effect is expected from hydrated Mg2+ ions. The two sections of the chain discriminate between the electrical field strength at the surface and the polarizability of the ions. The most likely mechanism for the transfer of the ion-binding chain is considered to involve a thermally induced transition of a pump dimer between two almost equivalent stable orientations in the membrane.
Collapse
Affiliation(s)
- E W Becker
- Institut für Mikrostrukturtechnik der Universität Karlsruhe
| |
Collapse
|
102
|
Gutowski-Eckel Z, Bäumert HG. Two states of the nucleotide-binding site of sarcoplasmic reticulum adenosine triphosphatase detected by the calcium-dependent reaction with adenosine 5'-[gamma-imidazolidate]triphosphate and adenosine 5'-[beta-imidazolidate]diphosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:823-8. [PMID: 8281933 DOI: 10.1111/j.1432-1033.1993.tb18437.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Ca(2+)-ATPase from sarcoplasmic reticulum can be inhibited by adenosine 5'-[gamma-imidazolidate]triphosphate through the formation of an intramolecular cross-link at the active site which is dependent on the presence of Ca2+ [Bill, E., Gutowski, Z. & Bämert, H.G. (1988). Calcium-dependent inactivation of the Ca(2+)-ATPase from sarcoplasmic reticulum by chemically reactive adenosine triphosphate, Eur. J. Biochem. 176, 119-124] In the present study we show that adenosine 5'-[beta-imidazolidate]diphosphate is likewise an inhibitor of the Ca(2+)-ATPase effecting a similar inhibition pattern on phosphate release and Ca2+ transport. The overall reaction is Ca2+ dependent and produces a protein band that in SDS/PAGE is indistinguishable from that seen with ATP[imidazolidate]. This shows that the side chain of Asp351 which is claimed to be involved in the cross-linking reaction must be in reach of both the beta and the gamma phosphate moiety of the respective nucleotides. The cross-linked product is formed by a two-step reaction. The first step is the fast reaction of nucleotide imidazolidate presumably at the phosphorylation site (Asp351) under-formation of a mixed anhydride that covalently links nucleotide and protein. Subsequently, the nucleotide is released by a substitution reaction with a second amino acid side chain. This cross-linking reaction is strictly Ca2+ dependent and, remarkably, requires Ca2+ to be added before addition of the inhibitor. It proceeds at two rates and suggests that there are two states of the nucleotide-bindings site. This is also supported by the fact that in the absence of CA2+, ATP[imidazolidate] reacts only in approximately 50% of the calculated ATP-binding sites (based on 80-90% ATPase of total sarcoplasmic reticulum protein) with no subsequent cross-linking reaction.
Collapse
Affiliation(s)
- Z Gutowski-Eckel
- Institut für Biophysikalische Chemie und Biochemie, Johann-Wolfgang-Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
103
|
Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, Iacobazzi V, Zara V. Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J Bioenerg Biomembr 1993; 25:493-501. [PMID: 8132489 DOI: 10.1007/bf01108406] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphate and oxoglutarate carriers transport phosphate and oxoglutarate across the inner membranes of mitochondria in exchange for OH- and malate, respectively. Both carriers belong to the mitochondrial carrier protein family, characterized by a tripartite structure made up of related sequences about 100 amino acids in length. The results obtained on the topology of the phosphate and oxoglutarate carriers are consistent with the six alpha-helix model proposed by Saraste and Walker. In both carriers the N- and C-terminal regions are exposed toward the cytosol. In addition, the oxoglutarate carrier has been shown to be a dimer by means of crosslinking studies. The bovine and human genes coding for the oxoglutarate carrier are split into eight and six exons, respectively, and five introns are found to the same position in both genes. The bovine and human phosphate carrier genes have the same organization with nine exons separated by eight introns at exactly the same positions. The phosphate carrier of mammalian mitochondria is synthesized with a cleavable presequence, in contrast to the oxoglutarate carrier and the other members of the mitochondrial carrier family. The precursor of the phosphate carrier is efficiently imported, proteolytically processed, and correctly assembled in isolated mitochondria. The presequence-deficient phosphate carrier is imported with an efficiency of about 50% as compared with the precursor of the phosphate carrier and is correctly assembled, demonstrating that the mature portion of the phosphate carrier contains sufficient information for import and assembly into mitochondria.
Collapse
Affiliation(s)
- F Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
104
|
Palmieri F, Indiveri C, Bisaccia F, Krämer R. Functional properties of purified and reconstituted mitochondrial metabolite carriers. J Bioenerg Biomembr 1993; 25:525-35. [PMID: 8132492 DOI: 10.1007/bf01108409] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eight mitochondrial carrier proteins were solubilized and purified in the authors' laboratories using variations of a general procedure based on hydroxyapatite and Celite chromatography. The molecular mass of all the carriers ranges between 28 and 34 kDa on SDS-PAGE. The purified carrier proteins were reconstituted into liposomes mainly by using a method of detergent removal by hydrophobic chromatography on polystyrene beads. The various carriers were identified in the reconstituted state by their kinetic properties . A complete set of basic kinetic data including substrate specificity, affinity, interaction with inhibitors, and activation energy was obtained. These data closely resemble those of intact mitochondria, as far as they are available from the intact organelle. Mainly on the basis of kinetic data, the asymmetric orientation of most of the reconstituted carrier proteins were established. Several of their functional properties are significantly affected by the type of phospholipids used for reconstitution. All carriers which have been investigated in proteoliposomes function according to a simultaneous (sequential) mechanism of transport; i.e., a ternary complex, made up of two substrates and the carrier protein, is involved in the catalytic cycle. The only exception was the carnitine carrier, where a ping-pong mechanism of transport was found. By reaction of particular cysteine residues with mercurial reagents, several carriers could be reversibly converted to a functional state different from the various physiological transport modes. This "unphysiological" transport mode is characterized by a combination of channel-type and carrier-type properties.
Collapse
Affiliation(s)
- F Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | |
Collapse
|
105
|
Szabó I, Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 1993; 330:201-5. [PMID: 7689983 DOI: 10.1016/0014-5793(93)80273-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrophysiological records suggest that the pore responsible for the mitochondrial Ca(2+)-dependent permeability transition (PTP), identified as the mitochondrial megachannel (MMC) observed in patch-clamp experiments, may comprise two cooperating porin (VDAC) molecules. We have re-investigated the voltage dependence of the megachannel, which favors the closed state(s) at negative (physiological) transmembrane potentials. This behavior confirms that MMC corresponds to the permeabilization pore. As detailed in the accompanying paper [(1993) FEBS Lett. 330, 206-210] this voltage dependence resembles that of VDAC. Alpidem, a ligand of the mitochondrial benzodiazepine receptor, which reportedly comprises VDAC, the adenine nucleotide carrier and a third component, elicited currents from silent mitoplast patches, suggesting that the benzodiazepine receptor may be identical to the PTP/MMC.
Collapse
Affiliation(s)
- I Szabó
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
106
|
Indiveri C, Prezioso G, Dierks T, Krämer R, Palmieri F. Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:310-8. [PMID: 8329439 DOI: 10.1016/0005-2728(93)90202-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial antiport carriers form a protein family with respect to their structure and function. The kinetic antiport mechanism, being of the sequential type, shows that the dicarboxylate carrier also belongs to this family. This was demonstrated by bireactant initial velocity studies of the purified and reconstituted carrier protein. The transport affinity of the carrier for the internal substrate was largely independent of the external substrate concentration and vice versa, whereas the carrier's apparent Vmax rose with increasing saturation of internal and external binding sites. Thus, the carrier forms a catalytic ternary complex with one internal and one external substrate molecule. As compared to other mitochondrial antiport carriers, however, the situation with the dicarboxylate carrier is more complex. On each membrane side of the protein two separate binding sites exist, one specific for phosphate (or its analogue phenyl phosphate), the other specific for dicarboxylate (or butyl malonate), that can be occupied by the respective substrates without mutual interference. This became evident from the non-competitive interaction of these substrates (or analogues) with the carrier. The two external, but not the two internal binding sites could be saturated simultaneously with phosphate and malate, thereby causing inhibition of transport. All four binding sites must be associated with the same translocation pathway through the carrier protein, since the sequential antiport mechanism held true for the phosphate/malate heteroexchange as well as for the malate/malate or phosphate/phosphate homoexchange.
Collapse
Affiliation(s)
- C Indiveri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | | | |
Collapse
|
107
|
Weissmüller G, Bisch PM. Autocatalytic cooperativity and self-regulation of ATPase pumps in membrane active transport. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1993; 22:63-70. [PMID: 8513753 DOI: 10.1007/bf00205813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigate the effect of autocatalysis on the conformational changes of membrane pumps during active transport driven by ATP. The translocation process is described by means of an alternating access model. The usual kinetic scheme is extended by introducing autocatalytic steps and allowing for dynamic formation of enzyme complexes. The usual features of cooperative models are recovered, i.e., sigmoid shapes of flux versus concentration curves. We show also that two autocatalytic steps lead to a mechanism of inhibition by the substrate as experimentally observed for some ATPase pumps. In addition, when the formation of enzyme complexes is allowed, the model exhibits a multiple stationary states regime, which can be related to a self-regulation mechanism of the active transport in biological systems.
Collapse
Affiliation(s)
- G Weissmüller
- Centro Brasileiro de Rua Xavier Siguad 150, Rio de Janeiro, Brazil
| | | |
Collapse
|
108
|
Supramolecular membrane protein assemblies in photosynthesis and respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90039-i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
109
|
Kuan J, Saier MH. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 1993; 28:209-33. [PMID: 8325039 DOI: 10.3109/10409239309086795] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Energy transduction in mitochondria requires the transport of many specific metabolites across the inner membrane of this eukaryotic organelle. We have screened the protein sequence database for proteins homologous to the mitochondrial ATP/ADP exchange carrier, and the homologous proteins found were similarly screened to ensure that all currently sequenced members of the mitochondrial carrier family (MCF) had been identified. Thirty-seven proteins were identified, 28 of which were less than 90% identical to any other sequenced member of the MCF, and the latter proteins fell into 10 clusters or subfamilies as follows: (1) ATP/ADP exchangers of mammals, plants, algae, yeast, and fungi (11 members); (2) a bovine oxoglutarate/malate exchanger (one member); (3) mammalian uncoupling carriers (five members); (4) yeast and mammalian phosphate carriers (three members); (5) MRS proteins that suppress mitochondrial splicing defects in Saccharomyces cerevisiae (two members); (6) a putative peroxysomal carrier of Candida boidinii; (7) a putative solute carrier from the protozoan, Oxytricha fallax; (8) a putative solute carrier from S. cerevisiae; (9) a putative solute carrier from Zea mays, and (10) two putative solute carriers from the mammalian thyroid gland. The specificities of proteins in clusters 5 to 10 are not known. A multiple alignment and an evolutionary tree of the 28 selected members of the MCF were constructed, thus defining the conserved residues and the phylogenetic relationships of the proteins. Hydropathy plots of the homologous regions were determined and averaged, and the average hydropathy plots were evaluated for sequence similarity. These analyses revealed that the six transmembrane spanners exhibited varying degrees of sequence conservation and hydrophilicity. These spanners, and immediately adjacent hydrophilic loop regions, were more highly conserved than other regions of these proteins. All members of the MCF appear to consist of a tripartite structure with each of the three repeated segments being about 100 residues in length. Each repeat contains two transmembrane spanners, the first being more hydrophobic with conserved glycyl and prolyl residues, the second, preceded by a highly conserved glycyl residue, being more hydrophilic with largely conserved hydrophilic residues in certain positions. Five of the six spanners are followed by the largely conserved sequence (D/E)-Hy (K/R)[- = any residue; Hy = a hydrophobic residue]. Based on both intracluster and intercluster statistical comparisons, repeats 1, 2, and 3 are homologous, but repeats 1 are more similar to each other than they are to repeats 2 or 3 or repeats 2 or 3 are to each other.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Kuan
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
110
|
Ormö M, Persson B, Rydström J. Correlation between active form and dimeric structure of mitochondrial nicotinamide nucleotide transhydrogenase from beef heart. J Bioenerg Biomembr 1992; 24:611-5. [PMID: 1459991 DOI: 10.1007/bf00762353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The active form of purified mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated by crosslinking with dimethylsuberimidate and SDS-PAGE, with or without pretreatment with the inactivating detergent Triton X-100. In the absence of detergent, crosslinked isomers of the dimeric form of 208-235 kDa were obtained. Addition of detergent led to the simultaneous loss of the dimers and the bulk of the activity. Removal of the detergent led to a partial restoration of both activity and the dimeric forms. The results suggest that the active form is a dimer, and that the detergent-dependent conversion to the largely inactive monomer is reversible. It is proposed that the mechanism of inactivation of transhydrogenase by Triton X-100 involves a disruption of essential hydrophobic interactions between the membrane-spanning regions of the monomers.
Collapse
Affiliation(s)
- M Ormö
- Department of Molecular Biology, University of Stockholm, Sweden
| | | | | |
Collapse
|
111
|
Debiec H, Lorenc R, Ronco PM. Reconstitution and characterization of a Na+/Pi co-transporter protein from rabbit kidney brush-border membranes. Biochem J 1992; 286 ( Pt 1):97-102. [PMID: 1520289 PMCID: PMC1133023 DOI: 10.1042/bj2860097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A protein with Na+/Pi co-transporter activity has been extracted from rabbit brush-border membranes with chloroform/methanol and purified by hydroxyapatite chromatography. The protein has been incorporated by the dilution method into liposomes formed from different types and ratios of lipids. The greatest reconstitution has been achieved into liposomes prepared from cholesterol (20%), phosphatidylcholine (20%), phosphatidylethanolamine (30%) and phosphatidylserine (30%) (CH/PC/PE/PS). Pi uptake by these proteoliposomes had the following characteristics: (i) the initial rate was markedly greater in the presence of an inwardly directed Na+ gradient (600 pmol/10 s per mg) than with a K+ gradient (65 pmol/10 s per mg); (ii) maximal uptake was increased 8-fold above the equilibrium value ('overshoot') when a Na+ gradient was applied; (iii) Pi was not merely bound to proteoliposomes but was transported intravesicularly; and (iv) Na(+)-dependent Pi uptake was sensitive to the known phosphate transport inhibitors. This first successful attempt of reconstitution of Na+/Pi transport activity into proteoliposomes led us to isolate and characterize physico-chemically the protein responsible. Its isoelectric point was about 5.8, and urea/SDS gel electrophoresis revealed a broad band of molecular mass ranging from 63 to 66 kDa under both reducing and non-reducing conditions. In the native form, the molecular mass analysed by gel filtration was estimated to be 170 +/- 10 kDa, suggesting that the protein is a polymer, probably stabilized by hydrophobic bonds. Endoglycosidase F treatment decreased the molecular mass to approx. 50 kDa. It is postulated that this acidic glycoprotein might represent a subunit of the intact Na+/Pi co-transporter from rabbit kidney brush-border membranes.
Collapse
Affiliation(s)
- H Debiec
- INSERM U.64, Hôpital Tenon, Paris, France
| | | | | |
Collapse
|
112
|
Louvi A, Tsitilou SG. A cDNA clone encoding the ADP/ATP translocase of Drosophila melanogaster shows a high degree of similarity with the mammalian ADP/ATP translocases. J Mol Evol 1992; 35:44-50. [PMID: 1387687 DOI: 10.1007/bf00160259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A complementary DNA clone encoding the ADP/ATP translocase in Drosophila melanogaster has been identified. It has been shown by sequence analysis to contain a single open reading frame that encodes a polypeptide 297 amino acids long. This polypeptide shows extensive similarities to the known eukaryotic translocase polypeptides, the similarity being greatest (up to 80% identity) to the mammalian ADP/ATP translocases. In situ hybridization to polytene chromosomes of D. melanogaster with the sequence characterized in this study showed localization at a single site on the X chromosome at 9E. DNA transfer hybridization experiments suggest that more than one gene coding for the ADP/ATP translocase is present in the D. melanogaster genome.
Collapse
Affiliation(s)
- A Louvi
- Department of Biochemistry, Cell and Molecular Biology and Genetics, University of Athens, Panepistimiopolis, Greece
| | | |
Collapse
|
113
|
Stepien G, Torroni A, Chung A, Hodge J, Wallace D. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42082-0] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
114
|
SCHUBERT DIETER, HUBER ELFRIEDE, LINDENTHAL SABINE, MULZER KARLHEINZ, SCHUCK PETER. The relationships between the oligomeric structure and the functions of human erythrocyte band 3 protein: the functional unit for the binding of ankyrin, hemoglobin and aldolase and for anion transport. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-444-89547-9.50025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
115
|
|
116
|
Emmermann M, Braun HP, Schmitz UK. The ADP/ATP translocator from potato has a long amino-terminal extension. Curr Genet 1991; 20:405-10. [PMID: 1807831 DOI: 10.1007/bf00317069] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ADP/ATP translocator is an abundant protein of the mitochondrial inner membrane, which in fungi and mammals is synthesized without a presequence. Here we report that the translocator from potato has an amino-terminal extension which may function in mitochondrial targeting. Several cDNA clones encoding the nucleotide sequence of the ADP/ATP translocator have been isolated from potato leaf and tuber cDNA libraries constructed in lambda phages. Only one class of cDNA clones was found but possibly different translocator genes are expressed in other tissues. High levels of transcripts for the translocator are found in all tissues analysed. Sequence determination of the complete insert of one of the clones reveals a long open reading frame of 1158 bp encoding a protein of 386 amino acids corresponding to a calculated molecular weight of 42 kDa. In contrast, the ADP/ATP translocator proteins from fungi and mammals are significantly smaller. Comparison of the Neurospora translocator with the potato protein shows about 75% sequence homology, being confined to the region after amino acid 85 of the potato polypeptide. Antibodies directed against the fungal translocator recognize a protein of 30 kDa in the inner membrane of potato mitochondria, suggesting that the mature protein has a similar size as the translocators from fungi and mammals. Thus, the additional segment of the potato ADP/ATP translocator forms an amino-terminal extension which may be involved in the import of the protein into plant mitochondria.
Collapse
Affiliation(s)
- M Emmermann
- Institut für Genbiologische Forschung Berlin GmbH, Federal Republic of Germany
| | | | | |
Collapse
|
117
|
Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98470-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
118
|
Lindenthal S, Schubert D. Monomeric erythrocyte band 3 protein transports anions. Proc Natl Acad Sci U S A 1991; 88:6540-4. [PMID: 1862082 PMCID: PMC52122 DOI: 10.1073/pnas.88.15.6540] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anion transport system of the human erythrocyte membrane was reconstituted in egg phosphatidylcholine membranes by using either the unmodified transport protein, band 3, or covalently crosslinked band 3 dimers. Unilamellar vesicles of a diameter of 32 +/- 3 nm were then isolated from the sample by passage through a French press and subsequent gel filtration. According to sedimentation equilibrium measurements, around 85% of the vesicles were devoid of protein. The remaining 15% contained either a single band 3 monomer or, when crosslinked band 3 protein was used, a single band 3 dimer. Vesicles containing either single monomers or single dimers showed a rapid, inhibitor-sensitive sulfate efflux, and the turnover numbers of band 3 for the inhibitor-sensitive flux component were identical in both systems. This shows that monomeric band 3 protein is able to transport anions and that dimerization of the protein does not change its transport activity.
Collapse
Affiliation(s)
- S Lindenthal
- Max-Planck-Institute of Biophysics, Johann Wolfgang Goethe University, Frankfurt am Main, Federal Republic of Germany
| | | |
Collapse
|
119
|
Sluse FE, Evens A, Dierks T, Duyckaerts C, Sluse-Goffart CM, Krämer R. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:329-38. [PMID: 2065061 DOI: 10.1016/s0005-2728(05)80128-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The homologous exchange of external [14C] aspartate/internal aspartate catalyzed by the aspartate/glutamate carrier of rat heart mitochondria was investigated using aspartate-loaded, glutamate-depleted mitochondria. An inhibitor-stop technique was developed for kinetic studies by applying pyridoxal phosphate. Direct initial rate determinations from the linear phase of [14C] aspartate uptake were insufficiently accurate at high external and/or low internal substrate concentrations. Therefore, the full time-course of [14C] aspartate uptake until reaching isotope equilibrium was fitted by a single exponential function and was used to calculate reliable initial steady-state rates. This method was applied in bisubstrate analyses of the antiport reaction for different external and internal aspartate concentrations. The kinetic patterns obtained in double reciprocal plots showed straight lines converging on the abscissa. This result is consistent with a sequential antiport mechanism. It implies the existence of a catalytic ternary complex that is formed by the translocator and substrate molecules bound from both sides of the membrane. The Km values for aspartate were clearly different for the external and the internal sides of the membrane, 216 +/- 23 microM and 2.4 +/- 0.5 mM, respectively. These values indicated a definite transmembrane asymmetry of the carrier. The same asymmetry became evident when investigating the isolated protein from bovine heart mitochondria after reconstitution into liposomes. In this case the Km values for external and internal aspartate were determined to be 123 +/- 11 microM and 2.8 +/- 0.6 mM, respectively. This comparison demonstrates a right-side out orientation of the carrier after insertion into liposomal membranes. The sequential transport mechanism of the aspartate/glutamate carrier, elucidated both in proteoliposomes and in mitochondria, also seems to be a common characteristic of other mitochondrial antiport carriers.
Collapse
Affiliation(s)
- F E Sluse
- Laboratoire de Bioénergétique, Université de Liège, Belgium
| | | | | | | | | | | |
Collapse
|
120
|
Affiliation(s)
- P F Knowles
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | |
Collapse
|
121
|
Abstract
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.
Collapse
Affiliation(s)
- P Plenge
- Psychochemistry Institute, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
122
|
Abstract
The state of intracellular water has been a matter of controversy for a long time for two reasons. First, experiments have often given conflicting results. Second, hitherto, there have been no plausible grounds for assuming that intracellular water should be significantly different from bulk water. A collective behavior of water molecules is suggested here as a thermodynamically inevitable mechanism for generation of appreciable zones of abnormal water. At a highly charged surface, water molecules move together, generating a zone of water perhaps 6 nm thick, which is weakly hydrogen bonded, fluid, and reactive and selectively accumulates small cations, multivalent anions, and hydrophobic solutes. At a hydrophobic surface, molecules move apart and local water becomes strongly bonded, inert, and viscous and accumulates large cations, univalent anions, and compatible solutes. Proteins and many other biopolymers have patchy surfaces which therefore induce, by the two mechanisms described, patchy interfacial water structures, which extended appreciable distances from the surface. The reason for many conflicting experimental results now becomes apparent. Average values of properties of water measured in gels, cells, or solutions of proteins are often not very different from the same properties of normal water, giving no indication that they are averages of extreme values. To detect the operation of this phenomenon, it is necessary to probe selectively a single abnormal population. Examples of such experiments are given. It is shown that this collective behavior of water molecules amounts to a considerable biological force, which can be equivalent to a pressure of 1,000 atm (1.013 x 10(5) kPa). It is suggested that cells selectively accumulate K+ ions and compatible solutes to avoid extremes of water structure in their aqueous compartments, but that cation pumps and other enzymes exploit the different solvent properties and reactivities of water to perform work of transport or synthesis.
Collapse
Affiliation(s)
- P M Wiggins
- Department of Medicine, University of Auckland School of Medicine, New Zealand
| |
Collapse
|
123
|
Dierks T, Salentin A, Krämer R. Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a performed channel as a structural requirement of carrier-mediated transport. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1028:281-8. [PMID: 1699601 DOI: 10.1016/0005-2736(90)90177-p] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Upon modification of the reconstituted aspartate/glutamate carrier by mercury reagents the antiporter was converted into a unidirectional efflux carrier (Dierks, T., Salentin, A., Heberger, C. and Krämer, R. (1990) Biochim. Biophys. Acta 1028, 268). In addition to this basic change in the mechanism, the mercurials, reacting with exofacial cysteines, also affected the internal binding site of the carrier leading to an unmeasurable high Km and to a drastically reduced substrate specificity. The spectrum of efflux substrates comprised small anions from chloride to glutamate, but not cationic amino acids and ATP, hence resembling pore-like properties. However, in the efflux state important carrier properties were also observed. The activation energy (86 kJ/mol) was as high as for the antiport. Furthermore, efflux was inhibited by the presence of external substrate. This trans-inhibition strongly suggests that the external binding site of the carrier, prerequisite in the antiport mechanism, also is involved in conformational transitions during efflux function. However, antiport no longer is catalyzed after switching to the efflux state. Reversion of the induced efflux carrier to the antiport state was achieved using dithioerythritol, thereby further restoring substrate specificity and saturation kinetics. A model for antiport-efflux interconversion is presented suggesting that two reactive cysteines have to be modified in order to uncouple the inward and outward directed component of antiport. The pore-type characteristics of efflux are taken as evidence that a channel-like structure determines the selectivity of unidirectional transport. This intrinsic channel of the protein then is required for substrate translocation also during antiport function.
Collapse
Affiliation(s)
- T Dierks
- Institut für Biotechnologie, Forschungszentrum Jülich, F.R.G
| | | | | |
Collapse
|
124
|
Abstract
General principles of membrane function have been elucidated by the study of lactic acid bacteria. In this review, the operation and function of ion pumps, secondary transport systems and solute ATPases will be discussed. Despite their differences in kinetics and mechanisms between the transport systems, structural similarities can be recognized among these proteins irrespective of whether they originate from prokaryotes, lower or higher eukaryotes.
Collapse
Affiliation(s)
- P C Maloney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
125
|
Ku DH, Kagan J, Chen ST, Chang CD, Baserga R, Wurzel J. The human fibroblast adenine nucleotide translocator gene. Molecular cloning and sequence. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46187-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
126
|
Abstract
Combined information from biochemical and molecular biological experiments reveals a consistent structural rhythm that underlies the construction of all membrane carriers and perhaps all transport systems. Biochemical work shows that while some carrier proteins function as monomers, others operate as dimers. But despite this variation, all examples can be modelled as having a pair of membrane-embedded domains, each of which contains an array of (about) six transmembrane helical elements. This pattern is best documented among membrane carriers, where the minimal functional unit is known in a reasonable number of cases. Nevertheless, the same conclusion is likely to characterize other solute transporters. These unexpected correlations suggest that all membrane carriers, including those that take part in "energy coupling", have a uniform structural design on which is superimposed a variety of kinetic and biochemical mechanisms.
Collapse
Affiliation(s)
- P C Maloney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
127
|
Maloney PC, Ambudkar SV, Anatharam V, Sonna LA, Varadhachary A. Anion-exchange mechanisms in bacteria. Microbiol Rev 1990; 54:1-17. [PMID: 2181257 PMCID: PMC372756 DOI: 10.1128/mr.54.1.1-17.1990] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article discusses the physiological, biochemical, and molecular properties of bacterial anion-exchange reactions, with a particular focus on a family of phosphate (Pi)-linked antiporters that accept as their primary substrates sugar phosphates such as glucose 6-phosphate (G6P), mannose 6-phosphate, or glycerol 3-phosphate. Pi-linked antiporters may be found in both gram-positive and gram-negative cells. As their name suggests, these exchange proteins accept both inorganic and organic phosphates, but the two classes of substrate interact very differently with the protein. Thus, Pi is always accepted with a relatively low affinity, and when it participates in exchange, it is always taken as the monovalent anion. By contrast, when the high-affinity organic phosphates are used, these same systems fail to discriminate between monovalent and divalent forms. Tests of heterologous exchange (e.g., Pi: G6P) indicate that these proteins have a bifunctional active site that accepts a pair of negative charges, whether as two monovalent anions or as a single divalent anion. For this reason, exchange stoichiometry moves between limits of 2:1 and 2:2, according to the ratio of mono- and divalent substrates at either membrane surface. Since G6P has a pK2 within the physiological range (pK of 6.1), this predicts a novel reaction sequence in vivo because internal pH is more alkaline than external pH. Accordingly, one expects an asymmetric exchange as two monovalent G6P anions from the relatively acidic exterior move against a single divalent G6P from the alkaline interior. In this way an otherwise futile self-exchange of G6P can be biased towards a net inward flux driven (indirectly) by the pH gradient. Despite the biochemical complexity exhibited by Pi-linked antiporters, they resemble all other secondary carriers at a molecular level and show a likely topology in which two sets of six transmembrane alpha-helices are connected by a central hydrophilic loop. Speculations on the derivation of this common form suggest a limited number of structural models to accommodate such proteins. Three such models are presented.
Collapse
Affiliation(s)
- P C Maloney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
128
|
Jacquin T, Gillet B, Fortin G, Pasquier C, Béloeil JC, Champagnat J. Metabolic action of N-methyl-D-aspartate in newborn rat brain ex vivo: 31p magnetic resonance spectroscopy. Brain Res 1989; 497:296-304. [PMID: 2684343 DOI: 10.1016/0006-8993(89)90275-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-methyl-D-aspartate (NMDA) is an agonist used to identify neuronal receptive sites for dicarboxylic amino acid neurotransmitters; NMDA receptors are implicated in neuronal damage of ischemic or hypoglycemic origin in newborns although involved mechanisms remain to be identified. In the present study, 31P magnetic resonance spectroscopy with fast (6/min) data acquisition was used in newborn rat brain slices to measure changes of intracellular phosphocreatine and nucleotide triphosphate levels following extracellular NMDA applications. The rapid exhaustion of phosphocreatine stores in 50% of the total population of brain cells was induced in all cases by application of NMDA (30-45 s, 25-100 mM). It was not reproduced by other excitatory agents: potassium ions (24.6 mM, 4 min), isobutylxanthine (1mM), muscarine (10 mM), serotonin (0.1 mM) or substance P (10 microM). Such an effect of NMDA was not modified after tetrodotoxin (1 microM) and was reduced by extracellular 2-amino-5-phosphonovalerate (50 microM) or magnesium ions (2.2 mM). However it did develop during NMDA-induce neuronal excitations and was reversible within 10-30 min. This action of NMDA was followed by an irreversible decrease of phosphorus metabolites if mitochondrial creatine kinase and adenosine triphosphatase were decoupled by atractyloside (50 microM). Experiments revealed a link between selective NMDA action at neuronal plasma membranes, neurotoxicity and energy production by mitochondria.
Collapse
Affiliation(s)
- T Jacquin
- Laboratoire de Physiologie Nerveuse C.N.R.S., Gif-sur-Yvette France
| | | | | | | | | | | |
Collapse
|
129
|
Yoshimura A, Kuwazuru Y, Sumizawa T, Ikeda S, Ichikawa M, Usagawa T, Akiyama S. Biosynthesis, processing and half-life of P-glycoprotein in a human multidrug-resistant KB cell. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:307-14. [PMID: 2570611 DOI: 10.1016/0304-4165(89)90089-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biosynthesis, processing, and half-life of the drug efflux pump, P-glycoprotein, were studied in human multidrug-resistant KB (KB-C2) cells selected for resistance to colchicine. An antibody directed against a synthetic oligopeptide corresponding to the amino-acid sequence (Glu-393-Lys-408) of P-glycoprotein from human mdr1 cDNA was prepared in rabbits. With immunoblotting and immunoprecipitation, we detected a 140-170 kDa protein in KB-C2 cells but not in parental sensitive KB cells. KB-C2 cells made a 125 kDa precursor that was slowly processed (t1/2 = 45 min) to the mature form of 140-150 kDa. The processing rate of P-glycoprotein was slower than that of low-density lipoprotein receptor. We detected another 160-180 kDa smear band, which might be a completely denatured form of P-glycoprotein. With immunoblotting, a minor band of high molecular mass (greater than 500 kDa) was also detected and this form increased after the cells were treated with chemical cross-linker, 1,5-difluoro-2,4-dinitrobenzene. The half-life of P-glycoprotein was long; no significant loss of P-glycoprotein was observed within 24 h after synthesis. Cells treated with tunicamycin produced a 120 kDa form of P-glycoprotein which was no longer processed but showed stability similar to that of the mature 140-150 kDa form. Agents that reverse multidrug resistance, phorbol ester and transport substrate did not affect the stability of P-glycoprotein.
Collapse
Affiliation(s)
- A Yoshimura
- Cancer Research Institute, Faculty of Medicine, Kagoshima University, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Li K, Warner CK, Hodge JA, Minoshima S, Kudoh J, Fukuyama R, Maekawa M, Shimizu Y, Shimizu N, Wallace DC. A Human Muscle Adenine Nucleotide Translocator Gene Has Four Exons, Is Located on Chromosome 4, and Is Differentially Expressed. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71632-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
131
|
Scheiner-Bobis G, Esmann M, Schoner W. Shift to the Na+ form of Na+/K+-transporting ATPase due to modification of the low-affinity ATP-binding site by Co(NH3)4ATP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:173-8. [PMID: 2473903 DOI: 10.1111/j.1432-1033.1989.tb14910.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Inactivation of purified Na+/K+-transporting ATPase by the MgATP complex analogue Co(NH3)4ATP, which binds to the low-affinity ATP-binding site, results in the concomitant inhibition of the K+-activated p-nitrophenylphosphatase, which is considered to be a partial reaction catalyzed by the enzyme in the E2 conformational state. 2. Complete inactivation of Na+/K+-transporting ATPase by Co(NH3)4ATP does not alter the ADP/ATP exchange reaction which is considered to be part of the catalytic activity in the E1 conformation. 3. The enzyme binds eosin at the high-affinity ATP-binding site as measured by the change in eosin fluorescence. Eosin binding to the Co(NH3)4ATP-inactivated enzyme is, in contrast to the untreated enzyme, not stimulated by Na1. Inactivation by Co(NH3)4ATP increased the half-maximal opposing effect of K+ on eosin binding from 1.1 mM in the control to 43.2 mM in the almost completely inactive enzyme. No eosin fluorescence changes were observed when the Co(NH3)4ATP-inactivated enzyme was treated subsequently with CrATP. This MgATP complex analogue forms a stable complex at the high-affinity ATP-binding site. CrATP thus abolishes eosin binding. 4. It is concluded, that Co(NH3)4ATP interacts with Na+/K+-transporting ATPase in the E2 conformation and arrests it there. This affects eosin binding to the high-affinity ATP-binding site, since the K+ sensitivity is lost. A possible interpretation of these differing effects of Co(NH3)4ATP on partial reactions of Na+/K+-transporting ATPase is that the sodium pump works as an (alpha,beta)2 diprotomer. It is likely that the arrest of one alpha,beta promoter in the E2 conformational state by occupancy of the low-affinity ATP-binding site with Co(NH3)4ATP induces the Na+ form (E1 form) in the corresponding alpha,beta promoter, as is indicated by the unaffected ADP/ATP exchange and the response of the eosin fluorescence on Na+ and K+.
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen
| | | | | |
Collapse
|
132
|
Krämer R, Palmieri F. Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:1-23. [PMID: 2647142 DOI: 10.1016/s0005-2728(89)80160-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R Krämer
- Institute of Physical Biochemistry, University of Munich, F.R.G
| | | |
Collapse
|
133
|
Abstract
The ADP/ATP carrier (AAC) of mitochondria is a functionally central and characteristic component of the eukaryotic cell. By linking the thermodynamically divergent metabolites in the intra- and extramitochondrial compartments, it had to evolve with the emergence of the eukaryotic cell. Because of a number of unique properties, the AAC provided advanced insight into the molecular basis of solute transport through biomembrane carriers. With highly specific and unusually large substrates, ADP and ATP, and with high-affinity inhibitors binding selectively either from the inside or the outside, the first molecular demonstration of the single-binding-center gated pore mechanism was made. This framework can only partially be interpreted with the available yet rapidly increasing structural information on the AAC. The primary structure, first established for the AAC from beef heart mitochondria, showed a relatively wide distribution of hydrophilic residues which permits assignment of only two hydrophobic transmembrane stretches. However, a striking tripartition of the primary structure into about three 100-residue-long domains allows a more significant assignment of transmembrane elements. With alignment of these three domains for maximum conservation of structurally critical residues, each domain can be assigned to have two transmembrane alpha elements between 18 and 22 residues long. The interdomain homology between these alpha regions is low. The central regions flanked by these helices contain most of the polar residues and are significantly interdomain conserved. With lysine probes the central regions are assigned to the matrix side (m-side) and the two connecting regions as well as C and N termini to the cytosolic side (c-side). Out of the central regions a loop is assumed to protrude through the membrane, probably for lining the translocation channel. This localization of a major protein mass within the membrane agrees with hydrodynamic evidence, the carrier being an oblate ellipsoid with only about 50 A along the short axis. In accordance, the loops of domains 2 and 3 are affinity labeled by azido-ADP or azido-atractylate. Primary structures of AAC from other sources (fungi, plants) also exhibit the tripartition. The interdomain conserved residues are also interspecies conserved, thus showing that they are essential. These repeat domains have probably evolved from a common gene coding for about 100 residues. Isoforms of the AAC exist, as shown by primary structure analysis of human cDNA libraries from different organs. Three different isoforms are identified in human organs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Klingenberg
- Institut für Physikalische Biochemie, Universität München, Federal Republic of Germany
| |
Collapse
|
134
|
Detergent structure and Associated Lipid as Determinants in the Stabilization of Solubilized Ca2+-ATPase from Sarcoplasmic Reticulum. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83677-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
135
|
Andersen JP. Monomer-oligomer equilibrium of sarcoplasmic reticulum Ca-ATPase and the role of subunit interaction in the Ca2+ pump mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:47-72. [PMID: 2535786 DOI: 10.1016/0304-4157(89)90003-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J P Andersen
- Danish Biotechnology Center For Research In Membrane Transport Proteins, Aarhus University
| |
Collapse
|
136
|
Abstract
We propose a spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon). The structure is based on an analysis of data on the interaction between tricarboxylic acid cycle enzymes and the mitochondrial inner membrane, as well as on data on enzyme-enzyme interactions. The alpha-ketoglutarate dehydrogenase complex, adsorbed along one of the 3-fold symmetry axes of the mitochondrial inner membrane, plays a key role in formation of the metabolon. In the interaction with the membrane, two association sites of the alpha-ketoglutarate dehydrogenase complex participate, placed on opposite sides of the complex. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleoside-diphosphate kinase. Succinate dehydrogenase, which is the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of the metabolon on the membrane. The molecular mass of the complex (without regard to succinate dehydrogenase) is 8 x 10(6) Da. The metabolon symmetry corresponds to the D3 point symmetry group.
Collapse
Affiliation(s)
- A E Lyubarev
- All-Union Vitamin Research Institute, Moscow, U.S.S.R
| | | |
Collapse
|
137
|
Salhany JM, Sloan RL. Partial covalent labeling with pyridoxal 5'-phosphate induces bis(sulfosuccinimidyl)suberate crosslinking of band 3 protein tetramers in intact human red blood cells. Biochem Biophys Res Commun 1988; 156:1215-22. [PMID: 3190700 DOI: 10.1016/s0006-291x(88)80762-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Partial covalent labeling of band 3 protein lysines with pyridoxal 5'-phosphate (a substrate and affinity probe) changes the bis(sulfosuccinimidyl)suberate crosslinking pattern of band 3 in intact red cells from a mixture of dimers and tetramers to all tetramers as the exclusive crosslinked product. This is the first demonstration of band 3 crosslinkage to the tetrameric level within membranes of intact red cells. The possible implications of the ligand-induced change in the band 3 crosslinking pattern are discussed.
Collapse
Affiliation(s)
- J M Salhany
- Veterans Administration Medical Center, Omaha, Nebraska
| | | |
Collapse
|
138
|
Lê Quôc K, Lê Quôc D. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 1988; 265:249-57. [PMID: 2844116 DOI: 10.1016/0003-9861(88)90125-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Compounds which induce calcium efflux from calcium-loaded mitochondria generally provoke membrane leakiness. The involvement of the ADP/ATP carrier in modification of mitochondrial membrane properties was studied. The addition of impermeant inhibitors of the ADP/ATP carrier, namely carboxyatractylate, palmitoyl coenzyme A (in the absence of carnitine), and pyridoxal 5-phosphate, to calcium-loaded mitochondria triggered the release of accumulated calcium, the leakage of endogenous ADP, and the swelling of mitochondria. Permeant ligands, such as bongkrekic acid or ADP, showed no damaging effect on membrane permeability; in fact, they impeded the membrane perturbation which was induced by the three impermeant effectors. In addition, both bongkrekic acid and ADP were able to cancel the calcium loss and swelling resulting from the oxidation of intramitochondrial pyridine nucleotides by acetoacetate. In acetoacetate-treated mitochondria, the ADP/ATP carrier was shown to be mainly in a c-state conformation (i.e., the nucleotide binding site had an external orientation). It was concluded that induction of membrane leakiness by calcium ions depends on the conformational state of the adenine nucleotide carrier. The ability of intramitochondrial calcium ions to modify membrane properties is determined by the orientation of the nucleotide binding site. Only the c-state conformation allows membrane destabilization. Consequently, all compounds which stabilize the ADP/ATP carrier in the c-state conformation will have a deleterious effect on calcium-loaded mitochondria.
Collapse
Affiliation(s)
- K Lê Quôc
- Laboratoire de Biochimie, UA CNRS 040531, UFR Sciences et Techniques, Besançon, France
| | | |
Collapse
|
139
|
Smagula C, Douglas MG. Mitochondrial import of the ADP/ATP carrier protein in Saccharomyces cerevisiae. Sequences required for receptor binding and membrane translocation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68711-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
140
|
Desai SD, Chetty KG, Pradhan DS. Dimethyl sulfoxide elicited increase in cytochrome oxidase activity in rat liver mitochondria in vivo and in vitro. Chem Biol Interact 1988; 66:147-55. [PMID: 2838186 DOI: 10.1016/0009-2797(88)90047-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A single intraperitoneal injection of dimethyl sulfoxide (275 mg/100 g body wt.) to rats stimulated cytochrome oxidase activity in liver mitochondria 2-5-fold. The enzyme activity remained at this level for as long as 5 days post-injection. There was however only 10.5% increase in the content of cytochromes a and a3 (as determined spectrophotometrically) in the same period in response to DMSO injection. The addition of either DMSO or dimethyl sulfate (a metabolite of DMSO) to isolated liver mitochondria also caused 2-3-fold increase in cytochrome oxidase activity. The results indicate that enhancement in cytochrome oxidase activity in liver mitochondria after administration of DMSO to rats is on account of activation of cytochrome oxidase caused by structural alterations in mitochondrial membranes rather than de novo synthesis of cytochrome oxidase.
Collapse
Affiliation(s)
- S D Desai
- Biochemistry Division, Bhabha Atomic Research Centre, Bombay, India
| | | | | |
Collapse
|
141
|
Schubert D. The relationships between oligomeric structure and function of band 3 protein from human erythrocyte membranes: present knowledge and suggestions for further experiments. Mol Aspects Med 1988; 10:233-7. [PMID: 2976450 DOI: 10.1016/0098-2997(88)90009-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- D Schubert
- Max-Plank-Institut für Biophysik, Frankfurt am Main, F.R.G
| |
Collapse
|
142
|
Persson B, Ahnström G, Rydström J. Energy-linked nicotinamide nucleotide transhydrogenase: hydrodynamic properties and active form of purified and membrane-bound mitochondrial transhydrogenase from beef heart. Arch Biochem Biophys 1987; 259:341-9. [PMID: 3426231 DOI: 10.1016/0003-9861(87)90500-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated with respect to minimal assembly of the purified enzyme and of the enzyme in the mitochondrial inner membrane. Studies of the hydrodynamic properties of the purified enzyme in the presence of 0.3% Triton X-100 allowed determination of the Stokes radius, sedimentation constant, partial specific volume, frictional ratio, and molecular weight. Under these conditions transhydrogenase existed as an inactive monomer, suggesting that monomerization may be accompanied by inactivation. Radiation inactivation was used to determine the functional molecular size of purified detergent-dispersed transhydrogenase and transhydrogenase in beef heart submitochondrial particles. Under these conditions the catalytic activity of both the purified and the membrane-bound enzyme was found to be catalyzed by a dimeric form of the enzyme. These results suggest for the first time that the minimal functional assembly of detergent-dispersed as well as membrane-bound transhydrogenase is a dimer, which is not functionally associated with, for example, complex I or ATPase. In addition, the results are consistent with the possibility that the two subunits of transhydrogenase are catalytically active in an alternating fashion according to a previously proposed half-of-the-sites reactivity model.
Collapse
Affiliation(s)
- B Persson
- Department of Biochemistry, University of Stockholm, Sweden
| | | | | |
Collapse
|
143
|
Brunori M, Antonini G, Malatesta F, Sarti P, Wilson MT. Cytochrome-c oxidase. Subunit structure and proton pumping. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 169:1-8. [PMID: 2445564 DOI: 10.1111/j.1432-1033.1987.tb13572.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article reviews the significance of the subunit structure of cytochrome-c oxidase in proton pumping and in particular summarizes available evidences for or against a role of subunit III in the control of this important function of the enzyme.
Collapse
Affiliation(s)
- M Brunori
- Department of Biochemical Sciences, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
144
|
Neckelmann N, Li K, Wade RP, Shuster R, Wallace DC. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc Natl Acad Sci U S A 1987; 84:7580-4. [PMID: 2823266 PMCID: PMC299343 DOI: 10.1073/pnas.84.21.7580] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have characterized a 1400-nucleotide cDNA for the human skeletal muscle ADP/ATP translocator. The deduced amino acid sequence is 94% homologous to the beef heart ADP/ATP translocator protein and contains only a single additional amino-terminal methionine. This implies that the human translocator lacks an amino-terminal targeting peptide, a conclusion substantiated by measuring the molecular weight of the protein synthesized in vitro. A 1400-nucleotide transcript encoding the skeletal muscle translocator was detected on blots of total RNA from human heart, kidney, skeletal muscle, and HeLa cells by hybridization with oligonucleotide probes homologous to the coding region and 3' noncoding region of the cDNA. However, the level of this mRNA varied substantially among tissues. Comparison of our skeletal muscle translocator sequence with that of a recently published human fibroblast translocator cognate revealed that the two proteins are 88% identical and diverged about 275 million years ago. Hence, tissues vary both in the level of expression of individual translocator genes and in differential expression of cognate translocator genes. Comparison of the base substitution rates of the ADP/ATP translocator and the oxidative phosphorylation genes encoded by mitochondrial DNA revealed that the mitochondrial DNA genes fix 10 times more synonymous substitutions and 12 times more replacement substitutions; yet, these nuclear and cytoplasmic respiration genes experience comparable evolutionary constraints. This suggests that the mitochondrial DNA genes are highly prone to deleterious mutations.
Collapse
Affiliation(s)
- N Neckelmann
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
145
|
Napier RM, East JM, Lee AG. State of aggregation of the (Ca2+ + Mg2+)-ATPase studied using chemical cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:374-80. [PMID: 2820493 DOI: 10.1016/0005-2736(87)90228-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have studied cross-linking of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum and in reconstituted systems, using glutaraldehyde, cupric-1,10-phenanthroline and 3,3'-dithiobis (sulphosuccinimidylpropionate). All reagents produce extensive cross-linking, forming aggregates too large to enter polyacrylamide gels. Only traces of cross-linked dimeric ATPase species are formed. Saturation transfer electron spin resonance spectra of spin-labelled sarcoplasmic reticulum cross-linked with glutaraldehyde are also consistent with the formation of extensively cross-linked aggregates in the membrane. The results are interpreted in terms of dynamic clusters of ATPase molecules in the membrane, probably in the form of rows of ATPase molecules.
Collapse
Affiliation(s)
- R M Napier
- Department of Biochemistry, University of Southampton, UK
| | | | | |
Collapse
|
146
|
Gasnier B, Ellory JC, Henry JP. Functional molecular mass of binding sites for [3H]dihydrotetrabenazine and [3H]reserpine and of dopamine beta-hydroxylase and cytochrome b561 from chromaffin granule membrane as determined by radiation inactivation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:73-8. [PMID: 3569299 DOI: 10.1111/j.1432-1033.1987.tb11195.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The monoamine transporter of chromaffin granule membrane has two distinct high-affinity binding sites for tetrabenazine and reserpine, which can be assayed by [3H]dihydrotetrabenazine and [3H]reserpine binding, respectively. The functional molecular mass of the components bearing these sites has been investigated by the radiation inactivation technique. The decline of [3H]dihydrotetrabenazine binding activity with increasing radiation doses followed a single exponential, from which a functional molecular mass of 68 kDa was derived for tetrabenazine binding sites. [3H]Reserpine binding activity declined in a more complex way; however, under conditions where high-affinity reserpine binding sites were specifically assayed, the decline was also exponential, corresponding to a functional molecular mass of 37 kDa for these sites. The figures obtained for high-affinity tetrabenazine and reserpine binding sites are consistent with previous values obtained by photoaffinity of tetrabenazine and serotonin binding sites, respectively. It is thus concluded that the monoamine transporter has an oligomeric structure. By the radiation inactivation technique, cytochrome b561 and dopamine beta-hydroxylase have functional molecular masses of 25 and 123 kDa, respectively. The latter value might be attributed to the dimeric form of the enzyme.
Collapse
|
147
|
Henry JP, Gasnier B, Roisin MP, Isambert MF, Scherman D. Molecular pharmacology of the monoamine transporter of the chromaffin granule membrane. Ann N Y Acad Sci 1987; 493:194-206. [PMID: 3296907 DOI: 10.1111/j.1749-6632.1987.tb27201.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
148
|
Structure of Cytochrome-c Oxidase. CURRENT TOPICS IN BIOENERGETICS - STRUCTURE, BIOGENESIS, AND ASSEMBLY OF ENERGY TRANSDUCING ENZYME SYSTEMS 1987. [DOI: 10.1016/b978-0-12-152515-6.50008-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
149
|
Kerry CJ, Kits KS, Ramsey RL, Sansom MS, Usherwood PN. Single channel kinetics of a glutamate receptor. Biophys J 1987; 51:137-44. [PMID: 2436676 PMCID: PMC1329870 DOI: 10.1016/s0006-3495(87)83318-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.
Collapse
|
150
|
Lumsden CJ. Receptors and functional linkage in membrane permeability: a quantum mechanical model. Bull Math Biol 1986; 48:545-67. [PMID: 3034365 DOI: 10.1007/bf02462323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|