101
|
Abstract
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.
Collapse
Affiliation(s)
- Toby A Ferguson
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
102
|
Gallo G. Paul Letourneau reloaded: a forward-looking retrospective. Dev Neurobiol 2011; 71:775-9. [PMID: 21805683 DOI: 10.1002/dneu.20922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
103
|
Abstract
The postsurgical period during which neurons remain without target connections (chronic axotomy) and distal nerve stumps and target muscles are denervated (chronic denervation) deleteriously affects functional recovery. An autologous nerve graft and cross-suture paradigm in Sprague Dawley rats was used to systematically and independently control time of motoneuron axotomy, denervation of distal nerve sheaths, and muscle denervation to determine relative contributions of each factor to recovery failure. Tibial (TIB) nerve was cross-sutured to common peroneal (CP) nerve via a contralateral 15 mm nerve autograft to reinnervate the tibialis anterior (TA) muscle immediately or after prolonging TIB axotomy, CP autograft denervation, or TA muscle denervation. Numbers of motoneurons that reinnervated TA muscle declined exponentially from 99 ± 15 to asymptotic mean (± SE) values of 35 ± 1, 41 ± 10, and 13 ± 5, respectively. Enlarged reinnervated motor units fully compensated for reduced motoneuron numbers after prolonged axotomy and autograft denervation, but the maximal threefold enlargement did not compensate for the severe loss of regenerating nerves through chronically denervated nerve stumps and for failure of reinnervated muscle fibers to recover from denervation atrophy. Muscle force, weight, and cross-sectional area declined. Our results demonstrate that chronic denervation of the distal stump plays a key role in reduced nerve regeneration, but the denervated muscle is also a contributing factor. That chronic Schwann cell denervation within the nerve autograft reduced regeneration less than after the denervation of both CP nerve stump and TA muscle, argues that chronic muscle denervation negatively impacts nerve regeneration.
Collapse
|
104
|
Neurons and Stromal Stem Cells as Targets for Polycation-Mediated Transfection. Bull Exp Biol Med 2011; 151:126-9. [DOI: 10.1007/s10517-011-1273-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
105
|
Liu Z, Liu H, Yang X, Xu X, Zhang W, Li Z. Effects of insulin-like growth factor-1 on expression of sensory neuropeptides in cultured dorsal root ganglion neurons in the absence or presence of glutamate. Int J Neurosci 2011; 120:698-702. [PMID: 20942583 DOI: 10.3109/00207454.2010.513463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 could influence expression of sensory neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) of the cultured DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In the present study, primary cultured DRG neurons were used to determine the effects of IGF-1 on expression of SP and CGRP of the neurons with Glu-induced excitotoxicity. The DRG neurons were dissociated and cultured for 48 hr and then exposed to Glu (0.2 mmol/L), IGF-1 (20 nmol/L), and Glu (0.2 mmol/L) plus IGF-1 (20 nmol/L) for additional 12 hr. The DRG neurons were continuously exposed to growth media as control. After that, all the above cultured DRG neurons were processed for detecting SP and CGRP expression by Western blot analysis. The expression of SP and CGRP increased significantly in primary cultured DRG neurons in the presence of IGF-1. The ability of IGF-1 on SP and CGRP expression may play a role in neurogenic inflammation or nociception.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
106
|
Oligodendrocytes as regulators of neuronal networks during early postnatal development. PLoS One 2011; 6:e19849. [PMID: 21589880 PMCID: PMC3093406 DOI: 10.1371/journal.pone.0019849] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/18/2011] [Indexed: 11/30/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development.
Collapse
|
107
|
In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 2011; 108:6282-7. [PMID: 21447717 DOI: 10.1073/pnas.1015239108] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the peripheral nervous system (PNS), damaged axons regenerate successfully, whereas axons in the CNS fail to regrow. In neurons of the dorsal root ganglia (DRG), which extend branches to both the PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal growth. How this differential growth response is regulated in vivo is only incompletely understood. Here, we combine in vivo time-lapse fluorescence microscopy with genetic manipulations in mice to reveal how the transcription factor STAT3 regulates axonal regeneration. We show that selective deletion of STAT3 in DRG neurons of STAT3-floxed mice impairs regeneration of peripheral DRG branches after a nerve cut. Further, overexpression of STAT3 induced by viral gene transfer increases outgrowth and collateral sprouting of central DRG branches after a dorsal column lesion by more than 400%. Notably, repetitive in vivo imaging of individual fluorescently labeled PNS and CNS axons reveals that STAT3 selectively regulates initiation but not later perpetuation of axonal growth. With STAT3, we thus identify a phase-specific regulator of axonal outgrowth. Activating STAT3 might provide an opportunity to "jumpstart" regeneration, and thus prime axons in the injured spinal cord for application of complementary therapies that improve axonal elongation.
Collapse
|
108
|
Jeon EJ, Xu N, Xu L, Hansen MR. Influence of central glia on spiral ganglion neuron neurite growth. Neuroscience 2011; 177:321-34. [PMID: 21241783 PMCID: PMC3057386 DOI: 10.1016/j.neuroscience.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Spiral ganglion neurons (SGNs) extend processes that interact with Schwann cells (SCs) and with oligodendrocytes (OLs) and astrocytes (ACs). We investigated the ability of these glial cells to support SGN neurite growth. In the presence of cultured ACs, OLs and SCs, SGN neurites tended to follow SCs and OLs and cross-over ACs. Most neurites initially followed the type of glial cell on which the neuronal cell body was found. To determine the influence of homogeneous populations of glia on neurite growth, SG explants were plated on cultured SCs, ACs or OLs. The number of neurites/explant extending onto SCs (463.89±16.25) was significantly greater than the number extending onto ACs (111.38±38.73) or OLs (6.75±2.21), indicating that populations of central glia inhibit SGN neurite growth. Treatment with cell-permeant cpt-cAMP or forskolin (FSK) each significantly increased the number of neurites on OLs (133.54±25.59 and 292.25±83.57, respectively). cpt-cAMP and FSK each also increased the number of neurites on ACs (213.19±36.06 and 208.64±59.25, respectively), however the difference was not significant compared with control. The neurites on ACs and OLs failed to grow radially in a well-fasciculated pattern as on SCs. In explants plated on the borders of cultured OL-SC or AC-SC groups, more neurites extended onto SCs compared with OLs and ACs. Conditioned media (CM) from OL or AC cultures did not reduce neurite length, implying that the inhibition of neurite growth by central glia is not due to soluble factors. Taken together, these results demonstrate that homogeneous populations of central glia inhibit SGN neurite growth.
Collapse
Affiliation(s)
- Eun-Ju Jeon
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
- Department of Otolaryngology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ningyong Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | - Lingjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| |
Collapse
|
109
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
110
|
Ostroumova OS, Schagina LV, Mosevitsky MI, Zakharov VV. Ion channel activity of brain abundant protein BASP1 in planar lipid bilayers. FEBS J 2010; 278:461-9. [DOI: 10.1111/j.1742-4658.2010.07967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
111
|
Xiang Y, Ding N, Xing Z, Zhang W, Liu H, Li Z. Insulin-like growth factor-1 regulates neurite outgrowth and neuronal migration from organotypic cultured dorsal root ganglion. Int J Neurosci 2010; 121:101-6. [PMID: 21110707 DOI: 10.3109/00207454.2010.535935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACT Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from neurons. Whether IGF-1 could promote neurite outgrowth and neuronal migration of dorsal root ganglion (DRG) explants in vitro remains unknown. In the present study, organotypic rat DRG explant culture model was established. Using this unique culture system, outgrowth of neurites from the peripheral nerve attached to DRG explant and migration of neurons from DRG explant to the peripheral area were quantified in the presence (5 nmol/L, 10 nmol/L, 20 nmol/L) or absence of IGF-1. The number of nerve fiber bundles extended from DRG explant increased significantly in the presence of IGF-1 (5 nmol/L, 19.25 ± 3.11, p < .05; 10 nmol/L, 20.92 ± 2.31, p < .01; 20 nmol/L, 23.00 ± 4.09, p < .001) as compared with that in the absence of IGF-1 (16.58 ± 2.94). The number of neurons migrated from DRG explant increased significantly in the presence of IGF-1 (5 nmol/L, 104.08 ± 16.70, p < .05; 10 nmol/L, 115.25 ± 13.68, p < .001; 20 nmol/L, 138.75 ± 18.05, p < .001) as compared with that in the absence of IGF-1 (90.25 ± 8.53). These data implicated that IGF-1 could promote neurite outgrowth and neuronal migration from DRG explants in vitro.
Collapse
Affiliation(s)
- Yujuan Xiang
- Faculty of Clinical Medicine, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
112
|
Ahmed Z, Read ML, Berry M, Logan A. Satellite glia not DRG neurons constitutively activate EGFR but EGFR inactivation is not correlated with axon regeneration. Neurobiol Dis 2010; 39:292-300. [DOI: 10.1016/j.nbd.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/12/2010] [Accepted: 04/26/2010] [Indexed: 01/16/2023] Open
|
113
|
Zhang HY, Zheng LF, Yi XN, Chen ZB, He ZP, Zhao D, Zhang XF, Ma ZJ. Slit1 promotes regenerative neurite outgrowth of adult dorsal root ganglion neurons in vitro via binding to the Robo receptor. J Chem Neuroanat 2010; 39:256-61. [DOI: 10.1016/j.jchemneu.2010.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 11/26/2022]
|
114
|
Denny JB. Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 2010; 4:293-304. [PMID: 18654638 DOI: 10.2174/157015906778520782] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/16/2006] [Indexed: 01/19/2023] Open
Abstract
GAP-43 is an intracellular growth-associated protein that appears to assist neuronal pathfinding and branching during development and regeneration, and may contribute to presynaptic membrane changes in the adult, leading to the phenomena of neurotransmitter release, endocytosis and synaptic vesicle recycling, long-term potentiation, spatial memory formation, and learning. GAP-43 becomes bound via palmitoylation and the presence of three basic residues to membranes of the early secretory pathway. It is then sorted onto vesicles at the late secretory pathway for fast axonal transport to the growth cone or presynaptic plasma membrane. The palmitate chains do not serve as permanent membrane anchors for GAP-43, because at steady-state most of the GAP-43 in a cell is membrane-bound but is not palmitoylated. Filopodial extension and branching take place when GAP-43 is phosphorylated at Ser-41 by protein kinase C, and this occurs following neurotrophin binding and the activation of numerous small GTPases. GAP-43 has been proposed to cluster the acidic phospholipid phosphatidylinositol 4,5-bisphosphate in plasma membrane rafts. Following GAP-43 phosphorylation, this phospholipid is released to promote local actin filament-membrane attachment. The phosphorylation also releases GAP-43 from calmodulin. The released GAP-43 may then act as a lateral stabilizer of actin filaments. N-terminal fragments of GAP-43, containing 10-20 amino acids, will activate heterotrimeric G proteins, direct GAP-43 to the membrane and lipid rafts, and cause the formation of filopodia, possibly by causing a change in membrane tension. This review will focus on new information regarding GAP-43, including its binding to membranes and its incorporation into lipid rafts, its mechanism of action, and how it affects and is affected by extracellular agents.
Collapse
Affiliation(s)
- John B Denny
- Department of Ophthalmology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| |
Collapse
|
115
|
Hill CE, Harrison BJ, Rau KK, Hougland MT, Bunge MB, Mendell LM, Petruska JC. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons. THE JOURNAL OF PAIN 2010; 11:1066-73. [PMID: 20627820 DOI: 10.1016/j.jpain.2010.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 12/31/2022]
Abstract
UNLABELLED Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Caitlin E Hill
- University of Miami, The Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Kusik BW, Hammond DR, Udvadia AJ. Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 2010; 239:482-95. [PMID: 20034105 DOI: 10.1002/dvdy.22190] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammals and fish differ in their ability to express axon growth-associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth-associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6-kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6-kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6-kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds.
Collapse
Affiliation(s)
- Brandon W Kusik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
117
|
Iskandar BJ, Rizk E, Meier B, Hariharan N, Bottiglieri T, Finnell RH, Jarrard DF, Banerjee RV, Skene JHP, Nelson A, Patel N, Gherasim C, Simon K, Cook TD, Hogan KJ. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest 2010; 120:1603-16. [PMID: 20424322 DOI: 10.1172/jci40000] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 02/24/2010] [Indexed: 01/07/2023] Open
Abstract
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Collapse
Affiliation(s)
- Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Gong HC, Yang XD, Liu Z, Xing ZY, Wang HJ, Li ZZ. Regulatory effects of insulin-like growth factor-1 on the expression of sensory neuropeptide mRNAs in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Neurosci Bull 2010; 26:126-32. [PMID: 20332817 DOI: 10.1007/s12264-010-9142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the effects of insulin-like growth factor-1 (IGF-1) on the expression of preprotachykinin (PPT) mRNA encoding substance P (SP) and calcitonin gene-related peptide (CGRP) mRNA in cultured dorsal root ganglion (DRG) neurons with excitotoxicity induced by glutamate (Glu). METHODS DRGs were dissected from embryonic day 15 Wistar rats. DRG neurons were dissociated and cultured for 48 h and then exposed to Glu (0.2 mmol/L) or Glu (0.2 mmol/L) plus IGF-1 (5 nmol/L, 10 nmol/L and 20 nmol/L) for 12 h. The DRG neurons in control group were exposed to only growth media throughout the experiment. After that, the living DRG neurons were observed under inverted phase contrast microscope and microphotographs were taken. The expression levels of PPT and CGRP mRNAs were detected by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS IGF-1 could inhibit Glu-induced shortening of neurite. Besides, IGF-1 could significantly increase the levels of PPT mRNA and CGRP mRNA in primary cultured DRG neurons with Glu-induced excitotoxicity, in a dose-dependent manner. CONCLUSION IGF-1 may exert neuroprotective effects on DRG neurons against Glu-induced excitotoxicity, probably through regulating the expression levels of PPT and CGRP mRNAs.
Collapse
Affiliation(s)
- Hui-Cui Gong
- Department of Anatomy, Shandong University School of Medicine, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
119
|
The neuropathy-protective agent acetyl-l-carnitine activates protein kinase C-γ and MAPKs in a rat model of neuropathic pain. Neuroscience 2010; 165:1345-52. [DOI: 10.1016/j.neuroscience.2009.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/25/2009] [Accepted: 11/10/2009] [Indexed: 02/06/2023]
|
120
|
Oligomeric structure of brain abundant proteins GAP-43 and BASP1. J Struct Biol 2010; 170:470-83. [PMID: 20109554 DOI: 10.1016/j.jsb.2010.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/21/2009] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
Abstract
Brain abundant proteins GAP-43 and BASP1 participate in the regulation of actin cytoskeleton dynamics in neuronal axon terminals. The proposed mechanism suggests that the proteins sequester phosphatidylinositol-4,5-diphosphate (PIP(2)) in the inner leaflet of the plasma membrane. We found that model anionic phospholipid membranes in the form of liposomes induce rapid oligomerization of GAP-43 and BASP1 proteins. Multiply charged phosphoinositides produced the most potent effect. Anionic detergent sodium dodecyl sulfate (SDS) at submicellar concentration stimulated formation of similar oligomers in solution. BASP1, but not GAP-43, also formed oligomers at sufficiently high concentration in the absence of lipids and SDS. Electron microscopy study demonstrated that the oligomers have disk-shaped or annular structure of 10-30nm in diameter. BASP1 also formed higher aggregates of linear rod-like structure, with average length of about 100nm. In outward appearance, the oligomers and linear aggregates are reminiscent of oligomers and protofibrils of amyloid proteins. Both the synthetic N-terminal peptide GAP-43(1-40) and the brain-derived fragment GAP-43-3 preserved the ability to oligomerize under the action of acidic phospholipids and SDS. On the contrary, BASP1 fragment truncated by the short N-terminal myristoylated peptide was unable to form oligomers. GAP-43 and BASP1 oligomerization can be regulated by calmodulin, which disrupts the oligomers and displaces the proteins from the membrane. We suggest that in vivo, the role of membrane-bound GAP-43 and BASP1 oligomers consists in accumulation of PIP(2) in functional clusters, which become accessible for other PIP(2)-binding proteins after dissociation of the oligomers.
Collapse
|
121
|
NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 2010; 29:15542-50. [PMID: 20007478 DOI: 10.1523/jneurosci.3938-09.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful regeneration of damaged neurons depends on the coordinated expression of neuron-intrinsic genes. At present however, there is no comprehensive view of the transcriptional regulatory mechanisms underlying neuronal regeneration. We used high-content cellular screening to investigate the functional contribution of 62 transcription factors to regenerative neuron outgrowth. Ten transcription factors are identified that either increase or decrease neurite outgrowth. One of these, NFIL3, is specifically upregulated during successful regeneration in vivo. Paradoxically however, knockdown of NFIL3 and overexpression of dominant-negative NFIL3 both increase neurite outgrowth. Our data show that NFIL3, together with CREB, forms an incoherent feedforward transcriptional regulatory loop in which NFIL3 acts as a negative regulator of CREB-induced regeneration-associated genes.
Collapse
|
122
|
Kalous A, Keast JR. Conditioning lesions enhance growth state only in sensory neurons lacking calcitonin gene-related peptide and isolectin B4-binding. Neuroscience 2009; 166:107-21. [PMID: 20006678 DOI: 10.1016/j.neuroscience.2009.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 12/31/2022]
Abstract
A conditioning lesion improves regeneration of central and peripheral axons of dorsal root ganglion (DRG) neurons after a subsequent injury by enhancing intrinsic growth capacity. This enhanced growth state is also observed in cultured DRG neurons, which support a more sparsely and rapidly elongating mode of growth after a prior conditioning lesion in vivo. Here we examined differences in the capacity or requirements of specific types of sensory neurons for regenerative growth, which has important consequences for development of strategies to improve recovery after injury. We showed that after partial or complete injury of the sciatic nerve in mice, an elongating mode of growth in vitro was activated only in DRG neurons that did not express calcitonin gene-related peptide (CGRP) or bind Bandeiraea simplicifolia I-isolectin B4 (IB4). We also directly examined the response of conditioned sensory neurons to nerve growth factor (NGF), which does not enhance growth in injured peripheral nerves in vivo. We showed that after partial injury, NGF stimulated a highly branched and linearly restricted rather than elongating mode of growth. After complete injury, the function of NGF was impaired, which immunohistochemical studies of DRG indicated was at least partly due to downregulation of the NGF receptor, tropomyosin-related kinase A (TrkA). These results suggest that, regardless of the type of conditioning lesion, each type of DRG neuron has a distinct intrinsic capacity or requirement for the activation of rapidly elongating growth, which does not appear to be influenced by NGF.
Collapse
Affiliation(s)
- A Kalous
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | |
Collapse
|
123
|
Giovanni SD. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009; 13:1387-98. [DOI: 10.1517/14728220903307517] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
124
|
Foscarin S, Gianola S, Carulli D, Fazzari P, Mi S, Tamagnone L, Rossi F. Overexpression of GAP-43 modifies the distribution of the receptors for myelin-associated growth-inhibitory proteins in injured Purkinje axons. Eur J Neurosci 2009; 30:1837-48. [PMID: 19895561 DOI: 10.1111/j.1460-9568.2009.06985.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract Neurons with enhanced intrinsic growth capabilities can elongate their axons into non-permissive territories, but the mechanisms that enable the outgrowing processes to overcome environmental inhibition are largely unknown. To address this issue, we examined adult mouse Purkinje cells that overexpress the axonal growth-associated protein GAP-43. After injury, these neurons exhibit sprouting along the intracortical neuritic course and at the severed stump in the white matter. To determine whether GAP-43-overexpressing Purkinje cells are responsive to extrinsic inhibitory cues, we investigated the content and subcellular localization of major receptors for myelin-associated inhibitory proteins, PlexinB1 and the Nogo receptor (NgR) with the related co-receptors LINGO-1 and p75. Expression of these molecules, estimated by measuring perikaryal immunostaining intensity and Western blot, was not different in wild-type or transgenic mice, and it was not overtly modified after axotomy. Following injury, however, the content of PlexinB1 was significantly reduced in GAP-43-overexpressing neurites. Furthermore, in the same axons the distribution of both PlexinB1 and NgR was altered, being inverse to that of GAP-43. Labelling for the two receptors was conspicuously reduced on the axonal surface and it was almost undetectable in the outgrowing sprouts, which showed strong GAP-43 immunoreactivity. These observations indicate that although GAP-43 overexpression does not modify the expression of receptors for myelin-associated inhibitory factors, it interferes with their subcellular localization and exposure on the neuritic membrane. Therefore, GAP-43 promotes axon growth by multiple synergistic mechanisms that potentiate the intrinsic motility of the elongating processes, while reducing their sensitivity to environmental inhibition.
Collapse
Affiliation(s)
- Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
125
|
Higo N, Nishimura Y, Murata Y, Oishi T, Yoshino-Saito K, Takahashi M, Tsuboi F, Isa T. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract. J Comp Neurol 2009; 516:493-506. [DOI: 10.1002/cne.22121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
126
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
127
|
Nash M, Pribiag H, Fournier AE, Jacobson C. Central nervous system regeneration inhibitors and their intracellular substrates. Mol Neurobiol 2009; 40:224-35. [PMID: 19763907 DOI: 10.1007/s12035-009-8083-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022]
Abstract
Injury to the central nervous system (CNS) initiates a cascade of responses that is inhibitory to the regeneration of neurons and full recovery. At the site of injury, glial cells conspire with an inhibitory biochemical milieu to construct both physical and chemical barriers that prevent the outgrowth of axons to or beyond the lesion site. These inhibitors include factors derived from myelin, repulsive guidance cues, and chondroitin sulfate proteoglycans. Each bind receptors on the axon surface to initiating intracellular signaling cascades that ultimately result in cytoskeletal reorganization and growth cone collapse. Here, we present an overview of the molecules, receptors, and signaling pathways that inhibit CNS regeneration, with a particular focus on the intracellular signaling machinery that may function as convergent targets for multiple inhibitory ligands.
Collapse
Affiliation(s)
- Michelle Nash
- Department of Biology, University of Waterloo, ON, Canada
| | | | | | | |
Collapse
|
128
|
Hoffman PN. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 2009; 223:11-8. [PMID: 19766119 DOI: 10.1016/j.expneurol.2009.09.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/13/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
Injury of axons in the peripheral nervous system (PNS) induces transcription-dependent changes in gene expression and axonal transport that promote effective regeneration by increasing the intrinsic growth state of axons. Regeneration is enhanced in axons re-injured 1-2 weeks after the intrinsic growth state has been increased by such a prior conditioning lesion (CL). The intrinsic growth state does not increase after axons are injured in the mammalian central nervous system (CNS), where they lack the capacity for effective regeneration. Sensory neurons in the dorsal root ganglion (DRG) have two axonal branches that respond differently to injury. Peripheral branches, which are located entirely in the PNS, are capable of effective regeneration. Central branches regenerate in the PNS (i.e., in the dorsal root, which extends from the DRG to the spinal cord), but not in the CNS (i.e., the spinal cord). A CL of peripheral branches increases the intrinsic growth state of central branches in the dorsal columns of the spinal cord, enabling these axons to undergo lengthy regeneration in a segment of peripheral nerve transplanted into the spinal cord (i.e., a peripheral nerve graft). This regeneration does not occur in the absence of a CL. We will examine how changes in gene expression and axonal transport induced by a CL may promote this regeneration.
Collapse
Affiliation(s)
- Paul N Hoffman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6953, USA.
| |
Collapse
|
129
|
Houchin-Ray T, Zelivyanskaya M, Huang A, Shea LD. Non-viral gene delivery transfection profiles influence neuronal architecture in an in vitro co-culture model. Biotechnol Bioeng 2009; 103:1023-33. [PMID: 19309756 DOI: 10.1002/bit.22311] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene delivery from tissue engineering scaffolds can induce expression of tissue inductive factors to stimulate the cellular processes required for regeneration. Transfected cells secrete diffusible proteins that can create local concentration gradients, depending on the number, distribution, and expression level of transfected cells. These gradients are linked to cellular organization and tissue architecture during embryogenesis. In this report, we investigate neuronal architecture and neurite guidance in response to the concentration gradients achieved by localized secretion of a neurotrophic factor from transfected cells. A co-culture model was employed to examine neuronal responses to multiple transfection profiles, which affects the local concentration of secreted nerve growth factor (NGF). Neuronal architecture, as defined by number of neurites per neuron and length of neurites, was influenced by the transfection profile. Low levels of NGF production by few transfected cells produced longer primary neurites with less branching relative to the higher expression levels or increased numbers of transfected cells. Furthermore, for low NGF production by few transfected cells, the growth cone of the axons was marked by longer extensions and larger surface area, suggesting the presence of a guidance cue. Control studies with varying NGF concentrations did not substantially alter the neuronal architecture, further supporting an effect of localized concentration gradients, and not simply the concentration. Mathematical modeling of NGF diffusion was employed to predict the concentration gradients produced by the transfection profiles, and the resultant gradients were correlated to the cellular response. This report connects the transfection profile, concentration gradients, and the resulting cellular architecture, suggesting a critical design consideration for the application of gene delivery to regenerative medicine.
Collapse
Affiliation(s)
- Tiffany Houchin-Ray
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156 Evanston, Illinois 60208-3120, USA
| | | | | | | |
Collapse
|
130
|
Ylera B, Ertürk A, Hellal F, Nadrigny F, Hurtado A, Tahirovic S, Oudega M, Kirchhoff F, Bradke F. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 2009; 19:930-6. [PMID: 19409789 DOI: 10.1016/j.cub.2009.04.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 01/16/2023]
Abstract
Several experimental manipulations result in axonal regeneration in the central nervous system (CNS) when applied before or at the time of injury but not when initiated after a delay, which would be clinically more relevant. As centrally injured neurons show signs of atrophy and degeneration, it raises the question whether chronically injured neurons are able to regenerate. To address this question, we used adult rodent primary sensory neurons that regenerate their central axon when their peripheral axon is cut (called conditioning) beforehand but not afterwards. We found that primary sensory neurons express regeneration-associated genes and efficiently regrow their axon in cell culture two months after a central lesion upon conditioning. Moreover, conditioning enables central axons to regenerate through a fresh lesion independent of a previous central lesion. Using in vivo imaging we demonstrated that conditioned neurons rapidly regrow their axons through a fresh central lesion. Finally, when single sensory axons were cut with a two-photon laser, they robustly regenerate within days after attaining growth competence through conditioning. We conclude that sensory neurons can acquire the intrinsic potential to regenerate their axons months after a CNS lesion, which they implement in the absence of traumatic tissue.
Collapse
Affiliation(s)
- Bhavna Ylera
- Axonal Growth and Regeneration, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem 2009; 108:662-75. [PMID: 19187093 DOI: 10.1111/j.1471-4159.2008.05824.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presynaptic proteome controls neurotransmitter release and the short and long term structural and functional dynamics of the nerve terminal. Using a monoclonal antibody against synaptic vesicle protein 2 we immunopurified a presynaptic compartment containing the active zone with synaptic vesicles docked to the presynaptic plasma membrane as well as elements of the presynaptic cytomatrix. Individual protein bands separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were subjected to nanoscale-liquid chromatography electrospray ionization-tandem mass spectrometry. Combining this method with 2-dimensional benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight and immunodetection we identified 240 proteins comprising synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the pre-synapse. Four maxi-channels, three isoforms of voltage-dependent anion channels and the tweety homolog 1 were co-isolated with the docked synaptic vesicles. As revealed by in situ hybridization, tweety homolog 1 reveals a distinct expression pattern in the rodent brain. Our results add novel information to the proteome of the presynaptic active zone and suggest that in particular proteins potentially involved in the short and long term structural modulation of the mature presynaptic compartment deserve further detailed analysis.
Collapse
Affiliation(s)
- Marco Morciano
- Neurochemistry, Biocenter of Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
132
|
Huebner EA, Strittmatter SM. Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 2009; 48:339-51. [PMID: 19582408 DOI: 10.1007/400_2009_19] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long-distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsic growth capacity of the neuron influence regenerative success. This chapter discusses determinants of axon regeneration in the PNS and CNS.
Collapse
Affiliation(s)
- Eric A Huebner
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
133
|
Seo TB, Baek K, Kwon KB, Lee SI, Lim JS, Seol IC, Kim YS, Seo YB, Namgung U. Shengmai-san–Mediated Enhancement of Regenerative Responses of Spinal Cord Axons After Injury in Rats. J Pharmacol Sci 2009; 110:483-92. [DOI: 10.1254/jphs.09044fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
134
|
Molecular Mechanisms of Axonal Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:1-16. [DOI: 10.1007/978-0-387-76715-4_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
135
|
Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 2008; 16:543-54. [PMID: 19057620 DOI: 10.1038/cdd.2008.175] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcription regulates axon outgrowth and regeneration. However, to date, no transcription complexes have been shown to control axon outgrowth and regeneration by regulating axon growth genes. Here, we report that the tumor suppressor p53 and its acetyltransferases CBP/p300 form a transcriptional complex that regulates the axonal growth-associated protein 43, a well-characterized pro-axon outgrowth and regeneration protein. Acetylated p53 at K372-3-82 drives axon outgrowth, GAP-43 expression, and binds specific elements on the neuronal GAP-43 promoter in a chromatin environment through CBP/p300 signaling. Importantly, in an axon regeneration model, both CBP and p53 K372-3-82 are induced following axotomy in facial motor neurons, where p53 K372-3-82 occupancy of GAP-43 promoter is enhanced as shown by in vivo chromatin immunoprecipitation. Finally, by comparing wild-type and p53 null mice, we demonstrate that the p53/GAP-43 transcriptional module is specifically switched on during axon regeneration in vivo. These data contribute to the understanding of gene regulation in axon outgrowth and may suggest new molecular targets for axon regeneration.
Collapse
Affiliation(s)
- A Tedeschi
- Laboratory for NeuroRegeneration and Repair, Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
136
|
Tonge D, Chan K, Zhu N, Panjwani A, Arno M, Lynham S, Ward M, Snape A, Pizzey J. Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins. J Cell Sci 2008; 121:2565-77. [PMID: 18650498 DOI: 10.1242/jcs.024943] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Axonal regeneration is enhanced by the prior ;conditioning' of peripheral nerve lesions. Here we show that Xenopus dorsal root ganglia (DRG) with attached peripheral nerves (PN-DRG) can be conditioned in vitro, thereafter showing enhanced neurotrophin-induced axonal growth similar to preparations conditioned by axotomy in vivo. Actinomycin D inhibits axonal outgrowth from freshly dissected PN-DRG, but not from conditioned preparations. Synthesis of mRNAs that encode proteins necessary for axonal elongation might therefore occur during the conditioning period, a suggestion that was confirmed by oligonucleotide microarray analysis. Culturing PN-DRG in a compartmentalized system showed that inhibition of protein synthesis (but not RNA synthesis) in the distal nerve impaired the conditioning response, suggesting that changes in gene expression in cultured DRG depend on the synthesis and retrograde transport of protein(s) in peripheral nerves. The culture system was also used to demonstrate retrograde axonal transport of several proteins, including thioredoxin (Trx). Cyclopentenone prostaglandins, which react with Trx, blocked the in vitro conditioning effect, whereas inhibition of other signalling pathways thought to be involved in axonal regeneration did not. This suggests that Trx and/or other targets of these electrophilic prostaglandins regulate axonal regeneration. Consistent with this hypothesis, morpholino-induced suppression of Trx expression in dissociated DRG neurons was associated with reduced neurite outgrowth.
Collapse
Affiliation(s)
- David Tonge
- School of Biomedical and Health Sciences, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Loss of function genetic screens reveal MTGR1 as an intracellular repressor of beta1 integrin-dependent neurite outgrowth. J Neurosci Methods 2008; 177:322-33. [PMID: 19026687 DOI: 10.1016/j.jneumeth.2008.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 09/13/2008] [Accepted: 10/15/2008] [Indexed: 02/07/2023]
Abstract
Integrins are transmembrane receptors that promote neurite growth and guidance. To identify regulators of integrin-dependent neurite outgrowth, here we used two loss of function genetic screens in SH-SY5Y neuroblastoma cells. First, we screened a genome-wide retroviral library of genetic suppressor elements (GSEs). Among the many genes identified in the GSE screen, we isolated the hematopoetic transcriptional factor MTGR1 (myeloid translocation gene-related protein-1). Treatment of SH-SY5Y cells with MTGR1 siRNA enhanced neurite outgrowth and concurrently increased expression of GAP-43, a protein linked to neurite outgrowth. Second, we transduced SH-SY5Y with a genome-wide GFP-labeled lentiviral siRNA library, which expressed 40,000 independent siRNAs targeting 8500 human genes. From this screen we isolated GFI1 (growth factor independence-1), which, like MTGR1, is a member of the myeloid translocation gene on 8q22 (MTG8)/ETO protein complex of nuclear repressor proteins. These results reveal novel contributions of MTGR1 and GFI1 to the regulation of neurite outgrowth and identify novel repressors of integrin-dependent neurite outgrowth.
Collapse
|
138
|
Abstract
Axonal regeneration is minimal after CNS injuries in adult mammals and medical treatments to recover neurological deficits caused by axon disconnection are extremely limited. The failure of axonal elongation is principally attributed to the nonpermissive environment and reduced intrinsic growth capacity. In this report, we studied the role of glycogen synthase kinase-3 (GSK-3) inactivation on neurite and axon growth from adult neurons via combined in vitro and in vivo approaches. We found that the major CNS inhibiting substrates including chondroitin sulfate proteoglycans could inactivate protein kinase B (Akt) and activate GSK-3beta signals in neurons. GSK-3 inactivation with pharmacologic inhibitors enhances neurite outgrowth of dorsal root ganglion neurons derived from adult mice or cerebellar granule neurons from postnatal rodents cultured on CNS inhibitors. Application of GSK-3 inhibitors stimulates axon formation and elongation of mature neurons whether in presence or absence of inhibitory substrates. Systemic application of the GSK-3 inhibitor lithium to spinal cord-lesioned rats suppresses the activity of this kinase around lesion. Treatments with GSK-3 inhibitors including a clinical dose of lithium to rats with thoracic spinal cord transection or contusion injuries induce significant descending corticospinal and serotonergic axon sprouting in caudal spinal cord and promote locomotor functional recovery. Our studies suggest that GSK-3 signal is an important therapeutic target for promoting functional recovery of adult CNS injuries and that administration of GSK-3 inhibitors may facilitate the development of an effective treatment to white matter injuries including spinal cord trauma given the wide use of lithium in humans.
Collapse
|
139
|
Ruff RL, McKerracher L, Selzer ME. Repair and Neurorehabilitation Strategies for Spinal Cord Injury. Ann N Y Acad Sci 2008; 1142:1-20. [DOI: 10.1196/annals.1444.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
140
|
Smeal RM, Tresco PA. The influence of substrate curvature on neurite outgrowth is cell type dependent. Exp Neurol 2008; 213:281-92. [DOI: 10.1016/j.expneurol.2008.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 01/04/2023]
|
141
|
Manvelyan LP, Gevorkyan OV, Petrosyan TP. Recovery of instrumental conditioned reflexes in rats after pyramidotomy and action of bacterial melanin. J EVOL BIOCHEM PHYS+ 2008. [DOI: 10.1134/s0022093008030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
142
|
Szpara ML, Vranizan K, Tai YC, Goodman CS, Speed TP, Ngai J. Analysis of gene expression during neurite outgrowth and regeneration. BMC Neurosci 2007; 8:100. [PMID: 18036227 PMCID: PMC2245955 DOI: 10.1186/1471-2202-8-100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/23/2007] [Indexed: 01/08/2023] Open
Abstract
Background The ability of a neuron to regenerate functional connections after injury is influenced by both its intrinsic state and also by extrinsic cues in its surroundings. Investigations of the transcriptional changes undergone by neurons during in vivo models of injury and regeneration have revealed many transcripts associated with these processes. Because of the complex milieu of interactions in vivo, these results include not only expression changes directly related to regenerative outgrowth and but also unrelated responses to surrounding cells and signals. In vitro models of neurite outgrowth provide a means to study the intrinsic transcriptional patterns of neurite outgrowth in the absence of extensive extrinsic cues from nearby cells and tissues. Results We have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo. Conclusion Many gene expression changes undergone by SCG and DRG during in vitro outgrowth are shared between these two tissue types and in common with in vivo regeneration models. This suggests that the genes identified in this in vitro study may represent new candidates worthy of further study for potential roles in the therapeutic regrowth of neuronal connections.
Collapse
Affiliation(s)
- Moriah L Szpara
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| | | | | | | | | | | |
Collapse
|
143
|
Marklund N, Bareyre FM, Royo NC, Thompson HJ, Mir AK, Grady MS, Schwab ME, McIntosh TK. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression. J Neurosurg 2007; 107:844-53. [PMID: 17937233 DOI: 10.3171/jns-07/10/0844] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT Central nervous system axons regenerate poorly after traumatic brain injury (TBI), partly due to inhibitors such as the protein Nogo-A present in myelin. The authors evaluated the efficacy of anti-Nogo-A monoclonal antibody (mAb) 7B12 administration on the neurobehavioral and cognitive outcome of rats following lateral fluid-percussion brain injury, characterized the penetration of the 7B12 or control antibodies into target brain regions, and evaluated the effects of Nogo-A inhibition on hemispheric tissue loss and sprouting of uninjured motor tracts in the cervical cord. To elucidate a potential molecular response to Nogo-A inhibition, we evaluated the effects of 7B12 on hippocampal GAP-43 expression. METHODS Beginning 24 hours after lateral fluid-percussion brain injury or sham injury in rats, the mAb 7B12 or control antibody was infused intracerebroventricularly over 14 days, and behavior was assessed over 4 weeks. RESULTS Immunoreactivity for 7B12 or immunoglobulin G was detected in widespread brain regions at 1 and 3 weeks postinjury. The brain-injured animals treated with 7B12 showed improvement in cognitive function (p < 0.05) at 4 weeks but no improvement in neurological motor function from 1 to 4 weeks postinjury compared with brain-injured, vehicle-treated controls. The enhanced cognitive function following inhibition of Nogo-A was correlated with an attenuated postinjury downregulation of hippocampal GAP-43 expression (p < 0.05). CONCLUSIONS Increased GAP-43 expression may be a novel molecular mechanism of the enhanced cognitive recovery mediated by Nogo-A inhibition after TBI in rats.
Collapse
Affiliation(s)
- Niklas Marklund
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Benowitz LI, Yin Y. Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state. Dev Neurobiol 2007; 67:1148-65. [PMID: 17514713 DOI: 10.1002/dneu.20515] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In general, neurons in the mature mammalian central nervous system (CNS) are unable to regenerate injured axons, and neurons that remain uninjured are unable to form novel connections that might compensate for ones that have been lost. As a result of this, victims of CNS injury, stroke, or certain neurodegenerative diseases are unable to fully recover sensory, motor, cognitive, or autonomic functions. Regenerative failure is related to a host of inhibitory signals associated with the extracellular environment and with the generally low intrinsic potential of mature CNS neurons to regenerate. Most research to date has focused on extrinsic factors, particularly the identification of inhibitory proteins associated with myelin, the perineuronal net, glial cells, and the scar that forms at an injury site. However, attempts to overcome these inhibitors have resulted in relatively limited amounts of CNS regeneration. Using the optic nerve as a model system, we show that with appropriate stimulation, mature neurons can revert to an active growth state and that when this occurs, the effects of overcoming inhibitory signals are enhanced dramatically. Similar conclusions are emerging from studies in other systems, pointing to a need to consider combinatorial treatments in the clinical setting.
Collapse
Affiliation(s)
- Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery and Neurobiology Program, Children's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
145
|
Abstract
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix (ECM) proteins, and hormones participate in Schwann cell dedifferentiation, proliferation, and remyelination. We describe the current understanding of peripheral axon regeneration and focus on the molecules and potential mechanisms involved in remyelination.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
146
|
Tong J, Nguyen L, Vidal A, Simon SA, Skene JHP, McIntosh TJ. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers. Biophys J 2007; 94:125-33. [PMID: 17827240 PMCID: PMC2134862 DOI: 10.1529/biophysj.107.110536] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
147
|
Higo N, Oishi T, Yamashita A, Murata Y, Matsuda K, Hayashi M. Expression of protein kinase-C substrate mRNA in the motor cortex of adult and infant macaque monkeys. Brain Res 2007; 1171:30-41. [PMID: 17761152 DOI: 10.1016/j.brainres.2007.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
To understand the molecular and cellular bases of plasticity in the primate motor cortex, we investigated the expression of three protein kinase-C (PKC) substrates: GAP-43, myristoylated alanine-rich C-kinase substrate (MARCKS), and neurogranin, which are key molecules regulating synaptic plasticity. Prominent signals for the three mRNAs were primarily observed in pyramidal cells. Large pyramidal cells in layer V, from which the descending motor tract originates, contained weaker hybridization signals for GAP-43 and neurogranin mRNAs than did the smaller pyramidal cells. We also performed double-label in situ hybridization showing that GAP-43 and neurogranin mRNAs were expressed in a subset of MARCKS-positive neurons. Quantitative analysis showed that the expression was different between the layers: layer VI contained the strongest and layer II the weakest signals for all three mRNAs. The expression levels of GAP-43 and MARCKS mRNA in layer V were higher than in layer III, while the expression level of neurogranin mRNA in layer V was almost the same as in layer III. Developmental analysis from the newborn to adult indicated that the expression levels of the three mRNAs were higher in the infant motor cortex than in the adult. The expression of both GAP-43 and neurogranin mRNAs transiently increased over several months postnatally. The present study showed that the expression of the three PKC substrates was specific to cell types, cortical layers, and postnatal developmental stage. The specific expression may reflect functional specialization for plasticity in the motor cortex of both infants and adults.
Collapse
Affiliation(s)
- Noriyuki Higo
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
148
|
Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 2007; 209:321-32. [PMID: 17720160 PMCID: PMC2692909 DOI: 10.1016/j.expneurol.2007.06.020] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/28/2007] [Indexed: 01/08/2023]
Abstract
The failure of axons to regenerate after spinal cord injury remains one of the greatest challenges facing both medicine and neuroscience, but in the last 20 years there have been tremendous advances in the field of spinal cord injury repair. One of the most important of these has been the identification of inhibitory proteins in CNS myelin, and this has led to the development of strategies that will enable axons to overcome myelin inhibition. Elevation of intracellular cyclic AMP (cAMP) has been one of the most successful of these strategies, and in this review we examine how cAMP signaling promotes axonal regeneration in the CNS. Intracellular cAMP levels can be increased through a peripheral conditioning lesion, administration of cAMP analogues, priming with neurotrophins or treatment with the phosphodiesterase inhibitor rolipram, and each of these methods has been shown to overcome myelin inhibition both in vitro and in vivo. It is now known that the effects of cAMP are transcription dependent, and that cAMP-mediated activation of CREB leads to upregulated expression of genes such as arginase I and interleukin-6. The products of these genes have been shown to directly promote axonal regeneration, which raises the possibility that other cAMP-regulated genes could yield additional agents that would be beneficial in the treatment of spinal cord injury. Further study of these genes, in combination with human clinical trials of existing agents such as rolipram, would allow the therapeutic potential of cAMP to be fully realized.
Collapse
Affiliation(s)
| | - Marie T. Filbin
- Correspondence should be addressed to Dr. Marie T. Filbin at the above address.
| |
Collapse
|
149
|
Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27:7911-20. [PMID: 17652582 PMCID: PMC6672733 DOI: 10.1523/jneurosci.5313-06.2007] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Charles D. Mills
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Clifford J. Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
150
|
Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M. GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 2007; 36:185-94. [PMID: 17702601 PMCID: PMC2034440 DOI: 10.1016/j.mcn.2007.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022] Open
Abstract
Axonal regeneration within the CNS fails due to the growth inhibitory environment and the limited intrinsic growth capacity of injured neurons. Injury to DRG peripheral axons induces expression of growth associated genes including members of the glial-derived neurotrophic factor (GDNF) signaling pathway and "preconditions" the injured cells into an active growth state, enhancing growth of their centrally projecting axons. Here, we show that preconditioning DRG neurons prior to culturing increased neurite outgrowth, which was further enhanced by GDNF in a bell-shaped growth response curve. In vivo, GDNF delivered directly to DRG cell bodies facilitated the preconditioning effect, further enhancing axonal regeneration beyond spinal cord lesions. Consistent with the in vitro results, the in vivo effect was seen only at low GDNF concentrations. We conclude that peripheral nerve injury upregulates GDNF signaling pathway components and that exogenous GDNF treatment selectively promotes axonal growth of injury-primed sensory neurons in a concentration-dependent fashion.
Collapse
Affiliation(s)
- Charles D Mills
- Neural Plasticity Research Group, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|