101
|
Salman M, Ismael S, Li L, Ahmed HA, Puchowicz MA, Ishrat T. Endothelial Thioredoxin-Interacting Protein Depletion Reduces Hemorrhagic Transformation in Hyperglycemic Mice after Embolic Stroke and Thrombolytic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14100983. [PMID: 34681207 PMCID: PMC8537904 DOI: 10.3390/ph14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.
Collapse
Affiliation(s)
- Mohd. Salman
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Lexiao Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Michelle A. Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +901-448-2178; Fax:-901-448-7193
| |
Collapse
|
102
|
Electroacupuncture Regulates Endoplasmic Reticulum Stress and Ameliorates Neuronal Injury in Rats with Acute Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9912325. [PMID: 34434247 PMCID: PMC8382524 DOI: 10.1155/2021/9912325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a common cause of morbidity, mortality, and disability worldwide. Electroacupuncture (EA) is an effective method for alleviating brain damage after ischemic stroke. However, the underlying mechanism has not been fully elucidated. This study aimed to determine whether endoplasmic reticulum stress (ERS) could contribute to the protective effects of EA in cerebral ischemia/reperfusion injury (CIRI) to provide a rationale for the widespread clinical use of EA. Rats were divided into the sham-operated (sham) group, the CIRI (model) group, and the EA group. Rats in the model group were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 72 h of reperfusion. Rats with CIRI were treated daily with EA at GV20 and ST36 for a total of 3 days. The Longa scoring system and adhesive removal somatosensory test were applied to evaluate neurological deficits. Then, 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed to measure the infarct volume. Immunofluorescence staining for NeuN and GFAP and terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick-end labeling (TUNEL) staining were performed to detect apoptotic cells in brain tissue. Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blotting were used to measure the levels of ERS indicators (GRP78, CHOP/GADD153, p-eIF2α, and caspase 12). The results showed that EA significantly reduced the cerebral infarct volume, improved neurological function, and inhibited neuronal apoptosis. In the EA group compared with the model group, the mRNA expression levels of GRP78 were significantly increased, and the expression levels of proapoptotic proteins (CHOP/GADD153, p-eIF2α, and caspase 12) were significantly decreased. These results suggest that the possible mechanism by which EA protects cells against neuronal injury in CIRI may involve inhibiting endoplasmic reticulum stress.
Collapse
|
103
|
Tukhovskaya EA, Ismailova AM, Shaykhutdinova ER, Slashcheva GA, Prudchenko IA, Mikhaleva II, Khokhlova ON, Murashev AN, Ivanov VT. Delta Sleep-Inducing Peptide Recovers Motor Function in SD Rats after Focal Stroke. Molecules 2021; 26:5173. [PMID: 34500605 PMCID: PMC8434407 DOI: 10.3390/molecules26175173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Mutual effect of the preliminary and therapeutic intranasal treatment of SD rats with DSIP (8 days) on the outcome of focal stroke, induced with intraluminal middle cerebral occlusion (MCAO), was investigated. Materials and Methods: The groups were the following: MCAO + vehicle, MCAO + DSIP, and SHAM-operated. DSIP or vehicle was applied nasally 60 (±15) minutes prior to the occlusion and for 7 days after reperfusion at dose 120 µg/kg. The battery of behavioral tests was performed on 1, 3, 7, 14, and 21 days after MCAO. Motor coordination and balance and bilateral asymmetry were tested. At the end of the study, animals were euthanized, and their brains were perfused, serial cryoslices were made, and infarction volume in them was calculated. Results: Although brain infarction in DSIP-treated animals was smaller than in vehicle-treated animals, the difference was not significant. However, motor performance in the rotarod test significantly recovered in DSIP-treated animals. Conclusions: Intranasal administration of DSIP in the course of 8 days leads to accelerated recovery of motor functions.
Collapse
Affiliation(s)
- Elena A. Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Alina M. Ismailova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Elvira R. Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Gulsara A. Slashcheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Igor A. Prudchenko
- Laboratory of Peptide Chemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (I.A.P.); (I.I.M.); (V.T.I.)
| | - Inessa I. Mikhaleva
- Laboratory of Peptide Chemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (I.A.P.); (I.I.M.); (V.T.I.)
| | - Oksana N. Khokhlova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Arkady N. Murashev
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Prospekt Nauki, 6, 142290 Moscow, Russia; (A.M.I.); (E.R.S.); (G.A.S.); (O.N.K.); (A.N.M.)
| | - Vadim T. Ivanov
- Laboratory of Peptide Chemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia; (I.A.P.); (I.I.M.); (V.T.I.)
| |
Collapse
|
104
|
Sun B, Ou H, Ren F, Guan Y, Huan Y, Cai H. Propofol Protects against Cerebral Ischemia/Reperfusion Injury by Down-Regulating Long Noncoding RNA SNHG14. ACS Chem Neurosci 2021; 12:3002-3014. [PMID: 34369750 DOI: 10.1021/acschemneuro.1c00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia-reperfusion (CI/R) injury is a serious central nervous system disease. Propofol (PPF) exerts a neuroprotective effect in CI/R injury; the underlying cause is still unclear. Here, we cultured mouse hippocampal neuron (HT22 cells) in oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to mimic CI/R injury in vitro. PPF treatment promoted cell viability and reduced apoptotic cells in the OGD/R-treated HT22 cells, which was effectively abrogated by SNHG14 overexpression. Moreover, we constructed a CI/R injury mouse model on C57BL/6J mice by middle cerebral artery occlusion/reperfusion (MCAO/R), followed by administration of PPF. PPF reduced neuronal damage and loss, enhanced glial cell hyperplasia, and ameliorated cerebral cortex tissue damage and brain infarct in MCAO/R-induced mice. SNHG14 overexpression aggravated MCAO/R-induced CI/R injury in mice. Furthermore, SNHG14 promoted the expression of Atg5 and Beclin 1 via competitively binding miR-30b-5p, which contributed to activate autophagy and apoptosis in HT22 cells. In addition, the levels of p-p38 and p-SP1 were reduced in the OGD/R-treated HT22 cells in the presence of PPF. SP1 interacted with the promoter of SNHG14 and elevated the expression of SNHG14. PPF treatment inhibited the SP1-mediated up-regulation of SNHG14. In conclusion, this work demonstrates that PPF inhibits SNHG14 expression though the p38 MAPK signaling pathway. SNHG14 promotes Atg5 and Beclin 1 expression by sponging miR-30b-5p and thus activates autophagy and aggravates CI/R injury.
Collapse
Affiliation(s)
- Bei Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Ou
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yujiao Guan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ye Huan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
105
|
Zhang H, Lin S, McElroy CL, Wang B, Jin D, Uteshev VV, Jin K. Circulating Pro-Inflammatory Exosomes Worsen Stroke Outcomes in Aging. Circ Res 2021; 129:e121-e140. [PMID: 34399581 DOI: 10.1161/circresaha.121.318897] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Siyang Lin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Christopher L McElroy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Dana Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
106
|
Eslami M, Oryan SH, Rahnema M, Bigdeli MR. Neuroprotective Effects of Normobaric Hyperoxia and Transplantation of Encapsulated Choroid Plexus Epithelial Cells on The Focal Brain Ischemia. CELL JOURNAL 2021; 23:303-312. [PMID: 34308573 PMCID: PMC8286464 DOI: 10.22074/cellj.2021.7204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Objective Choroid plexus epithelial cells (CPECs) have the epithelial characteristic, produce cerebrospinal fluid,
contribute to the detoxification process in the central nervous system (CNS), and are responsible for the synthesis and
release of many nerve growth factors. On the other hand, studies suggest that normobaric hyperoxia (HO) by induction
of ischemic tolerance (IT) can protect against brain damage and neurological diseases. We examined the effect of
combination therapy of encapsulated CPECs and HO to protect against ischemic brain injury.
Materials and Methods In this experimental study, six groups of adult male Wistar rats were randomly organized:
sham, room air (RA)+middle cerebral artery occlusion (MCAO), HO+MCAO, RA+MCAO+encapsulated CPECs,
HO+MCAO+encapsulated CPECs, RA+MCAO+empty capsules. RA/HO were pretreatment. The CPECs were isolated
from the brain of neonatal Wistar rats, cultured, and encapsulated. Then microencapsulated CPECs were transplanted
in the neck of the animal immediately after the onset of reperfusion in adult rats that had been exposed to 60 minutes
MCAO. After 23 hours of reperfusion, the neurologic deficit score (NDS) was assessed. Next, rats were killed, and
brains were isolated for measuring brain infarction volume, blood-brain barrier (BBB) permeability, edema, the activity
of superoxide dismutase (SOD), and catalase (CAT) and also, the level of malondialdehyde (MDA). Results Our results showed that NDS decreased equally in HO+MCAO, RA+MCAO+encapsulated CPECs, and
HO+MCAO+encapsulated CPECs groups. Brain infarction volume decreased up 79%, BBB stability increased, edema
decreased, SOD and CAT activities increased, and MDA decreased in the combination group of HO and transplantation
of encapsulated CPECs in the ischemic brain as compared with when HO or transplantation of encapsulated CPECs was
applied alone.
Conclusion The combination of HO and transplantation of encapsulated CPECs for stroke in rats was more effective
than the other treatments, and it can be taken into account as a promising treatment for ischemic stroke.
Collapse
Affiliation(s)
- Maesumeh Eslami
- Department of Animal Physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - S Hahrbanoo Oryan
- Department of Animal Physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehdi Rahnema
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran. .,Inistitute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
107
|
Guo L, Kondapavulur S, Lemke SM, Won SJ, Ganguly K. Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke. Cell Rep 2021; 36:109370. [PMID: 34260929 PMCID: PMC8357409 DOI: 10.1016/j.celrep.2021.109370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/03/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Skilled movements rely on a coordinated cortical and subcortical network, but how this network supports motor recovery after stroke is unknown. Previous studies focused on the perilesional cortex (PLC), but precisely how connected subcortical areas reorganize and coordinate with PLC is unclear. The dorsolateral striatum (DLS) is of interest because it receives monosynaptic inputs from motor cortex and is important for learning and generation of fast reliable actions. Using a rat focal stroke model, we perform chronic electrophysiological recordings in motor PLC and DLS during long-term recovery of a dexterous skill. We find that recovery is associated with the simultaneous emergence of reliable movement-related single-trial ensemble spiking in both structures along with increased cross-area alignment of spiking. Our study highlights the importance of consistent neural activity patterns across brain structures during recovery and suggests that modulation of cross-area coordination can be a therapeutic target for enhancing motor function post-stroke.
Collapse
Affiliation(s)
- Ling Guo
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sravani Kondapavulur
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan M Lemke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Seok Joon Won
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karunesh Ganguly
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
108
|
Seifali E, Hassanzadeh G, Mahdavipour M, Mortezaee K, Moini A, Satarian L, Shekari F, Nazari A, Movassaghi S, Akbari M. Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis. IRANIAN BIOMEDICAL JOURNAL 2021; 24:347-60. [PMID: 32872749 PMCID: PMC7601540 DOI: 10.29252/ibj.24.6.342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. MSCs exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine agents including EVs. This study aimed to investigate the effect of HUCPVCs-derived EVs on apoptosis, functional recovery, and neuroprotection. Methods: Ischemia was induced by MCAO in male Wistar rats. Animals were classified into sham, MCAO, MCAO + HUCPVC, and MCAO + EV groups. Treatments began at two hours after ischemia. Expressions of apoptotic-related proteins (BAX/BCl-2 and caspase-3 and -9), the amount of TUNEL-positive cells, neuronal density (MAP2), and dead neurons (Nissl staining) were assessed on day seven post MCAO. Results: Administration of EVs improved the sensorimotor function (p < 0.001) and reduced the apoptotic rate of Bax/Bcl-2 ratio (p < 0.001), as well as caspases and TUNEL-positive cells (p < 0.001) in comparison to the MCAO group. EV treatment also reduced the number of dead neurons and increased the number of MAP2+ cells in the IBZ (p < 0.001), as compared to the MCAO group. Conclusion: Our findings showed that HUCPVCs-derived EVs are more effective than their mother’s cells in improving neural function, possibly via the regulation of apoptosis in the ischemic rats. The strategy of cell-free extracts is, thus, helpful in removing the predicaments surrounding cell therapy in targeting brain diseases.
Collapse
Affiliation(s)
- Elham Seifali
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ashraf Moini
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Satarian
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shabnam Movassaghi
- Department of Anatomy and cognitive neuroscience, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
109
|
Guo Z, Jia J, Tu Y, Jin C, Guo C, Song F, Wu X, Bao H, Fan W. Altered Jagged1-Notch1 Signaling in Enhanced Dysfunctional Neovascularization and Delayed Angiogenesis After Ischemic Stroke in HFD/STZ Induced Type 2 Diabetes Rats. Front Physiol 2021; 12:687947. [PMID: 34305641 PMCID: PMC8297620 DOI: 10.3389/fphys.2021.687947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes exacerbates brain damage in cerebral ischemic stroke. Our previous study has demonstrated that after cerebral ischemia, type 2 diabetes rats displayed worse neurological outcomes, larger cerebral infarction and severer blood-brain barrier disruption. However, our knowledge of the mechanisms of how diabetes impacts the cerebrovascular repair process is limited. This study was aimed to characterize structural alterations and potential mechanisms in brain microvessels before and after ischemic stroke in type 2 diabetic rats treated with high-fat diet and streptozotocin (HFD/STZ). Furtherly, we tested our hypothesis that dysregulated intercellular Jagged1-Notch1 signaling was involved in the dysfunctional cerebral neovascularization both before and after ischemic stroke in HFD/STZ rats. In our study, we found increased yet dysfunctional neovascularization with activated Jagged1-Notch1 signaling in the cerebrovasculature before cerebral ischemia in HFD/STZ rats compared with non-diabetic rats. Furthermore, we observed delayed angiogenesis as well as suppressed Jagged1-Notch1 signaling after ischemic stroke. Our results elucidate the potential mechanisms underlying diabetes-related cerebral microvasculature dysfunction after ischemic stroke.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Jia
- Department of Neurology, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Yanling Tu
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chang Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
110
|
Owjfard M, Taghadosi Z, Bigdeli MR, Safari A, Zarifkar A, Borhani-Haghighi A, Namavar MR. Effect of nicorandil on the spatial arrangement of primary motor cortical neurons in the sub-acute phase of stroke in a rat model. J Chem Neuroanat 2021; 117:102000. [PMID: 34233211 DOI: 10.1016/j.jchemneu.2021.102000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Ischemic stroke remains a major cause of disability and death worldwide. The density and the spatial distribution of the primary motor (M1) cortical neurons are important in signal transmission and control the movement-related functions. Recently, the neuroprotective effect of nicorandil in cerebral ischemia was described through its anti-apoptosis, antioxidant and anti-inflammatory properties. This study aimed to determine the effects of nicorandil on the neurobehavioral outcome, infarct size, and density, and spatial distribution of M1 cortical neurons after cerebral ischemia. METHODS Thirty Sprague-Dawley rats were randomly divided into three groups. Sham underwent surgery without middle cerebral artery occlusion (MCAO) and drug. The MCAO and treatment groups after MCAO received saline or nicorandil 2, 24, 48, and 72 h after the induction of brain ischemia. Neurobehavioral tests were performed, brains removed, sectioned, and stained by 2,3,5-triphenyltetrazolium chloride (TTC) to estimate the size of the infarction and Nissl staining to evaluate the numerical density, mean area, and the distribution pattern of M1 cortical neurons, using Voronoi spatial tessellation. RESULTS Although nicorandil treatment significantly decreased the neurological deficits and density of neuronal neighbors, it could not preserve the normal regular spatial distributions of M1 cortical neurons after MCAO. It also could not significantly improve motor function or reduce ischemic lesion size. CONCLUSIONS Treatment using the present dose of nicorandil during sub-acute ischemic stroke could not increase neuronal density or preserve the normal regular spatial distributions after MCAO. However, it had beneficial effects on neurobehavioral and motor function and somewhat reduced ischemic lesion size.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
111
|
Evaluating the Impact of Viola spathulata in A Rat Model of Brain Ischemia/Reperfusion by Influencing Expression Level of Caspase-3 and Cyclooxygenase-2. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
112
|
STIM1, STIM2, and PDI Participate in Cellular Fate Decisions in Low Energy Availability Induced by 3-NP in Male Rats. Neurotox Res 2021; 39:1459-1469. [PMID: 34173958 DOI: 10.1007/s12640-021-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Impairment in the energetic function of mitochondria is seen in many neurologic disorders like neurodegeneration. It disrupts ATP production, gives rise to oxidative stress, and ultimately challenges the viability of neurons. In this situation, neural cells use complex crosstalk between various subcellular elements to make live-or-die decisions about their fate. This study aimed to describe a part of the molecular changes and the outcome of the cellular decision during an energy crisis in neural cells in a time-dependent manner in the striatum. Adult male rats were treated with single or multiple 3-nitropropionic acid (3-NP) doses, a mitochondrial toxin, for 1 to 5 days. We found that protein disulfide isomerase (PDI) activity was decreased on the third day and remained lower than the control group up to the fifth day. However, on the day 1 and day 2 of 3-NP treatment, the stromal interaction molecule (STIM) 1 and STIM2 significantly decreased. On the third day, STIM1 and STIM2 were increased and reached the level of controls and remained the same up to the fifth day. In this condition, cell death was significantly higher than the controls from the third day up to the fifth day. We also showed that even a single dose of 3-NP reduced the brain volume. These data suggest that the STIM1, STIM2, and PDI activity changes may be involved in the outcome of cellular fate decisions. It also suggests that cells may reduce STIM1 and STIM2 as a defense mechanism against low energy availability.
Collapse
|
113
|
Ogay V, Kumasheva V, Li Y, Mukhlis S, Sekenova A, Olzhayev F, Tsoy A, Umbayev B, Askarova S, Shpekov A, Kaliyev A, Zhetpisbayev B, Makhambetov Y, Akshulakov S, Saparov A, Ramankulov Y. Improvement of Neurological Function in Rats with Ischemic Stroke by Adipose-derived Pericytes. Cell Transplant 2021; 29:963689720956956. [PMID: 32885682 PMCID: PMC7784564 DOI: 10.1177/0963689720956956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting. Adult male Wistar rats were subjected to 90 min of middle cerebral artery occlusion followed by intravenous injection of rat adipose-derived pericytes 24 h later. Functional recovery evaluations were performed at 1, 7, 14, and 28 days after injection of rat adipose-derived pericytes. Angiogenesis and neurogenesis were examined in rat brains using immunohistochemistry. It was observed that intravenous injection of adipose-derived pericytes significantly improved recovery of neurological function in rats with stroke compared to phosphate-buffered saline-treated controls. Immunohistochemical analysis revealed that the number of blood capillaries was significantly increased along the ischemic boundary zone of the cortex and striatum in stroke rats treated with adipose-derived pericytes. In addition, treatment with adipose-derived pericytes increased the number of doublecortin positive neuroblasts. Our data suggest that transplantation of adipose-derived pericytes can significantly improve the neurologic status and contribute to neurovascular remodeling in rats after ischemic stroke. These data provide a new insight for future cell therapies that aim to treat ischemic stroke patients.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Yelena Li
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Sholpan Mukhlis
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Baurzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Azat Shpekov
- Department of Neurosurgery, Medical Centre Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Assylbek Kaliyev
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Berik Zhetpisbayev
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Yerbol Makhambetov
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Serik Akshulakov
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yerlan Ramankulov
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan.,School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
114
|
Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ, Iguchi Y. A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 2021; 11:12806. [PMID: 34140618 PMCID: PMC8211726 DOI: 10.1038/s41598-021-92321-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
The failure of neuroprotective treatment-related clinical trials may be partially caused by unestablished animal models. Existing animal models are less likely to provide occlusion confined to the middle cerebral artery (MCA), making transarterial intervention difficult. We aimed to develop a novel focal stroke model using a microcatheter and zirconium dioxide that is non-magnetic under fluoroscopic guidance, which can monitor MCA occlusion and can improve hemorrhagic complications. Using male Sprague Dawley rats (n = 10), a microcatheter was navigated from the caudal ventral artery to the left internal carotid artery using an X-ray fluoroscopy to establish local occlusion. All rat cerebral angiographies were successful. No rats had hemorrhagic complications. Eight (80%) rats underwent occlusion of the MCA bifurcation by zirconium dioxide. Accidentally, the left posterior cerebral artery was failure embolized in 2 rats (20%). The median operating time was 8 min. All rats of occlusion MCA revealed an incomplete hemiparesis on the right side with neurological deficit score ranging from 1 to 3 (median 1, interquartile range 1-3) at 24 h after the induction of ischemia. Moreover, 2% 2,3,5-triphenyl tetrazolium chloride staining showed that the median infarct volume (mm3) was 280 (interquartile range 267-333) 24 h after the left MCA bifurcation occlusion. We present a novel rat model for focal stroke using a microcatheter and zirconium dioxide which does not affect the MRI. The model is predictable which is well confined within the territory supplied by the MCA, and reproducibility of this model is 80%. Fluoroscopy was able to identify which the MCA occlusion and model success while creating the model. It permitted exclusion of animals with complications from the experiment.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Koshiro Terawaki
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanako Muta
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
115
|
Wang D, Li L, Zhang Q, Liang Z, Huang L, He C, Wei Q. Combination of Electroacupuncture and Constraint-Induced Movement Therapy Enhances Functional Recovery After Ischemic Stroke in Rats. J Mol Neurosci 2021; 71:2116-2125. [PMID: 34101150 DOI: 10.1007/s12031-021-01863-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Both electroacupuncture and constraint-induced movement therapy have been reported to produce therapeutic effects on the recovery of ischemic stroke. The combined use of these two therapies is not rare clinically, although its effectiveness is not yet clear. We aimed to evaluate the efficacy of the combination of electroacupuncture and constraint-induced movement therapy in ischemic stroke rats, and to explore the potential molecular mechanisms. Ischemic stroke rat models were established by middle cerebral artery occlusion. Then, the rats were assigned to receive one of the following interventions: sole electroacupuncture, sole constraint-induced movement therapy, the combination of both therapies, and no treatment. Functional recovery was assessed with the beam balance test and rotarod test. The infarct volume of the brain and the expression of the molecules Nogo-A, P75NTR, NGF, BDNF, and VEGF in the brain tissue were investigated. The results demonstrated that the combination of the two therapies significantly improved neurological functional recovery in ischemic stroke rats compared to each therapy alone (P < 0.01). We also observed a significant decrease in infarct volume in rats receiving the combined treatment. Nogo-A and P75NTR were downregulated and NGF, BDNF, and VEGF were upregulated in the combined treatment rats compared to the control rats. In conclusion, the combination of electroacupuncture and constraint-induced movement therapy enhanced functional recovery after ischemic stroke in rats, and it is a promising treatment strategy in the rehabilitation of stroke. The anti-Nogo-A effect of electroacupuncture may explain its good compatibility with CIMT in ischemic stroke rats.
Collapse
Affiliation(s)
- Dong Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Lijuan Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Qing Zhang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Zejun Liang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Liyi Huang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Quan Wei
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
116
|
Wang M, Bai Y, Chi H, Lin P, Wu Y, Cui J, Wang Y, Sun J, Lang MF. miR-451 protects against ischemic stroke by targeting Phd3. Exp Neurol 2021; 343:113777. [PMID: 34058227 DOI: 10.1016/j.expneurol.2021.113777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke still remains a therapeutic challenge due to its complex pathogenesis and implications. By screening biomarkers in the peripheral blood of ischemic stroke patients, miR-451 was identified as a differentially expressed miRNA along the disease course of ischemic stroke. To investigate the role of miR-451, middle cerebral artery occlusion (MCAO) was performed as an ischemic stroke model in mice. Intracerebroventricular administration of miR-451 mimic in the MCAO mice significantly decreased infarct size, while miR-451 inhibitor significantly increased infarct size. To understand the molecular mechanism of the protective effect of miR-451, Phd3 (also Egln3) was validated as a new miR-451 target. Either fewer or more Phd3-positive cells were observed in brain sections from mice receiving miR-451 mimic or inhibitor, respectively. In addition, the levels of p53 (a known Phd3 target) were significantly downregulated when the levels of Phd3 were reduced, suggesting its participation in reducing apoptosis after the miR-451 administration. Indeed, reduced apoptosis upon miR-451 mimic administration was detected by TUNEL staining. In conclusion, this study demonstrated a new protective role of miR-451 in cerebral ischemia and identified Phd3 as a novel miR-451 target, linking the mechanism to the involvement of p53 in the regulation of apoptosis during the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China; Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China; Graduate School, Dalian University, Dalian, Liaoning 116622, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China.
| | - Haitao Chi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Ping Lin
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yu Wu
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Jiahui Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yi Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China.
| |
Collapse
|
117
|
Mehta SL, Chokkalla AK, Kim T, Bathula S, Chelluboina B, Morris-Blanco KC, Holmes A, Banerjee A, Chauhan A, Lee J, Venna VR, McCullough LD, Vemuganti R. Long Noncoding RNA Fos Downstream Transcript Is Developmentally Dispensable but Vital for Shaping the Poststroke Functional Outcome. Stroke 2021; 52:2381-2392. [PMID: 33940958 DOI: 10.1161/strokeaha.120.033547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison
| | - Anil K Chokkalla
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison.,Cellular & Molecular Pathology Graduate Program (A.K.C., R.V.), University of Wisconsin-Madison
| | - TaeHee Kim
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison
| | - Saivenkateshkomal Bathula
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison
| | - Bharath Chelluboina
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison
| | - Aleah Holmes
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Anik Banerjee
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Anjali Chauhan
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Juneyoung Lee
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Venugopal R Venna
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Louise D McCullough
- Department of Neurology, University of Texas-Houston (A.H., A.B., A.C., J.L., V.R.V., L.D.M.)
| | - Raghu Vemuganti
- Department of Neurological Surgery (S.L.M., A.K.C., T.K., S.B., B.C., K.C.M.-B., R.V.), University of Wisconsin-Madison.,Cellular & Molecular Pathology Graduate Program (A.K.C., R.V.), University of Wisconsin-Madison.,William S. Middleton Veterans Hospital, Madison (R.V.)
| |
Collapse
|
118
|
Kim T, Chokkalla AK, Vemuganti R. Deletion of ubiquitin ligase Nedd4l exacerbates ischemic brain damage. J Cereb Blood Flow Metab 2021; 41:1058-1066. [PMID: 32703111 PMCID: PMC8054722 DOI: 10.1177/0271678x20943804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ubiquitination by Nedd4 (neuronally expressed developmentally downregulated 4) family of HECT type E3 ligases plays a key role in degrading misfolded and damaged proteins, and its disruption leads to neurodegeneration. Parkinson's disease-causing protein α-Synuclein (α-Syn) is ubiquitinated by the Nedd4 family and degraded by endosomes. Nedd4l is the only Nedd4 homolog that showed upregulation in post-stroke surviving cortical neurons where it correlated with neuroprotection. We tested the role of Nedd4l after stroke by subjecting the Nedd4l-/- mice to transient middle cerebral artery occlusion. Focal ischemia significantly increased Nedd4l expression and poly-ubiquitinated α-Syn levels, and knockout of Nedd4l reduced post-ischemic poly-ubiquitinated α-Syn that is majorly located in the peri-infarct neurons. Co-immunoprecipitation further shows that focal ischemia enhances the α-Syn-Nedd4l interaction resulting in increased ubiquitination of α-Syn. Nedd4l knockout mice (n = 7 mice/group) showed exacerbated post-ischemic motor dysfunction manifested by decreased time on the rotarod and increased number of foot faults, and significantly increased ischemic brain damage. This suggests that Nedd4l might be a potential therapeutic target to minimize α-Syn-mediated toxicity after cerebral ischemia.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
119
|
Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle Delivered Anti-miR-141-3p for Stroke Therapy. Cells 2021; 10:cells10051011. [PMID: 33922958 PMCID: PMC8145654 DOI: 10.3390/cells10051011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Rutesh N. Vyas
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Leslie Blumenfeld
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Rajkumar Verma
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
- Correspondence: (R.V.); (R.B.)
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
- Correspondence: (R.V.); (R.B.)
| |
Collapse
|
120
|
Anquetil T, Solinhac R, Jaffre A, Chicanne G, Viaud J, Darcourt J, Orset C, Geuss E, Kleinschnitz C, Vanhaesebroeck B, Vivien D, Hnia K, Larrue V, Payrastre B, Gratacap MP. PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep 2021; 22:e51299. [PMID: 33880878 DOI: 10.15252/embr.202051299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelium protection is critical, because of the impact of vascular leakage and edema on pathological conditions such as brain ischemia. Whereas deficiency of class II phosphoinositide 3-kinase alpha (PI3KC2α) results in an increase in vascular permeability, we uncover a crucial role of the beta isoform (PI3KC2β) in the loss of endothelial barrier integrity following injury. Here, we studied the role of PI3KC2β in endothelial permeability and endosomal trafficking in vitro and in vivo in ischemic stroke. Mice with inactive PI3KC2β showed protection against vascular permeability, edema, cerebral infarction, and deleterious inflammatory response. Loss of PI3KC2β in human cerebral microvascular endothelial cells stabilized homotypic cell-cell junctions by increasing Rab11-dependent VE-cadherin recycling. These results identify PI3KC2β as a potential new therapeutic target to prevent aggravating lesions following ischemic stroke.
Collapse
Affiliation(s)
- Typhaine Anquetil
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Romain Solinhac
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Aude Jaffre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Gaëtan Chicanne
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Julien Viaud
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Jean Darcourt
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Cyrille Orset
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France
| | - Eva Geuss
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | - Denis Vivien
- INSERM, UMR-S U1237 and Caen-Normandie University, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, Caen University Hospital, Caen, France
| | - Karim Hnia
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| | - Vincent Larrue
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Bernard Payrastre
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France.,Laboratoire d'Hématologie, CHU de Toulouse, Toulouse Cedex, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-S U1297 and University of Toulouse III, Institute of Cardiovascular and Metabolic Diseases (I2MC), CHU-Rangueil, Toulouse, France
| |
Collapse
|
121
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
122
|
Meng D, Ma X, Li H, Wu X, Cao Y, Miao Z, Zhang X. A Role of the Podoplanin-CLEC-2 Axis in Promoting Inflammatory Response After Ischemic Stroke in Mice. Neurotox Res 2021; 39:477-488. [PMID: 33165736 DOI: 10.1007/s12640-020-00295-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is a platelet surface-activating receptor with the prominent involvement in platelet activation, which was found to be associated with the progression and prognosis of acute ischemic stroke patients. Although podoplanin is the only known endogenous ligand for CLEC-2, the role of podoplanin/CLEC-2 in cerebral ischemia injury was unclear. In this study, we examined their role by using a mouse middle cerebral artery occlusion (MCAO) model. The expression of CLEC-2 and podoplanin increased after ischemia/reperfusion (I/R) injury, peaked at 24 h, and then decreased gradually. Podoplanin and CLEC-2 co-localized mainly in the ischemia/reperfusion cortex and expressed on neurons and microglia. Anti-podoplanin antibody pretreatment reduced cerebral infarct volume from 52.67 ± 4.67 to 34.08 ± 6.04% (P < 0.05) and attenuated the neurological deficits during acute stage and recovery stage. Moreover, a significant decrease of IL-18 and IL-1β was observed in the mice pretreated with the anti-podoplanin antibody. Our results demonstrate that the podoplanin-CLEC-2 axis might play an important role in cerebral ischemia/reperfusion injury in mice by promoting inflammatory reactions.
Collapse
Affiliation(s)
- Danyang Meng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Xiaohua Ma
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xuechun Wu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu,, China.
| | - Xia Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
123
|
Bhattarai S, Akella A, Gandhi A, Dharap A. Modulation of Brain Pathology by Enhancer RNAs in Cerebral Ischemia. Mol Neurobiol 2021; 58:1482-1490. [PMID: 33201427 PMCID: PMC7933068 DOI: 10.1007/s12035-020-02194-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023]
Abstract
Recent studies have reported widespread stimulus-dependent transcription of mammalian enhancers into noncoding enhancer RNAs (eRNAs), some of which have central roles in the enhancer-mediated induction of target genes and modulation of phenotypic outcomes during development and disease. In cerebral ischemia, the expression and functions of eRNAs are virtually unknown. Here, we applied genome-wide H3K27ac ChIP-seq and genome-wide RNA-seq to identify enhancer elements and stroke-induced eRNAs, respectively, in the mouse cerebral cortex during transient focal ischemia. Following a 1-h middle cerebral artery occlusion (MCAO) and 6 h of reperfusion, we identified 77 eRNAs that were significantly upregulated in stroke as compared to sham, of which 55 were exclusively expressed in stroke. The knockdown of two stroke-induced eRNAs in the mouse brain resulted in significantly larger infarct volumes as compared to controls, suggesting that these eRNAs are involved in the post-stroke neuroprotective response. A preliminary comparison of eRNA expression in the male versus female cortices revealed sex-dependent patterns that may underlie the physiological differences in response to stroke between the two sexes. Together, this study is the first to illuminate the eRNA landscape in the post-stroke cortex and demonstrate the significance of an eRNA in modulating post-stroke cortical brain damage.
Collapse
Affiliation(s)
- Sunil Bhattarai
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Aparna Akella
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Atish Gandhi
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Ashutosh Dharap
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| |
Collapse
|
124
|
Hsu TW, Lu YJ, Lin YJ, Huang YT, Hsieh LH, Wu BH, Lin YC, Chen LC, Wang HW, Chuang JC, Fang YQ, Huang CC. Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials 2021; 272:120765. [PMID: 33780686 DOI: 10.1016/j.biomaterials.2021.120765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/02/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022]
Abstract
Ischemic stroke, and the consequent brain cell death, is a common cause of death and disability worldwide. Current treatments that primarily aim to relieve symptoms are relatively inefficient in achieving brain tissue regeneration and functional recovery, and thus novel therapeutic options are urgently needed. Although cell-based therapies have shown promise for treating the infarcted brain, a recurring challenge is the inadequate retention and engraftment of transplanted cells at the target tissue, thereby limiting the ultimate therapeutic efficacy. Here, we show that transplantation of preassembled three-dimensional (3D) spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs) results in significantly improved cell retention and survival compared with conventional mixed-cell suspensions. The transplanted 3D spheroids exhibit notable neuroprotective, proneurogenic, proangiogenic and anti-scarring potential as evidenced by clear extracellular matrix structure formation and paracrine factor expression and secretion; this ultimately results in increased structural and motor function recovery in the brain of an ischemic stroke mouse model. Therefore, transplantation of MSCs and ECs using the 3D cell spheroid configuration not only reduces cell loss during cell harvesting/administration but also enhances the resultant therapeutic benefit, thus providing important proof-of-concept for future clinical translation.
Collapse
Affiliation(s)
- Ting-Wei Hsu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 33305, Taiwan; Centre for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Centre for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ting Huang
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bing-Huan Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Chi Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Wen Wang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-Che Chuang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Qiao Fang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
125
|
Wang M, Li Y, Zhang R, Zhang S, Feng H, Kong Z, Aiziretiaili N, Luo Z, Cai Q, Hong Y, Liu Y. Adiponectin-Transfected Endothelial Progenitor Cells Have Protective Effects After 2-Hour Middle-Cerebral Artery Occlusion in Rats With Type 2 Diabetes Mellitus. Front Neurol 2021; 12:630681. [PMID: 33746885 PMCID: PMC7966523 DOI: 10.3389/fneur.2021.630681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: This present study aimed to examine the effects of adiponectin-transfected endothelial progenitor cells (LV-APN-EPCs) on cerebral ischemia–reperfusion injury in rats with type 2 diabetes mellitus (T2DM) and to explore the underlying mechanisms. Methods: Seventy male Sprague–Dawley rats with T2DM were randomly divided into sham, phosphate-buffered saline (PBS), LV-APN-EPCs, LV-EPCs, and EPCs groups. Transient middle cerebral artery occlusion (MCAO) was induced by the intraluminal suture method. After 1 h of reperfusion, the five interventions were performed by tail-vein injections. The modified neurological severity score (mNSS) was used to assess neurological function before and on days 1, 7, and 14 after MCAO. After 14 days, magnetic resonance imaging scanning, hematoxylin and eosin staining, terminal dUTP nick-end labeling staining, Western blotting analysis, cluster of differentiation (CD) 31 immunofluorescence, and enzyme-linked immunosorbent assay were used to evaluate infarct rate, morphological damage, cell apoptosis, and microvessel density. Results: Compared with PBS, LV-EPCs, and EPCs groups, the LV-APN-EPCs group showed significantly lower mNSS score, lower infarct rate, and less morphological damage (all P < 0.05). In addition, compared with other groups, the LV-APN-EPCs group had significantly increased levels of B cell lymphoma/leukemia-2 (Bcl-2) protein, CD31+ microvessels, endothelial nitric oxide synthase, and vascular endothelial growth factor, and decreased levels of Bcl-2-associated X protein and neuronal apoptosis in the peri-infarct cortex (all P < 0.05). Conclusion: These results suggest that LV-APN-EPCs exert protective effects against cerebral ischemia–reperfusion injury in T2DM rats by increasing angiogenesis.
Collapse
Affiliation(s)
- Meiyao Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renwei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuaimei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongliang Feng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhaohong Kong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nadire Aiziretiaili
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengjin Luo
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qi Cai
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Hong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
126
|
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R, Zhang Z. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 2021; 93:312-321. [PMID: 33444733 DOI: 10.1016/j.bbi.2021.01.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) is an important isozyme for polyunsaturated fatty acids (PUFAs) metabolism that dictates ferroptosis sensitivity. The role of ACSL4 in the progression of ischemic stroke is unclear. Here, we found that ACSL4 expression was suppressed in the early phase of ischemic stroke and this suppression was induced by HIF-1α. Knockdown of ACSL4 protected mice against brain ischemia, whereas, forced overexpression of ACSL4 exacerbated ischemic brain injury. ACSL4 promoted neuronal death via enhancing lipid peroxidation, a marker of ferroptosis. Moreover, knockdown of ACSL4 inhibited proinflammatory cytokine production in microglia. These data identify ACSL4 as a novel regulator of neuronal death and neuroinflammation, and interventions of ACSL4 expression may provide a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yan Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Xiaolong Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Liming Shao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Guoping Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Chengjian Sun
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China.
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China.
| |
Collapse
|
127
|
Rajagopal S, Yang C, DeMars KM, Poddar R, Candelario-Jalil E, Paul S. Regulation of post-ischemic inflammatory response: A novel function of the neuronal tyrosine phosphatase STEP. Brain Behav Immun 2021; 93:141-155. [PMID: 33422638 PMCID: PMC7979508 DOI: 10.1016/j.bbi.2020.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
The neuron-specific tyrosine phosphatase STEP is emerging as a key neuroprotectant against acute ischemic stroke. However, it remains unclear how STEP impacts the outcome of stroke. We find that the exacerbation of ischemic brain injury in STEP deficient mice involves an early onset and sustained activation of neuronal p38 mitogen activated protein kinase, a substrate of STEP. This leads to rapid increase in the expression of neuronal cyclooxygenase-2 and synthesis of prostaglandin E2, causing change in microglial morphology to an amoeboid activated state, activation of matrix metalloproteinase-9, cleavage of tight junction proteins and extravasation of IgG into the ischemic brain. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the post-ischemic inflammatory response and attenuates brain injury. The findings identify a unique role of STEP in regulating post-ischemic neuroinflammation and further emphasizes the therapeutic potential of the STEP-mimetic in neurological disorders where inflammation contributes to brain damage.
Collapse
Affiliation(s)
| | - Changjun Yang
- University of Florida, Department of Neuroscience, USA
| | | | - Ranjana Poddar
- University of New Mexico Health Sciences Center, Department of Neurology, USA
| | | | - Surojit Paul
- University of New Mexico Health Sciences Center, Department of Neurology, USA; University of New Mexico Health Sciences Center, Department of Neuroscience, USA.
| |
Collapse
|
128
|
Guo Y, Zhou J, Li X, Xiao Y, Zhang J, Yang Y, Feng L, Kang YJ. The Association of Suppressed Hypoxia-Inducible Factor-1 Transactivation of Angiogenesis With Defective Recovery From Cerebral Ischemic Injury in Aged Rats. Front Aging Neurosci 2021; 13:648115. [PMID: 33716719 PMCID: PMC7953721 DOI: 10.3389/fnagi.2021.648115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
Elderly patients suffer more brain damage in comparison with young patients from the same ischemic stroke. The present study was undertaken to test the hypothesis that suppressed hypoxia-inducible factor-1 (HIF-1) transcription activity is responsible for defective recovery after ischemic stroke in the elders. Aged and young rats underwent 1-h transient middle cerebral artery occlusion (MCAO) to produce cerebral ischemic injury. The initial cerebral infarct volume in the young gradually declined as time elapsed, but in the aged rats remained the same. The defective recovery in the aged was associated with depressed angiogenesis and retarded neurorestoration. There was no difference in HIF-1α accumulation in the brain between the two age groups, but the expression of HIF-1 regulated genes involved in cerebral recovery was suppressed in the aged. In confirmation, inhibition of HIF-1 transactivation of gene expression in the young suppressed cerebral recovery from MCAO as the same as that observed in the aged rats. Furthermore, a copper metabolism MURR domain 1 (COMMD1) was significantly elevated after MCAO only in the brain of aged rats, and suppression of COMMD1 by siRNA targeting COMMD1 restored HIF-1 transactivation and improved recovery from MCAO-induced damage in the aged brain. These results demonstrate that impaired HIF-1 transcription activity, due at least partially to overexpression of COMMD1, is associated with the defective cerebral recovery from ischemic stroke in the aged rats.
Collapse
Affiliation(s)
- Yingjia Guo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junpeng Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Xiao
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yutao Yang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Feng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
129
|
Qu X, Zhang Z, Xu X, Wang J, Lei C, Zhou G, Wu W, Huang L, Chen X, Yu S, Wang T. Selective sphingosine-1-phosphate receptor 1 modulation ameliorates TBI-induced neurological deficit after CCI. Neurosci Lett 2021; 750:135748. [PMID: 33610668 DOI: 10.1016/j.neulet.2021.135748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The inflammatory response after traumatic brain injury (TBI) can contribute to secondary brain injury. RP101075, a sphingosine-1-phosphate receptor modulator, can attenuate various inflammatory responses. Here, we hypothesized that consecutive administration of RP101075 over 3 days could broadly suppress the TBI-induced inflammatory response and ameliorate the outcomes of TBI. METHODS AND RESULTS Young C57/BL6 mice were subjected to a controlled cortical impact (CCI) model. RP101075-treated mice exhibited significantly reduced scores on the modified neurological severity score (mNSS) test on days 3, 7, 14, and 21 after TBI, in comparison to TBI mice that received the vehicle. RP101075-treated mice had a remarkably decreased percentage of foot faults on the foot fault test on days 7, 14, and 21 after surgery, in comparison to TBI mice that received the vehicle. Using the wet brain weight/dry brain weight method, we found that RP101075 attenuated brain edema at 3 days post-TBI. According to the results of the Morris water maze (MWM), TBI mice treated with RP101075 exhibited reduced latency time and an increased percentage of target quadrant time from day 24 to day 25 after TBI, in comparison to TBI mice that received the vehicle. In addition, flow cytometry and immunohistochemistry showed that RP101075 markedly decreased the number of infiltrated T cells, B cells and NK cells at 3 days after TBI. Analysis of Western blot data showed that RP101075 lowered the expression of proinflammatory factors on day 3 after TBI. CONCLUSIONS Our study demonstrated that consecutive administration of RP101075 over 3 days suppressed the TBI-induced inflammatory response and ameliorated neurological deficits after TBI. Thus, this procedure may be a potential treatment strategy for TBI in the clinical setting.
Collapse
Affiliation(s)
- Xingguang Qu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Zhaohui Zhang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Xiaoyun Xu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Jiahui Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Chao Lei
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Wen Wu
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Lin Huang
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Xing Chen
- Department of Critical Care Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Su Yu
- Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| | - Tao Wang
- Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, 443003, China.
| |
Collapse
|
130
|
Matsuo K, Hosoda K, Tanaka J, Yamamoto Y, Imahori T, Nakai T, Irino Y, Shinohara M, Sasayama T, Kohmura E. Geranylgeranylacetone attenuates cerebral ischemia-reperfusion injury in rats through the augmentation of HSP 27 phosphorylation: a preliminary study. BMC Neurosci 2021; 22:9. [PMID: 33557752 PMCID: PMC7869466 DOI: 10.1186/s12868-021-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background We previously reported that heat shock protein 27 (HSP27) phosphorylation plays an important role in the activation of glucose-6-phosphate dehydrogenase (G6PD), resulting in the upregulation of the pentose phosphate pathway and antioxidant effects against cerebral ischemia–reperfusion injury. The present study investigated the effect of geranylgeranylacetone, an inducer of HSP27, on ischemia–reperfusion injury in male rats as a preliminary study to see if further research of the effects of geranylgeranylacetone on the ischemic stroke was warranted. Methods In all experiments, male Wistar rats were used. First, we conducted pathway activity profiling based on a gas chromatography–mass spectrometry to identify ischemia–reperfusion-related metabolic pathways. Next, we investigated the effects of geranylgeranylacetone on the pentose phosphate pathway and ischemia–reperfusion injury by real-time polymerase chain reaction (RT-PCR), immunoblotting, and G6PD activity, protein carbonylation and infarct volume analysis. Geranylgeranylacetone or vehicle was injected intracerebroventricularly 3 h prior to middle cerebral artery occlusion or sham operation. Results Pathway activity profiling demonstrated that changes in the metabolic state depended on reperfusion time and that the pentose phosphate pathway and taurine-hypotaurine metabolism pathway were the most strongly related to reperfusion among 137 metabolic pathways. RT-PCR demonstrated that geranylgeranylacetone did not significantly affect the increase in HSP27 transcript levels after ischemia–reperfusion. Immunoblotting showed that geranylgeranylacetone did not significantly affect the elevation of HSP27 protein levels. However, geranylgeranylacetone significantly increase the elevation of phosphorylation of HSP27 after ischemia–reperfusion. In addition, geranylgeranylacetone significantly affected the increase in G6PD activity, and reduced the increase in protein carbonylation after ischemia–reperfusion. Accordingly, geranylgeranylacetone significantly reduced the infarct size (median 31.3% vs 19.9%, p = 0.0013). Conclusions As a preliminary study, these findings suggest that geranylgeranylacetone may be a promising agent for the treatment of ischemic stroke and would be worthy of further study. Further studies are required to clearly delineate the mechanism of geranylgeranylacetone-induced HSP27 phosphorylation in antioxidant effects, which may guide the development of new approaches for minimizing the impact of cerebral ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohkichi Hosoda
- Department of Neurosurgery, Kobe City Nishi-Kobe Medical Center, 5-7-1, Kojidai, Nishi-ku, Kobe, Hyogo, 651-2273, Japan.
| | - Jun Tanaka
- Department of Neurosurgery, Konan Hospital, Kobe, Japan
| | - Yusuke Yamamoto
- Department of Neurosurgery, Toyooka Hospital, Toyooka, Japan
| | - Taichiro Imahori
- Department of Neurosurgery, Hyogo Brain and Heart Center at Himeji, Himeji, Japan
| | - Tomoaki Nakai
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Division of Medical Education, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
131
|
Zhong J, Li RW, Wang J, Wang Y, Ge HF, Xian JS, Feng H, Tan L. Neuroprotection by cattle encephalon glycoside and ignotin beyond the time window of thrombolysis in ischemic stroke. Neural Regen Res 2021; 16:312-318. [PMID: 32859790 PMCID: PMC7896241 DOI: 10.4103/1673-5374.290899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 01/01/2023] Open
Abstract
Cattle encephalon glycoside and ignotin (CEGI) injection is known as a multi-target neuroprotective drug that contains numerous liposoluble molecules, such as polypeptides, monosialotetrahexosyl ganglioside (GM-1), free amino acids, hypoxanthine and carnosine. CEGI has been approved by the Chinese State Food and Drug Administration and widely used in the treatments of various diseases, such as stroke and Alzheimer's disease. However, the neuroprotective effects of CEGI beyond the time window of thrombolysis (within 4.5 hours) on acute ischemic stroke remain unclear. This study constructed a rat middle cerebral artery occlusion model by suture-occluded method to simulate ischemic stroke. The first daily dose was intraperitoneally injected at 8 hours post-surgery and the CEGI treatments continued for 14 days. Results of the modified five-point Bederson scale, beam balance test and rotameric test showed the neurological function of ischemic stroke rats treated with 4 mL/kg/d CEGI improved significantly, but the mortality within 14 days did not change significantly. Brain MRI and 2,3,5-triphenyltetrazolium chloride staining confirmed that the infarct size in the 4 mL/kg/d CEGI-treated rats was significantly reduced compared with ischemic insult only. The results of transmission electron microscopy and double immunofluorescence staining showed that the hippocampal neuronal necrosis in the ischemic penumbra decreased whereas the immunopositivity of new neuronal-specific protein doublecortin and the percentage of Ki67/doublecortin positive cells increased in CEGI-treated rats compared with untreated rats. Our results suggest that CEGI has an effective neuroprotective effect on ischemic stroke when administered after the time window of thrombolysis. The study was approved by the Animal Ethics Committee of The Third Military Medical University, China.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong-Wei Li
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Wang
- Department of Oncology, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Hong-Fei Ge
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ji-Shu Xian
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
132
|
Lu F, Fan S, Romo AR, Xu D, Ferriero DM, Jiang X. Serum 24S-hydroxycholesterol predicts long-term brain structural and functional outcomes after hypoxia-ischemia in neonatal mice. J Cereb Blood Flow Metab 2021; 41:312-323. [PMID: 32169014 PMCID: PMC8369995 DOI: 10.1177/0271678x20911910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The major pathway of brain cholesterol turnover relies on its hydroxylation into 24S-hydroxycholesterol (24S-HC) using brain-specific cytochrome P450 46A1 (CYP46A1). 24S-HC produced exclusively in the brain normally traverses the blood-brain barrier to enter the circulation to the liver for excretion; therefore, the serum 24S-HC level is an indication of cholesterol metabolism in the brain. We recently reported an upregulation of CYP46A1 following hypoxia-ischemia (HI) in the neonatal mouse brain and a correlation between serum 24S-HC levels and acute brain damage. Here, we performed a longitudinal study to investigate whether the serum 24S-HC concentrations predict long-term brain structural and functional outcomes. In postnatal day 9 mice subjected to HI, the serum 24S-HC levels increased at 6 h and 24 h after HI and correlated with the infarct volumes measured histologically or by T2-weighted MRI. The 24 h levels were associated with white matter volume loss quantified by MBP immunostaining and luxol fast blue staining. The animals with higher serum 24S-HC at 6 h and 24 h corresponded to those with more severe motor and cognitive deficits at 35-40 days after HI. These data suggest that 24S-HC could be a novel and early blood biomarker for severity of neonatal HI brain damage and associated functional impairments.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Shujuan Fan
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea R Romo
- University of California Berkeley, Berkeley, CA, USA
| | - Duan Xu
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Donna M Ferriero
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
133
|
β-1, 3-galactosyltransferase 2 deficiency exacerbates brain injury after transient focal cerebral ischemia in mice. Brain Res Bull 2021; 169:104-111. [PMID: 33482286 DOI: 10.1016/j.brainresbull.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Glycosyltransferases are enzymes that catalyze the formation of a variety of glycoconjugates. Glycoconjugates play vital roles in the nervous system. β-1, 3-Galactosyltransferase 2 (B3galt2) is one of the major types of glycosyltransferases, which has not been reported in ischemia induced-brain injury. The purpose of this study was to explore the role of B3galt2 exerts and its underlying mechanism in cerebral ischemia in mice. Wild-type (WT) and heterozygous B3galt2 knockout (B3galt2-/+) mice were subjected to 90 min transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO). The brain samples were analyzed at 24 h after reperfusion. The B3galt2 level in the peri-infarct penumbra was quantified. The cerebral infarct volume, neurological deficits, apoptosis and the levels of Reelin and Dab1 were assessed. Compared with control mice, B3galt2-/+ mice not only showed severe brain damage, neurologic functional deficits, but also showed severe neuronal apoptosis in the cortical penumbra after ischemia/reperfusion (I/R). The Caspase-3 activity was increased and the levels of Reelin and Dab1 were decreased in B3galt2-/+ mice. Recombinant human Reelin (rh-Reelin) administered intracerebroventricularly before MCAO significantly reduced infarct volume, and prevented neuronal loss in B3galt2-/+ mice after I/R. Our results suggest B3galt2 deficiency exacerbates ischemic brain damage in acute ischemic stroke in mice, and this was reversed by giving rh-Reelin. B3galt2 might play a beneficial role for neurons survival in the penumbra through modulation of Reelin pathway.
Collapse
|
134
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
135
|
Wang Y, Liu F, Liu P. 23-Hydroxytormentic acid reduces cerebral ischemia/reperfusion damage in rats through anti-apoptotic, antioxidant, and anti-inflammatory mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1045-1054. [PMID: 33394135 DOI: 10.1007/s00210-020-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
23-Hydroxytormentic acid (23-HTA) is an important herbal medicine purified from immature fruits of African Rubus aceae (Rosaceae). This study was carried out to examine the protection properties and potential mechanisms of 23-HTA against cerebral ischemia/reperfusion (I/R) damage. Rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R) 2/24 h. All animals were euthanized 24 h after reperfusion. Rats were injected with various concentrations of 23-HTA intraperitoneally. Evaluations of infarct volumes, neurological deficit, and brain water contents were carried out to assess the outcome of 23-HTA treatment. The results showed that 23-HTA reduced infarct volumes, brain water content, and neurological deficit in a dosage-dependent manner. 23-HTA can also significantly reduce the numbers of TUNEL-positive cells, the expression levels of Bax, caspase-3, lipid peroxidation, Sod 1, Sod 2, catalase, and pro-inflammatory cytokines TNF and IL-1β and increase the expression levels of Bcl-2 and p-Akt. 23-HTA has a neuroprotective effect due to its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Fengrong Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Peng Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China.
| |
Collapse
|
136
|
Yi CA, Jiang YH, Wang Y, Li YX, Cai SC, Wu XY, Hu XS, Wan XG. Black Bamboo Rhizome Extract Improves Cognitive Dysfunction by Upregulating the Expression of Hippocampal BDNF and CREB in Rats with Cerebral Ischaemia-Reperfusion Injury. Neuropsychiatr Dis Treat 2021; 17:2257-2267. [PMID: 34285486 PMCID: PMC8286084 DOI: 10.2147/ndt.s314162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The study aimed to explore the effects of treatment with black bamboo rhizome extracts on learning and memory and determine the underlying mechanisms in rats with cerebral ischaemia-reperfusion injury. METHODS Sprague-Dawley rats were randomly divided into the following four groups: control, middle cerebral artery occlusion (MCAO), low-dose drug, and high-dose drug groups. Rats underwent MCAO using a suture method before drug treatment. Then, neurological impairment was assessed using the Longa scoring method, and triphenyl tetrazolium chloride staining was used to analyse the cerebral infarction area. The Elliott formula was used to calculate water content in the brain tissue. A Morris water maze (MWM) was used to assess changes in learning and memory abilities, and Western blotting was used to detect cyclic adenosine phosphate response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of MCAO rats. RESULTS After treatment with black bamboo rhizome extracts, the neurological dysfunction score was lower in the drug groups than in the MCAO group, and a significant difference was observed between the high-dose drug and MCAO groups (P<0.05). Additionally, the cerebral infarction area was significantly smaller in the drug groups than in the MCAO group (P<0.01), and the effect was more obvious in the high-dose drug group than in the low-dose drug group. There was also a significant difference in water content between the high-dose drug and MCAO groups, and cerebral oedema was significantly reduced in the high-dose drug group (P<0.05). In the MWM, the incubation period was significantly reduced, the number of platform crossings was significantly increased, and the search time was prolonged in the drug groups compared with those in the MCAO group (P<0.05). Moreover, the expression of BDNF and CREB was significantly increased in the drug groups compared to that in the MCAO group, and the increase was more obvious in the high-dose group than in the low-dose group (P<0.05). DISCUSSION Black bamboo rhizome extracts significantly improved cognitive dysfunction, reduced cerebral oedema, decreased the cerebral infarction area, and improved the neurological function score and learning and memory abilities in rats with cerebral ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Chuan-An Yi
- Medical Morphology Experimental Center, Hunan University of Medicine, Hunan, People's Republic of China
| | - Yu-Hong Jiang
- Medical Morphology Experimental Center, Hunan University of Medicine, Hunan, People's Republic of China
| | - Ye Wang
- Key Laboratory of Dong Medical Research Hunan Province, Hunan, People's Republic of China
| | - Yu-Xian Li
- Department of Neurology, Hunan University of Medicine, Hunan, People's Republic of China
| | - Shi-Chang Cai
- Department of Anatomy, Hunan University of Medicine, Hunan, People's Republic of China
| | - Xiu-Yu Wu
- Department of Anatomy, Hunan University of Medicine, Hunan, People's Republic of China
| | - Xiang-Shang Hu
- Department of Anatomy, Hunan University of Medicine, Hunan, People's Republic of China
| | - Xing-Guang Wan
- Department of Anatomy, Hunan University of Medicine, Hunan, People's Republic of China
| |
Collapse
|
137
|
Lu F, Wang L, Chen Y, Zhong X, Huang Z. In vitro cultured calculus bovis attenuates cerebral ischaemia-reperfusion injury by inhibiting neuronal apoptosis and protecting mitochondrial function in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113168. [PMID: 32730869 DOI: 10.1016/j.jep.2020.113168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In vitro cultured calculus bovis (ICCB), which is produced based on the formation mechanism of bovine gallstones, is used to replace the natural bezoar. It has been used in the clinic to treat brain diseases, including stroke, Alzheimer's disease and depression. AIM OF STUDY ICCB is used to treat encephalopathy in the clinic. We explored the effects of ICCB on cerebral ischaemia-reperfusion injury (CIRI) and the potential associated mechanisms. MATERIALS AND METHODS Rats were subjected to middle cerebral artery occlusion for 90 min, followed by 24 h of reperfusion, after being given different concentrations of ICCB once a day for 3 days. Subsequently, the neurological scores, brain oedema and volume of cerebral infarction were measured, and the histopathological changes in the cortex neurons were observed by haematoxylin and eosin staining (H&E). Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL). Ultrastructural changes in the mitochondria of the cortex were assessed by transmission electron microscopy (TEM). The apoptosis-related proteins Bax, Bcl-2, caspase-9, caspase-3, Mito-Cyt C and Cyto-Cyt C were detected by Western blotting. RESULTS Compared with those in the control group, the neurological scores, the volumes of cerebral infarction, and the brain water contents were significantly decreased in the ICCB groups at doses of 50 and 100 mg/kg. The ICCB treatment effectively decreased the neuronal apoptosis resulting from the CIRI-induced neuron injury. In addition, the histopathological damage and the mitochondria ultrastructure injury were partially improved in the CIRI rats after ICCB treatment. Western blotting analysis indicated that ICCB significantly decreased the expression of Bax, caspase-9, caspase-3 and Cyto-Cyt C protein levels while increasing the expression of Bcl-2 and Mito-Cyt C protein levels. CONCLUSION The ICCB protected against CIRI by suppressing the mitochondria-mediated apoptotic signalling pathway.
Collapse
Affiliation(s)
- Feibiao Lu
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, PR China
| | - Lingfeng Wang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, PR China
| | - Yanyue Chen
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, PR China
| | - Xiaoming Zhong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, PR China.
| | - Zhen Huang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, PR China.
| |
Collapse
|
138
|
Hosseini R, Bigdeli MR, Khaksar S, Aliaghaei A. The Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:98-114. [PMID: 33224215 PMCID: PMC7667533 DOI: 10.22037/ijpr.2020.15574.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cell transplantation was performed in the right striatum by using stereotaxic surgery. For induction of brain ischemia, middle cerebral artery occlusion surgery was used 14 days after transplantation. By using western blotting method, expression of nuclear factor kappa (NF-кB) and Bax were evaluated. In this study, a remarkable decrease in neurological deficits, infection, blood-brain barrier permeability, and brain edema was observed in the cell transplant recipient group in comparison with the ischemia group. Probably, a reduction in inflammation (NF-кB factor) and apoptosis (Bax) following injection of Sertoli cells result in amelioration of ischemic damages induced by MCAO surgery.
Collapse
Affiliation(s)
- Roya Hosseini
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Bigdeli
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
139
|
YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis 2020; 11:977. [PMID: 33188203 PMCID: PMC7666223 DOI: 10.1038/s41419-020-03186-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
YTH Domain Containing 1 (YTHDC1) is one of the m6A readers that is essential for oocyte development and tumor progression. The role of YTHDC1 in neuronal survival and ischemic stroke is unknown. Here, we found that YTHDC1 was unregulated in the early phase of ischemic stroke. Knockdown of YTHDC1 exacerbated ischemic brain injury and overexpression of YTHDC1 protected rats against brain injury. Mechanistically, YTHDC1 promoted PTEN mRNA degradation to increase Akt phosphorylation, thus facilitating neuronal survival in particular after ischemia. These data identify YTHDC1 as a novel regulator of neuronal survival and modulating m6A reader YTHDC1 may provide a potential therapeutic target for ischemic stroke.
Collapse
|
140
|
Ramdan M, Bigdeli MR, Khaksar S, Aliaghaei A. Evaluating the effect of transplanting umbilical cord matrix stem cells on ischemic tolerance in an animal model of stroke. Neurol Res 2020; 43:225-238. [PMID: 33167823 DOI: 10.1080/01616412.2020.1839698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Stroke, a cerebrovascular disease, has been introduced as the second cause of death and physical disability in the world. Recently, cell-based therapy has been considered by the scientific community as a promising strategy for reducing ischemic damages. The stem cells of the umbilical cord release growth and neurotrophic factors. The remarkable properties of these cells are the reason why they were selected as a potential candidate in the present research. METHODS In this study, the impact of transplanting umbilical cord stem cells on injuries resulting from ischemia was investigated. The male rats were categorized into three major. Using stereotaxic surgery, stem cells were injected to the right striatum of the brain. One week after transplantation, cerebral ischemic induction surgery was performed. The rats in the transplantation + ischemia group were separately divided into distinct sub-groups to explore the score of the neurological deficits, infarction volume, integrity of the blood-brain barrier, and brain edema. RESULTS In this study, a significant decrease was observed in the neurological deficits of the transplantation + ischemia group compared with those of the control group. Similarly, the volume of infarction, the permeability of the blood-brain barrier, and edema were significantly reduced in the transplantation + ischemia group in comparison with those of the control group. CONCLUSION The pretreatment of the transplanted umbilical cord stem cells in the striatum of ischemic rats possibly leads to restorative events, exerting a decreasing effect on cell death. Subsequently, these events may improve the motor ability and reduce ischemic injuries.
Collapse
Affiliation(s)
- Mahmoud Ramdan
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran, Iran
| | - Mohammad Reza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran, Iran.,Inistitute for Cognitive and Brain Science, Shahid Beheshti University , Tehran, Iran
| | - Sepideh Khaksar
- Department of Plant Sciences, Biological Sciences, Alzahra University , Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy Department, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
141
|
Mi Z, Liu H, Rose ME, Ma X, Reay DP, Ma J, Henchir J, Dixon CE, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates TBI-induced axonal injury and neuronal death in mice. Exp Neurol 2020; 336:113524. [PMID: 33159930 DOI: 10.1016/j.expneurol.2020.113524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023]
Abstract
Ubiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury. UCHL1 hydrolyzes Ub from polyubiquitinated (poly-Ub) proteins, but also may ligate Ub to select neuronal proteins, and interact with cytoskeletal proteins. These and other mechanisms have been hypothesized to underlie UCHL1's role in neurodegeneration and response to brain injury. A UCHL1 knockin mouse containing a C90A mutation (C90A) devoid of hydrolase activity was constructed. The C90A mouse did not develop the sensory and motor deficits, degeneration of the gracile nucleus and tract, or premature death as seen in UCHL1 deficient mice. C90A and wild type (WT) mice were subjected to the controlled cortical impact (CCI) model of traumatic brain injury (TBI), and cell death, axonal injury and behavioral outcome were assessed. C90A mice exhibited decreased spared tissue volume, greater loss of CA1 hippocampal neurons and greater axonal injury as detected using anti-amyloid precursor protein (APP) antibody and anti- non-phosphorylated neurofilament H (SMI-32) antibody immunohistochemistry after CCI compared to WT controls. Poly-Ub proteins and Beclin-1 were elevated after CCI in C90A mice compared to WT controls. Vestibular motor deficits assessed using the beam balance test resolved by day 5 after CCI in WT mice but not in C90A mice. These results suggest that the hydrolase activity of UCHL1 does not account for the progressive neurodegeneration and premature death seen in mice that do not express full length UCHL1. The hydrolase activity of UCHL1 contributes to the function of the ubiquitin proteasome pathway (UPP), ameliorates activation of autophagy, and improves motor recovery after CCI. Thus, UCHL1 hydrolase activity plays an important role in acute injury response after TBI.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Daniel P Reay
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jeremy Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
142
|
Wang T, He M, Zha XM. Time-dependent progression of hemorrhagic transformation after transient ischemia and its association with GPR68-dependent protection. BRAIN HEMORRHAGES 2020; 1:185-191. [PMID: 33575546 DOI: 10.1016/j.hest.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic transformation (HT) following ischemia is one complication which worsens stroke outcome. During and after ischemia-reperfusion, persistent reduction of brain pH occurs. In a recent study, we found that GPR68 functions as a neuronal proton receptor and mediates a protective pathway in brain ischemia. Here, we asked whether GPR68 contributes HT after ischemia. At 24 hr after transient middle cerebral artery occlusion (tMCAO), 58% of the wild-type (WT) mice exhibited some degrees of mild HT. At 72 hr, 95% of the WT showed HT with 42% exhibited large "parenchymal" type hemorrhage. In the GPR68-/- mice, there was a trend of increase in both the incidence and severity of HT at both time points. Mice with severe hemorrhage exhibited significantly larger infarct than those with no to mild hemorrhage. Next, we compared % infarct of GPR68-/- vs WT based on their HT categories. GPR68 deletion increased % infarct when the HT severity is mild. In contrast, for mice exhibiting large area HT, the two genotypes had no difference in % infarct. These data showed that GPR68-dependent signaling leads to protection when HT is mild.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Mindi He
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
143
|
Wang T, Zhou G, He M, Xu Y, Rusyniak WG, Xu Y, Ji Y, Simon RP, Xiong ZG, Zha XM. GPR68 Is a Neuroprotective Proton Receptor in Brain Ischemia. Stroke 2020; 51:3690-3700. [PMID: 33059544 PMCID: PMC7678672 DOI: 10.1161/strokeaha.120.031479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Guokun Zhou
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile.,Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Mindi He
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - W G Rusyniak
- Department of Neurosurgery (W.G.R.), University of South Alabama College of Medicine, Mobile
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis (Yan Xu)
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| |
Collapse
|
144
|
Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother 2020; 131:110686. [PMID: 32937247 DOI: 10.1016/j.biopha.2020.110686] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke seriously threatens human health because of its characteristics of high morbidity, disability, recurrence, and mortality, thus representing a heavy financial and mental burden to affected families and society. Many preclinical effective drugs end in clinical-translation failure. Animal models are an important approach for studying diseases and drug effects, and play a central role in biomedical research. Some details about animal models of cerebral ischemia have not been published, such as left-/right-sided lesions or permanent cerebral ischemia/cerebral ischemia-reperfusion. In this review, ischemia in the left- and right-hemisphere in patients with clinical stroke and preclinical studies were compared for the first time, as were the mechanisms of permanent cerebral ischemia and cerebral ischemia-reperfusion in different phases of the disease. The results showed that stroke in the left hemisphere was more common in clinical patients, and that most patients with stroke failed to achieve successful recanalization. Significant differences were detected between permanent cerebral ischemia and cerebral ischemia-reperfusion models in the early, subacute, and recovery phases. Therefore, it is recommended that, with the exception of the determined experimental purpose or drug mechanism, left-sided permanent cerebral ischemia animal models should be prioritized, as they would be more in line with the clinical scenario and would promote clinical translation. In addition, other details regarding the preoperative management, surgical procedures, and postoperative care of these animals are provided, to help establish a precise, effective, and reproducible model of cerebral ischemia model and establish a reference for researchers in this field.
Collapse
Affiliation(s)
- Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhuoping Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mihong Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hai Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinxiu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
145
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
146
|
Schuffels S, Nakada S, Wu Y, Lim YP, Chen X, Stonestreet BS. Effects of inter-alpha inhibitor proteins on brain injury after exposure of neonatal rats to severe hypoxia-ischemia. Exp Neurol 2020; 334:113442. [PMID: 32896573 DOI: 10.1016/j.expneurol.2020.113442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in premature and full-term infants after perinatal complications. Hypothermia is the only treatment approved for HI encephalopathy in newborns. However, this treatment is only partially protective, cannot be used to treat premature infants, and has limited efficacy to treat severe HI encephalopathy. Inflammation contributes to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins that have neuroprotective properties after exposure to moderate HI in neonatal rats. The objective of the current study was to determine the neuroprotective efficacy of treatment with IAIPs starting immediately after or with a delay of one hour after exposure to severe HI of 120 min duration. One hundred and forty-six 7-day-old rat pups were randomized to sham control, HI and immediate treatment with IAIPs (60 mg/kg) or placebo (PL), and sham, HI and delayed treatment with IAIPs or PL. IAIPs or PL were given at zero, 24, and 48 h after HI or 1, 24 and 48 h after HI. Total brain infarct volume was determined 72 h after exposure to HI. Treatment with IAIPs immediately after HI decreased (P < 0.05) infarct volumes by 58.0% and 44.5% in male and female neonatal rats, respectively. Delayed treatment with IAIPs after HI decreased (P < 0.05) infarct volumes by 23.7% in male, but not in female rats. We conclude that IAIPs exert neuroprotective effects even after exposure to severe HI in neonatal rats and appear to exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Stephanie Schuffels
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, The Alpert Medical School of Brown University, Providence, RI, United States of America; Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| |
Collapse
|
147
|
Wang YL, Cheng JC, Chang CP, Su FC, Chen CC. Individualized Running Wheel System with a Dynamically Adjustable Exercise Area and Speed for Rats Following Ischemic Stroke. Med Sci Monit 2020; 26:e924411. [PMID: 32886655 PMCID: PMC7491243 DOI: 10.12659/msm.924411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background An innovative animal running wheel with an individualized design was implemented for the rehabilitation of rats following ischemic stroke. Material/Methods The design of the running wheel platform included the running wheel and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The individualized training process for this running wheel consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training to determine their exercise areas, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise areas. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 postsurgery to measure cortisol levels. The motor function tests were performed on Days 7 and 28 postsurgery. On Day 28 postsurgery, the rats were sacrificed under anesthesia, and their brains were removed for Nissl and H&E staining. Results On Day 28 after surgery, the motor function, lesion volume, and cell damage of the DEARW and control groups differed significantly, indicating that this device is effective for stroke rehabilitation. Conclusions The outcomes of the rats that were rehabilitated using the newly designed training system were better than those of their control-group counterparts, indicating the advantages of this designed system.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jui-Chi Cheng
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| |
Collapse
|
148
|
Li L, Yu Y, Hou R, Hao J, Jiang J. Inhibiting the PGE 2 Receptor EP2 Mitigates Excitotoxicity and Ischemic Injury. ACS Pharmacol Transl Sci 2020; 3:635-643. [PMID: 32832866 PMCID: PMC7432651 DOI: 10.1021/acsptsci.0c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Prostaglandin E2 (PGE2) is elevated in the brain by excitotoxic insults and, in turn, aggravates the neurotoxicity mainly through acting on its Gαs-coupled receptor EP2, inspiring a therapeutic strategy of targeting this key proinflammatory pathway. Herein, we investigated the effects of several highly potent and selective small-molecule antagonists of the EP2 receptor on neuronal excitotoxicity both in vitro and in vivo. EP2 inhibition by these novel compounds largely decreased the neuronal injury in rat primary hippocampal cultures containing both neurons and glia that were treated with N-methyl-d-aspartate and glycine. Using a bioavailable and brain-permeant analogue TG6-10-1 that we recently developed to target the central EP2 receptor, we found that the poststroke EP2 inhibition in mice decreased the neurological deficits and infarct volumes as well as downregulated the prototypic inflammatory cytokines in the brain after a transient ischemia. Our preclinical findings together reinforced the notion that targeting the EP2 receptor represents an emerging therapeutic strategy to prevent the neuronal injury and inflammation following ischemic stroke.
Collapse
Affiliation(s)
- Lexiao Li
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiukuan Hao
- Department
of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jianxiong Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
149
|
Chang CY, Chen JY, Wu MH, Hu ML. Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosis. Free Radic Biol Med 2020; 155:29-36. [PMID: 32450129 DOI: 10.1016/j.freeradbiomed.2020.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 01/15/2023]
Abstract
Stroke is a major public health problem and ranks third most common cause of death in adults worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury, mainly caused by oxidative/nitrosative stress injury, after revascularization therapy can result in worsening outcomes. For better clinical prognosis, more and more studies have focused on the pharmaceutical neuroprotective therapies against free radical damage. The impact of vitamin C (ascorbic acid) on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, recent evidence of the clinical benefit of parenteral vitamin C administration has emerged, especially in critical care. In this study we demonstrated that parenteral administration of vitamin C significantly improved neurological deficits and reduced brain infarction and brain edema by attenuating the transient middle cerebral artery occlusion (tMCAO)-induced nitrosative stress, inflammatory responses, and the resultant disruptions of blood brain barrier and cerebral neuronal apoptosis. These results suggest that parenteral administration of vitamin C has potential as an adjuvant agent with intravenous thrombolysis or endovascular thrombectomy in acute treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan; Department of the Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Hsiu Wu
- Department of Neurology, Liouying Chi Mei Hospital, Tainan, Taiwan; Department of Long-Term Care and Health Promotion, Min-Hwei Junior College of Health Care Management, Taiwan
| | - Miao-Lin Hu
- Department of Food Science and Applied Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
150
|
Parray A, Ma Y, Alam M, Akhtar N, Salam A, Mir F, Qadri S, Pananchikkal SV, Priyanka R, Kamran S, Winship IR, Shuaib A. An increase in AMPK/e-NOS signaling and attenuation of MMP-9 may contribute to remote ischemic perconditioning associated neuroprotection in rat model of focal ischemia. Brain Res 2020; 1740:146860. [PMID: 32353433 DOI: 10.1016/j.brainres.2020.146860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
Remote ischemic perconditioning (RIPerC) results in collateral enhancement and a reduction in middle cerebral artery occlusion (MCAO) induced ischemia. RIPerC likely activates multiple metabolic protective mechanisms, including effects on matrix metalloproteinases (MMPs) and protein kinases. Here we explore if RIPerC improves neuroprotection and collateral flow by modifying the activities of MMP-9 and AMPK/e-NOS. Age matched adult male Sprague Dawley rats were subjected to MCAO followed one hour later by RIPerC (3 cycles of 15 min ischemia). Animals were euthanized 24 h post-MCAO. Haematoxylin and Eosin (H&E) staining 24 h post-MCAO revealed a significant (p < 0.02) reduction in the infarction volume in RIPerC treated animals (24.9 ± 5.4%) relative to MCAO controls (42.5 ± 4.2, %). TUNEL staining showed a 42.6% reduction in the apoptotic cells with RIPerC treatment (p < 0.01). Immunoblotting in congruence with RT-PCR and Zymography showed that RIPerC significantly reduced MMP-9 expression and activity in RIPerC + MCAO group compared to MCAO group (218.3 ± 19.1% vs. 148.9 ± 12.05% (p < 0.01). Immunoblotting revealed that RIPerC was associated with a significant 2.5-fold increase in activation of p-AMPK compared to the MCAO group (p < 0.01) which was also associated with a significant increase in the e-NOS activity (p < 0.01). RIPerC resulted in reduction of infarction volume, decreased apoptotic cell death and attenuated MMP-9 activity. This together with the increased activity of p-AMPK and increase in p-eNOS may, in part explain the neuroprotection and sustained increase in blood flow observed with RIPerC following acute stroke.
Collapse
Affiliation(s)
- Aijaz Parray
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Yongli Ma
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mustafa Alam
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Naveed Akhtar
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abdul Salam
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Fayaz Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahnaz Qadri
- Department of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Sajitha V Pananchikkal
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ruth Priyanka
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Saadat Kamran
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ian R Winship
- Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Ashfaq Shuaib
- The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar; Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| |
Collapse
|