101
|
Abstract
Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.
Collapse
Affiliation(s)
- Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
102
|
Kanda N, Abe F. Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 2013; 52:4296-307. [PMID: 23768406 DOI: 10.1021/bi4004638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tryptophan is hydrophobic, bulky, and the rarest amino acid found in nutrients. Accordingly, the import machinery can be specialized evolutionarily. Our previous study in Saccharomyces cerevisiae demonstrated that tryptophan import by the high-affinity tryptophan permease Tat2 is accompanied by a large volume increase during substrate import. Nevertheless, the mechanisms by which the permease mediates tryptophan recognition and permeation remain to be elucidated. Here we determined amino acid residues essential for Tat2-mediated tryptophan import. By means of random mutagenesis in combination with site-directed mutagenesis based on crystallographic studies of the Escherichia coli arginine/agmatine antiporter AdiC, we identified 15 amino acid residues in the Tat2 transmembrane domains (TMDs) 1, -3, -5, -8, and -10, which are responsible for tryptophan uptake. T98, Y167, and E286 were assumed to form the central cavity in Tat2. G97/T98 and E286 were located within the putative α-helix break in TMD1 and TMD6, respectively, which are highly conserved among yeast amino acid permeases and bacterial solute transporters. Given the conformational change in AdiC upon substrate binding, G97/T98 and E286 of Tat2 were assumed to mediate a structural shift from an outward-open to a tryptophan-bound-occluded structure upon tryptophan binding, and T320, V322, and F324 became stabilized in TMD7. Such dynamic structural changes may account for the large volume increase associated with tryptophan import occurring concomitantly with a movement of water molecules from the tryptophan binding site. We also propose the working hypothesis that E286 mediates the proton influx that is coupled to tryptophan import.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | | |
Collapse
|
103
|
Generation of functional antibodies for mammalian membrane protein crystallography. Curr Opin Struct Biol 2013; 23:563-8. [PMID: 23664057 DOI: 10.1016/j.sbi.2013.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/08/2013] [Accepted: 04/13/2013] [Indexed: 11/23/2022]
Abstract
Membrane proteins act as gateways to cells, and they are responsible for much of the communication between cells and their environments. Crystallography of membrane proteins is often limited by the difficulty of crystallization in detergent micelles. Co-crystallization with antibody fragments has been reported as a method to facilitate the crystallization of membrane proteins; however, it is widely known that the generation of mouse monoclonal antibodies that recognize the conformational epitopes of mammalian integral membrane proteins is typically difficult. Here, we present our protocols to generate functional mouse antibodies for the membrane protein crystallography, which have enabled us to solve crystal structures of mammalian receptors and transporters complexed with antibody fragments.
Collapse
|
104
|
Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177982 DOI: 10.1016/b978-0-12-394316-3.00001-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
Collapse
Affiliation(s)
- Eva S Schweikhard
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
105
|
New concepts and aids to facilitate crystallization. Curr Opin Struct Biol 2013; 23:409-16. [PMID: 23578532 DOI: 10.1016/j.sbi.2013.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 12/20/2022]
Abstract
Novel tools and technologies are required to obtain structural information of difficult to crystallize complex biological systems such as membrane proteins, multiprotein assemblies, transient conformational states and intrinsically disordered proteins. One promising approach is to select a high affinity and specificity-binding partner (crystallization chaperone), form a complex with the protein of interest and crystallize the complex. Often the chaperone reduces the conformational freedom of the target protein and additionally facilitates the formation of well-ordered crystals. This review provides an update on the recent successes in chaperone-assisted crystallography. We also stress the importance of synergistic approaches involving protein engineering, crystallization chaperones and crystallization additives. Recent examples demonstrate that investment in such approaches can be key to success.
Collapse
|
106
|
Substrate selectivity in arginine-dependent acid resistance in enteric bacteria. Proc Natl Acad Sci U S A 2013; 110:5893-7. [PMID: 23530220 DOI: 10.1073/pnas.1301442110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To successfully colonize the human gut, enteric bacteria must activate acid resistance systems to survive the extreme acidity (pH 1.5-3.5) of the stomach. The antiporter AdiC is the master orchestrator of the arginine-dependent system. Upon acid shock, it imports extracellular arginine (Arg) into the cytoplasm, providing the substrate for arginine decarboxylases, which consume a cellular proton ending up in a C-H bond of the decarboxylated product agmatine (Agm(2+)). Agm(2+) and the "virtual" proton it carries are exported via AdiC subsequently. It is widely accepted that AdiC counters intracellular acidification by continuously pumping out virtual protons. However, in the gastric environment, Arg is present in two carboxyl-protonation forms, Arg(+) and Arg(2+). Virtual proton pumping can only be achieved by Arg(+)/Agm(2+) exchange, whereas Arg(2+)/Agm(2+) exchange would produce no net proton movement. This study experimentally asks which exchange AdiC catalyzes, an issue previously unapproachable due to the absence of a reconstituted system mimicking the situation of bacteria in the stomach. Here, using an oriented liposome system able to hold a three-unit pH gradient, we demonstrate that Arg/Agm exchange by AdiC is strongly electrogenic with positive charge moved outward, and thus that AdiC mainly mediates Arg(+)/Agm(2+) exchange to support effective virtual proton pumping. Further experiments reveal a mechanistic surprise--that AdiC selects Arg(+) against Arg(2+) on the basis of gross valence, rather than by local scrutiny of protonation states of the carboxyl group, as had been suggested by Arg-bound AdiC crystal structures.
Collapse
|
107
|
Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1. Proc Natl Acad Sci U S A 2013; 110:5480-5. [PMID: 23509259 DOI: 10.1073/pnas.1218165110] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Large-neutral Amino Acid Transporter 1 (LAT-1)--a sodium-independent exchanger of amino acids, thyroid hormones, and prescription drugs--is highly expressed in the blood-brain barrier and various types of cancer. LAT-1 plays an important role in cancer development as well as in mediating drug and nutrient delivery across the blood-brain barrier, making it a key drug target. Here, we identify four LAT-1 ligands, including one chemically novel substrate, by comparative modeling, virtual screening, and experimental validation. These results may rationalize the enhanced brain permeability of two drugs, including the anticancer agent acivicin. Finally, two of our hits inhibited proliferation of a cancer cell line by distinct mechanisms, providing useful chemical tools to characterize the role of LAT-1 in cancer metabolism.
Collapse
|
108
|
Kang HJ, Lee C, Drew D. Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 2013; 45:636-44. [DOI: 10.1016/j.biocel.2012.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
109
|
Grewer C, Gameiro A, Mager T, Fendler K. Electrophysiological characterization of membrane transport proteins. Annu Rev Biophys 2013; 42:95-120. [PMID: 23451896 DOI: 10.1146/annurev-biophys-083012-130312] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.
Collapse
Affiliation(s)
- Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA.
| | | | | | | |
Collapse
|
110
|
Koldsø H, Christiansen AB, Sinning S, Schiøtt B. Comparative modeling of the human monoamine transporters: similarities in substrate binding. ACS Chem Neurosci 2013; 4:295-309. [PMID: 23421681 PMCID: PMC3582297 DOI: 10.1021/cn300148r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/24/2012] [Indexed: 11/30/2022] Open
Abstract
The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines.
Collapse
Affiliation(s)
- Heidi Koldsø
- Center for Insoluble Protein
Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus
C, Denmark
| | - Anja B. Christiansen
- Laboratory of
Molecular Neurobiology,
Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark
| | - Steffen Sinning
- Laboratory of
Molecular Neurobiology,
Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, 8240 Risskov, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein
Structures (inSPIN) and Interdisciplinary Nanoscience
Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus
C, Denmark
| |
Collapse
|
111
|
Longpré JP, Sasseville LJ, Lapointe JY. Simulated annealing reveals the kinetic activity of SGLT1, a member of the LeuT structural family. ACTA ACUST UNITED AC 2013; 140:361-74. [PMID: 23008432 PMCID: PMC3457693 DOI: 10.1085/jgp.201210822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Na+/glucose cotransporter (SGLT1) is the archetype of membrane proteins that use the electrochemical Na+ gradient to drive uphill transport of a substrate. The crystal structure recently obtained for vSGLT strongly suggests that SGLT1 adopts the inverted repeat fold of the LeuT structural family for which several crystal structures are now available. What is largely missing is an accurate view of the rates at which SGLT1 transits between its different conformational states. In the present study, we used simulated annealing to analyze a large set of steady-state and pre–steady-state currents measured for human SGLT1 at different membrane potentials, and in the presence of different Na+ and α-methyl-d-glucose (αMG) concentrations. The simplest kinetic model that could accurately reproduce the time course of the measured currents (down to the 2 ms time range) is a seven-state model (C1 to C7) where the binding of the two Na+ ions (C4→C5) is highly cooperative. In the forward direction (Na+/glucose influx), the model is characterized by two slow, electroneutral conformational changes (59 and 100 s−1) which represent reorientation of the free and of the fully loaded carrier between inside-facing and outside-facing conformations. From the inward-facing (C1) to the outward-facing Na-bound configuration (C5), 1.3 negative elementary charges are moved outward. Although extracellular glucose binding (C5→C6) is electroneutral, the next step (C6→C7) carries 0.7 positive charges inside the cell. Alignment of the seven-state model with a generalized model suggested by the structural data of the LeuT fold family suggests that electrogenic steps are associated with the movement of the so-called thin gates on each side of the substrate binding site. To our knowledge, this is the first model that can quantitatively describe the behavior of SGLT1 down to the 2 ms time domain. The model is highly symmetrical and in good agreement with the structural information obtained from the LeuT structural family.
Collapse
Affiliation(s)
- Jean-Philippe Longpré
- Groupe d'étude des protéines membranaires, Département de physique, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
112
|
Enkavi G, Li J, Mahinthichaichan P, Wen PC, Huang Z, Shaikh SA, Tajkhorshid E. Simulation studies of the mechanism of membrane transporters. Methods Mol Biol 2013; 924:361-405. [PMID: 23034756 DOI: 10.1007/978-1-62703-017-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane transporters facilitate active transport of their specific substrates, often against their electrochemical gradients across the membrane, through coupling the process to various sources of cellular energy, for example, ATP binding and hydrolysis in primary transporters, and pre-established electrochemical gradient of molecular species other than the substrate in the case of secondary transporters. In order to provide efficient energy-coupling mechanisms, membrane transporters have evolved into molecular machines in which stepwise binding, translocation, and transformation of various molecular species are closely coupled to protein conformational changes that take the transporter from one functional state to another during the transport cycle. Furthermore, in order to prevent the formation of leaky states and to be able to pump the substrate against its electrochemical gradient, all membrane transporters use the widely-accepted "alternating access mechanism," which ensures that the substrate is only accessible from one side of the membrane at a given time, but relies on complex and usually global protein conformational changes that differ for each family of membrane transporters. Describing the protein conformational changes of different natures and magnitudes is therefore at the heart of mechanistic studies of membrane transporters. Here, using a number of membrane transporters from diverse families, we present common protocols used in setting up and performing molecular dynamics simulations of membrane transporters and in analyzing the results, in order to characterize relevant motions of the system. The emphasis will be on highlighting how optimal design of molecular dynamics simulations combined with mechanistically oriented analysis can shed light onto key functionally relevant protein conformational changes in this family of membrane proteins.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Biochemistry, Center for Biophysics and Computational Biology, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 2012; 490:361-6. [PMID: 23075985 DOI: 10.1038/nature11524] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/17/2012] [Indexed: 12/22/2022]
Abstract
Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.
Collapse
Affiliation(s)
- Linfeng Sun
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
114
|
Jiang X, Loo DDF, Hirayama BA, Wright EM. The importance of being aromatic: π interactions in sodium symporters. Biochemistry 2012; 51:9480-7. [PMID: 23116249 DOI: 10.1021/bi301329w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the LeuT family of sodium solute symporters, 13-17% of the residues in transmembrane domains are aromatic. The unique properties of aromatic amino acids allow them to play specialized roles in proteins, but their function in membrane transporters is underappreciated. Here we analyze the π bonding pattern in the LeuT (5TMIR) family and then describe the role of a triad of aromatic residues in sodium-dependent sugar cotransporters (SGLTs). In SLC5 symporters, three aromatic residues in TM6 (SGLT1 W289, Y290, and W291) are conserved in only those transporting sugars and inositols. We used biophysical analysis of mutants to discover their functional roles, which we have interpreted in terms of CH-π, π-π, and cation-π bonding. We discovered that (1) glucose binding involves CH-π stacking with Y290, (2) π T-stacking interactions between Y290 and W291 and H-bonding between Y290 and N78 (TM1) are essential to form the sodium and sugar binding sites, (3) the Na(+):sugar stoichiometry is determined by these residues, and (4) W289 may be important in stabilizing the structure through H-bonding to TM3. We also find that the WYW triad plays a role in Na(+) coordination at the Na1 site, possibly through cation-π interactions. Surprisingly, this Na(+) is not necessarily coupled to glucose translocation. Our analysis of π interactions in other LeuT proteins suggests that they also contribute to the structure and function in this whole family of transporters.
Collapse
Affiliation(s)
- Xuan Jiang
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA
| | | | | | | |
Collapse
|
115
|
Khafizov K, Perez C, Koshy C, Quick M, Fendler K, Ziegler C, Forrest LR. Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP. Proc Natl Acad Sci U S A 2012; 109:E3035-44. [PMID: 23047697 PMCID: PMC3497817 DOI: 10.1073/pnas.1209039109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sodium-coupled substrate transport plays a central role in many biological processes. However, despite knowledge of the structures of several sodium-coupled transporters, the location of the sodium-binding site(s) often remains unclear. Several of these structures have the five transmembrane-helix inverted-topology repeat, LeuT-like (FIRL) fold, whose pseudosymmetry has been proposed to facilitate the alternating-access mechanism required for transport. Here, we provide biophysical, biochemical, and computational evidence for the location of the two cation-binding sites in the sodium-coupled betaine symporter BetP. A recent X-ray structure of BetP in a sodium-bound closed state revealed that one of these sites, equivalent to the Na2 site in related transporters, is located between transmembrane helices 1 and 8 of the FIRL-fold; here, we confirm the location of this site by other means. Based on the pseudosymmetry of this fold, we hypothesized that the second site is located between the equivalent helices 6 and 3. Molecular dynamics simulations of the closed-state structure suggest this second sodium site involves two threonine sidechains and a backbone carbonyl from helix 3, a phenylalanine from helix 6, and a water molecule. Mutating the residues proposed to form the two binding sites increased the apparent K(m) and K(d) for sodium, as measured by betaine uptake, tryptophan fluorescence, and (22)Na(+) binding, and also diminished the transient currents measured in proteoliposomes using solid supported membrane-based electrophysiology. Taken together, these results provide strong evidence for the identity of the residues forming the sodium-binding sites in BetP.
Collapse
Affiliation(s)
| | | | - Caroline Koshy
- Computational Structural Biology Group and
- Departments of Structural Biology, and
| | - Matthias Quick
- Center for Molecular Recognition and
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Klaus Fendler
- Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; and
| | | | | |
Collapse
|
116
|
Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris. Protein Expr Purif 2012; 87:35-40. [PMID: 23085088 DOI: 10.1016/j.pep.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022]
Abstract
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.
Collapse
|
117
|
De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 2012; 86:770-86. [PMID: 22995042 DOI: 10.1111/mmi.12020] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.
Collapse
Affiliation(s)
- Daniela De Biase
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, 04100, Latina, Italy.
| | | |
Collapse
|
118
|
Krypotou E, Kosti V, Amillis S, Myrianthopoulos V, Mikros E, Diallinas G. Modeling, substrate docking, and mutational analysis identify residues essential for the function and specificity of a eukaryotic purine-cytosine NCS1 transporter. J Biol Chem 2012; 287:36792-803. [PMID: 22969088 DOI: 10.1074/jbc.m112.400382] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H(+) FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1-5 and TMS6-10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.
Collapse
Affiliation(s)
- Emilia Krypotou
- Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | | | | | | | | | | |
Collapse
|
119
|
Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 2012; 490:126-30. [DOI: 10.1038/nature11403] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/06/2012] [Indexed: 12/12/2022]
|
120
|
Del Val C, White SH, Bondar AN. Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics. J Membr Biol 2012; 245:717-30. [PMID: 22836667 DOI: 10.1007/s00232-012-9452-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/04/2012] [Indexed: 01/16/2023]
Abstract
We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
121
|
Masri AAA, Eter EE. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats. World J Gastroenterol 2012; 18:2188-96. [PMID: 22611311 PMCID: PMC3351768 DOI: 10.3748/wjg.v18.i18.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/04/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury.
METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye.
RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen.
CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K.
Collapse
|
122
|
A comparative study of structures and structural transitions of secondary transporters with the LeuT fold. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:181-97. [PMID: 22552869 PMCID: PMC3578728 DOI: 10.1007/s00249-012-0802-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022]
Abstract
Secondary active transporters from several protein families share a core of two five-helix inverted repeats that has become known as the LeuT fold. The known high-resolution protein structures with this fold were analyzed by structural superposition of the core transmembrane domains (TMDs). Three angle parameters derived from the mean TMD axes correlate with accessibility of the central binding site from the outside or inside. Structural transitions between distinct conformations were analyzed for four proteins in terms of changes in relative TMD arrangement and in internal conformation of TMDs. Collectively moving groups of TMDs were found to be correlated in the covariance matrix of elastic network models. The main features of the structural transitions can be reproduced with the 5 % slowest normal modes of anisotropic elastic network models. These results support the rocking bundle model for the major conformational change between the outward- and inward-facing states of the protein and point to an important role for the independently moving last TMDs of each repeat in occluding access to the central binding site. Occlusion is also supported by flexing of some individual TMDs in the collectively moving bundle and hash motifs.
Collapse
|
123
|
Picollo A, Xu Y, Johner N, Bernèche S, Accardi A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H(+)/Cl(-) exchanger. Nat Struct Mol Biol 2012; 19:525-31, S1. [PMID: 22484316 PMCID: PMC3348462 DOI: 10.1038/nsmb.2277] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/08/2012] [Indexed: 11/09/2022]
Abstract
Active exchangers dissipate the gradient of one substrate to accumulate nutrients, export xenobiotics and maintain cellular homeostasis. Mechanistic studies suggested that all exchangers share two fundamental properties: substrate binding is antagonistic and coupling is maintained by preventing shuttling of the empty transporter. The CLC Cl−: H+ exchangers control the homeostasis of cellular compartments in most living organisms but their transport mechanism remains unclear. We show that substrate binding to CLC-ec1 is synergistic rather than antagonistic: chloride binding induces protonation of a critical glutamate. The simultaneous binding of H+ and Cl− gives rise to a fully-loaded state incompatible with conventional mechanisms. Mutations in the Cl− transport pathway identically alter the stoichiometries of Cl−: H+ exchange and binding. We propose that the thermodynamics of synergistic substrate binding determine the stoichiometry of transport rather than the kinetics of conformational changes and ion binding.
Collapse
Affiliation(s)
- Alessandra Picollo
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | |
Collapse
|
124
|
Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:6343-7. [PMID: 22492932 DOI: 10.1073/pnas.1121406109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyamines (PAs) are ubiquitous, polycationic compounds that are essential for the growth and survival of all organisms. Although the PA-uptake system plays a key role in mammalian cancer and in plant survival, the underlying molecular mechanisms are not well understood. Here, we identified an Arabidopsis L-type amino acid transporter (LAT) family transporter, named RMV1 (resistant to methyl viologen 1), responsible for uptake of PA and its analog paraquat (PQ). The natural variation in PQ tolerance was determined in 22 Arabidopsis thaliana accessions based on the polymorphic variation of RMV1. An RMV1-GFP fusion protein localized to the plasma membrane in transformed cells. The Arabidopsis rmv1 mutant was highly resistant to PQ because of the reduction of PQ uptake activity. Uptake studies indicated that RMV1 mediates proton gradient-driven PQ transport. RMV1 overexpressing plants were hypersensitive to PA and PQ and showed elevated PA/PQ uptake activity, supporting the notion that PQ enters plant cells via a carrier system that inherently functions in PA transport. Furthermore, we demonstrated that polymorphic variation in RMV1 controls PA/PQ uptake activity. Our identification of a molecular entity for PA/PQ uptake and sensitivity provides an important clue for our understanding of the mechanism and biological significance of PA uptake.
Collapse
|
125
|
Somasekharan S, Tanis J, Forbush B. Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na-K-Cl cotransporter (NKCC1). J Biol Chem 2012; 287:17308-17317. [PMID: 22437837 DOI: 10.1074/jbc.m112.356014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na-K-Cl cotransporter (NKCC) plays central roles in cellular chloride homeostasis and in epithelial salt transport, but to date little is known about the mechanism by which the transporter moves ions across the membrane. We examined the functional role of transmembrane helix 3 (TM3) in NKCC1 using cysteine- and tryptophan-scanning mutagenesis and analyzed our results in the context of a structural homology model based on an alignment of NKCC1 with other amino acid polyamine organocation superfamily members, AdiC and ApcT. Mutations of residues along one face of TM3 (Tyr-383, Met-382, Ala-379, Asn-376, Ala-375, Phe-372, Gly-369, and Ile-368) had large effects on translocation rate, apparent ion affinities, and loop diuretic affinity, consistent with a proposed role of TM3 in the translocation pathway. The prediction that Met-382 is part of an extracellular gate that closes to form an occluded state is strongly supported by conformational sensitivity of this residue to 2-(trimethylammonium)ethyl methanethiosulfonate, and the bumetanide insensitivity of M382W is consistent with tryptophan blocking entry of bumetanide into the cavity. Substitution effects on residues at the intracellular end of TM3 suggest that this region is also involved in ion coordination and may be part of the translocation pathway in an inward-open conformation. Mutations of predicted pore residues had large effects on binding of bumetanide and furosemide, consistent with the hypothesis that loop diuretic drugs bind within the translocation cavity. The results presented here strongly support predictions of homology models of NKCC1 and demonstrate important roles for TM3 residues in ion translocation and loop diuretic inhibition.
Collapse
Affiliation(s)
- Suma Somasekharan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520.
| | - Jessica Tanis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
126
|
Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, Shi Y. Structure and mechanism of a glutamate–GABA antiporter. Nature 2012; 483:632-6. [DOI: 10.1038/nature10917] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/03/2012] [Indexed: 11/09/2022]
|
127
|
Projection structure of the secondary citrate/sodium symporter CitS at 6 Å resolution by electron crystallography. J Mol Biol 2012; 418:117-26. [PMID: 22349493 DOI: 10.1016/j.jmb.2012.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/03/2012] [Accepted: 02/11/2012] [Indexed: 11/23/2022]
Abstract
CitS from Klebsiella pneumoniae acts as a secondary symporter of citrate and sodium ions across the inner membrane of the host. The protein is the best characterized member of the 2-hydroxycarboxylate transporter family, while no experimental structural information at sub-nanometer resolution is available on this class of membrane proteins. Here, we applied electron crystallography to two-dimensional crystals of CitS. Carbon-film-adsorbed tubular two-dimensional crystals were studied by cryo-electron microscopy, producing the 6-Å-resolution projection structure of the membrane-embedded protein. In the p22(1)2(1)-symmetrized projection map, the predicted dimeric structure is clearly visible. Each monomeric unit can tentatively be interpreted as being composed of 11 transmembrane α-helices. In projection, CitS shows a high degree of structural similarity to NhaP1, the Na(+)/H(+) antiporter of Methanococcus jannaschii. We discuss possible locations for the dimer interface and models for the helical arrangements and domain organizations of the symporter based on existing models.
Collapse
|
128
|
Tsai MF, Fang Y, Miller C. Sided functions of an arginine-agmatine antiporter oriented in liposomes. Biochemistry 2012; 51:1577-85. [PMID: 22304019 DOI: 10.1021/bi201897t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The arginine-dependent extreme acid resistance system helps enteric bacteria survive the harsh gastric environment. At the center of this multiprotein system is an arginine-agmatine antiporter, AdiC. To maintain cytoplasmic pH, AdiC imports arginine and exports its decarboxylated product, agmatine, resulting in a net extrusion of one "virtual proton" in each turnover. The random orientation of AdiC in reconstituted liposomes throws up an obstacle to quantifying its transport mechanism. To overcome this problem, we introduced a mutation, S26C, near the substrate-binding site. This mutant exhibits substrate recognition and pH-dependent activity similar to those of the wild-type protein but loses function completely upon reaction with thiol reagents. The membrane-impermeant MTSES reagent can then be used as a cleanly sided inhibitor to silence those S26C-AdiC proteins whose extracellular portion projects from the external side of the liposome. Alternatively, the membrane-permeant MTSEA and membrane-impermeant reducing reagent, TCEP, can be used together to inhibit proteins in the opposite orientation. This approach allows steady-state kinetic analysis of AdiC in a sided fashion. Arginine and agmatine have similar Michaelis-Menten parameters for both sides of the protein, while the extracellular side selects arginine over argininamide, a mimic of the carboxylate-protonated form of arginine, more effectively than does the cytoplasmic side. Moreover, the two sides of AdiC have different pH sensitivities. AdiC activity increases to a plateau at pH 4 as the extracellular side is acidified, while the cytoplasmic side shows an optimal pH of 5.5, with further acidification inhibiting transport. This oriented system allows more precise analysis of AdiC-mediated substrate transport than has been previously available and permits comparison to the situation experienced by the bacterial membrane under acid stress.
Collapse
Affiliation(s)
- Ming-Feng Tsai
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, United States
| | | | | |
Collapse
|
129
|
Tulumello DV, Deber CM. Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1351-8. [PMID: 22285740 DOI: 10.1016/j.bbamem.2012.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.
Collapse
Affiliation(s)
- David V Tulumello
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
130
|
|
131
|
Cellier MFM. Nutritional immunity: homology modeling of Nramp metal import. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:335-51. [PMID: 21948377 DOI: 10.1007/978-1-4614-0106-3_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Natural resistance-associated macrophage proteins (Nramp1 and 2) are proton-dependent solute carriers of divalent metals such as Fe(2+) and Mn(2+) (Slc11a1 and 2). Their expression in both resting and microbicidal macrophages which metabolize iron differently, raises questions about Nramp mechanism of Me(2+) transport and its impact in distinct phenotypic contexts. We developed a low resolution 3D model for Slc11 based on detailed phylogeny and remote homology threading using Escherichia coli Nramp homolog (proton-dependent Mn(2+) transporter, MntH) as experimental system. The predicted fold is consistent with determinations of transmembrane topology and activity; it indicates Slc11 carriers are part of the LeuT superfamily. Homology implies that inverted structural symmetry facilitates Slc11 H(+)-driven Me(2+) import and provides a 3D framework to test structure-activity relationships in macrophages and study functional evolution of MntH/Nramp (Slc11) carriers.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531, Bd des prairies, H7V 1B7, Laval, QC, Canada.
| |
Collapse
|
132
|
Sala-Rabanal M, Hirayama BA, Loo DDF, Chaptal V, Abramson J, Wright EM. Bridging the gap between structure and kinetics of human SGLT1. Am J Physiol Cell Physiol 2011; 302:C1293-305. [PMID: 22159082 DOI: 10.1152/ajpcell.00397.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na(+) electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na(+) cotransporters have shown that Na(+) transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays. The results establish that mutating the ligand binding residues produces profound changes in the ligand affinity (the half-saturation concentration, K(0.5)); e.g., mutating sugar binding residues increases the glucose K(0.5) by up to three orders of magnitude. Mutation of the external gate residues increases the Na(+) to sugar transport stoichiometry, demonstrating that these residues are critical for efficient cotransport. The changes in phlorizin inhibition constant (K(i)) are proportional to the changes in sugar K(0.5), except in the case of F101C, where phlorizin K(i) increases by orders of magnitude without a change in glucose K(0.5). We conclude that glucose and phlorizin occupy the same binding site and that F101 is involved in binding to the phloretin group of the inhibitor. Substituted-cysteine accessibility methods show that the cysteine residues at the position of the gates and sugar binding site are largely accessible only to external hydrophilic methanethiosulfonate reagents in the presence of external Na(+), demonstrating that the external sugar (and phlorizin) binding vestibule is opened by the presence of external Na(+) and closes after the binding of sugar and phlorizin. Overall, the present results provide a bridge between kinetics and structural studies of cotransporters.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Physiology, The Geffen School of Medicine at University of California, Los Angeles, California 90095-1751, USA
| | | | | | | | | | | |
Collapse
|
133
|
Ujwal R, Bowie JU. Crystallizing membrane proteins using lipidic bicelles. Methods 2011; 55:337-41. [PMID: 21982781 PMCID: PMC3264687 DOI: 10.1016/j.ymeth.2011.09.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022] Open
Abstract
Crystallization of membrane proteins remains a significant challenge. For proteins resistant to the traditional approach of directly crystallizing from detergents, lipidic phase crystallization can be a powerful tool. Bicelles are an excellent medium for crystallizing membrane proteins in a lipidic environment. They can be described as bilayer discs formed by the mixture of a long-chain phospholipid and an amphiphile in an aqueous medium. Membrane proteins can be readily reconstituted into bicelles, where they are maintained in a native-like bilayer environment. Importantly, membrane proteins have been shown to be fully functional in bicelles under physiological conditions. Protein-bicelle mixtures can be manipulated with almost the same ease as detergent-solubilized membrane proteins, making bicelles compatible with standard equipment including high-throughput crystallization robots. A number of membrane proteins have now been successfully crystallized using the bicelle method, including bacteriorhodopsin, β2 adrenergic receptor, voltage-dependent anion channel, xanthorhodopsin and rhomboid protease. Because of the success with a variety of membrane proteins and the ease of implementation, bicelles should be a part of every membrane protein crystallographer's arsenal.
Collapse
Affiliation(s)
- Rachna Ujwal
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570
| | - James U. Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570
| |
Collapse
|
134
|
Zdravkovic I, Zhao C, Lev B, Cuervo JE, Noskov SY. Atomistic models of ion and solute transport by the sodium-dependent secondary active transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:337-47. [PMID: 22138368 DOI: 10.1016/j.bbamem.2011.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/19/2022]
Abstract
The recent determination of high-resolution crystal structures of several transporters offers unprecedented insights into the structural mechanisms behind secondary transport. These proteins utilize the facilitated diffusion of the ions down their electrochemical gradients to transport the substrate against its concentration gradient. The structural studies revealed striking similarities in the structural organization of ion and solute binding sites and a well-conserved inverted-repeat topology between proteins from several gene families. In this paper we will overview recent atomistic simulations applied to study the mechanisms of selective binding of ion and substrate in LeuT, Glt, vSGLT and hSERT as well as its consequences for the transporter conformational dynamics. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Igor Zdravkovic
- Institute for Biocomplexity and Informatics (IBI), University of Calgary, 2500 University Drive, Calgary, Canada, T2N 1N4
| | | | | | | | | |
Collapse
|
135
|
Monette MY, Forbush B. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). J Biol Chem 2011; 287:2210-20. [PMID: 22121194 DOI: 10.1074/jbc.m111.309211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na-K-Cl cotransporter (NKCC1) is expressed in most vertebrate cells and is crucial in the regulation of cell volume and intracellular chloride concentration. To study the structure and function of NKCC1, we tagged the transporter with cyan (CFP) and yellow (YFP) fluorescent proteins at two sites within the C terminus and measured fluorescence resonance energy transfer (FRET) in stably expressing human embryonic kidney cell lines. Both singly and doubly tagged NKCC1s were appropriately produced, trafficked to the plasma membrane, and exhibited (86)Rb transport activity. When both fluorescent probes were placed within the same C terminus of an NKCC1 transporter, we recorded an 11% FRET decrease upon activation of the transporter. This result clearly demonstrates movement of the C terminus during the regulatory response to phosphorylation of the N terminus. When we introduced CFP and YFP separately in different NKCC1 constructs and cotransfected these in HEK cells, we observed FRET between dimer pairs, and the fractional FRET decrease upon transporter activation was 46%. Quantitatively, this indicates that the largest FRET-signaled movement is between dimer pairs, an observation supported by further experiments in which the doubly tagged construct was cotransfectionally diluted with untagged NKCC1. Our results demonstrate that regulation of NKCC1 is accompanied by a large movement between two positions in the C termini of a dimeric cotransporter. We suggest that the NKCC1 C terminus is involved in transport regulation and that dimerization may play a key structural role in the regulatory process. It is anticipated that when combined with structural information, our findings will provide a model for understanding the conformational changes that bring about NKCC1 regulation.
Collapse
Affiliation(s)
- Michelle Y Monette
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
136
|
Koldsø H, Noer P, Grouleff J, Autzen HE, Sinning S, Schiøtt B. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release. PLoS Comput Biol 2011; 7:e1002246. [PMID: 22046120 PMCID: PMC3203053 DOI: 10.1371/journal.pcbi.1002246] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport. The human serotonin transporter belongs to the family of neurotransmitter transporters, which are located in the presynaptic nerve end, from where it is responsible for termination of synaptic serotonin signaling. Imbalance in serotonin concentration is related to various neuronal conditions such as depression, regulation of appetite etc. Very limited structural information of hSERT is available, but it is believed that the protein functions through an alternating access mechanism, where the central binding site is either exposed to the outside or the inside of the cell. We have previously published an experimentally validated outward-occluded homology model of hSERT, and here we reveal the inward-facing conformation of hSERT from molecular dynamics simulations, from which we can identify the main movements occurring during the translocation. From the inward-facing conformation we observe ion release, revealing important information on the sequence of events during transport. Following transport of the sodium ion, the substrate also shows early events of transport. The ion follows a cytoplasmic pathway as hinted at from experiments, and the ligand binding site becomes fully solvated by water through this same pathway. Experiments using an Asp437Asn mutant of hSERT confirm the prediction that Asp437 is a central residue in controlling ion transport.
Collapse
Affiliation(s)
- Heidi Koldsø
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Pernille Noer
- Laboratory of Molecular Neurobiology, Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Julie Grouleff
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Henriette Elisabeth Autzen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Steffen Sinning
- Laboratory of Molecular Neurobiology, Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
137
|
Li J, Tajkhorshid E. A gate-free pathway for substrate release from the inward-facing state of the Na⁺-galactose transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:263-71. [PMID: 21978597 DOI: 10.1016/j.bbamem.2011.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Employing molecular dynamics (MD) simulations, the pathway and mechanism of substrate unbinding from the inward-facing state of the Na(+)-coupled galactose transporter, vSGLT, have been investigated. During a 200-ns equilibrium simulation, repeated spontaneous unbinding events of the substrate from its binding site have been observed. In contrast to the previously proposed gating role of a tyrosine residue (Y263), the unbinding mechanism captured in the present equilibrium simulation does not rely on the displacement and/or rotation of this side chain. Rather, the unbinding involves an initial lateral displacement of the substrate out of the binding site which allows the substrate to completely emerge from the region covered by the side chain of Y263 without any noticeable conformational changes of the latter. Starting with the snapshots taken from this equilibrium simulation with the substrate outside the binding site, steered MD (SMD) simulations were then used to probe the translocation of the substrate along the remaining of the release pathway within the protein's lumen and to characterize the nature of protein-substrate interactions involved in the process. Combining the results of the equilibrium and SMD simulations, we provide a description of the full translocation pathway for the substrate release from the binding site into the cytoplasm. Residues E68, N142, T431, and N267 facilitate the initial substrate's displacement out of the binding site, while the translocation of the substrate along the remainder of the exit pathway formed between TM6 and TM8 is facilitated by H-bond interactions between the substrate and a series of conserved, polar residues (Y138, N267, R273, S365, S368, N371, S372, and T375). The observed molecular events indicate that no gating is required for the release of the substrate from the crystallographically captured structure of the inward-facing state of SGLT, suggesting that this conformation might represent an open, rather than occluded, state of the transporter. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, College of Medicine, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
138
|
Membrane topology screen of secondary transport proteins in structural class ST[3] of the MemGen classification. Confirmation and structural diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:72-81. [PMID: 21983116 DOI: 10.1016/j.bbamem.2011.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/22/2022]
Abstract
The MemGen structural classification of membrane proteins groups families of proteins by hydropathy profile alignment. Class ST[3] of the MemGen classification contains 32 families of transporter proteins including the IT superfamily. Transporters from 19 different families in class ST[3] were evaluated by the TopScreen experimental topology screening method to verify the structural classification by MemGen. TopScreen involves the determination of the cellular disposition of three sites in the polypeptide chain of the proteins which allows for discrimination between different topology models. For nearly all transporters at least one of the predicted localizations is different in the models produced by MemGen and predictor TMHMM. Comparison to the experimental data showed that in all cases the prediction by MemGen was correct. It is concluded that the structural model available for transporters of the [st324]ESS and [st326]2HCT families is also valid for the other families in class ST[3]. The core structure of the model consists of two homologous domains, each containing 5 transmembrane segments, which have an opposite orientation in the membrane. A reentrant loop is present in between the 4th and 5th segments in each domain. Nearly all of the identified and experimentally confirmed structural variations involve additions of transmembrane segments at the boundaries of the core model, at the N- and C-termini or in between the two domains. Most remarkable is a domain swap in two subfamilies of the [st312]NHAC family that results in an inverted orientation of the proteins in the membrane.
Collapse
|
139
|
Kim J, Stroud RM, Craik CS. Rapid identification of recombinant Fabs that bind to membrane proteins. Methods 2011; 55:303-9. [PMID: 21958987 DOI: 10.1016/j.ymeth.2011.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/17/2022] Open
Abstract
Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600, 16th Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
140
|
Kang DC, Venkataraman PA, Dumont ME, Maloney PC. Oligomeric state of the oxalate transporter, OxlT. Biochemistry 2011; 50:8445-53. [PMID: 21866906 DOI: 10.1021/bi201175y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.
Collapse
Affiliation(s)
- Di-Cody Kang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | | | | | | |
Collapse
|
141
|
Lim HH, Fang Y, Williams C. High-efficiency screening of monoclonal antibodies for membrane protein crystallography. PLoS One 2011; 6:e24653. [PMID: 21931797 PMCID: PMC3169636 DOI: 10.1371/journal.pone.0024653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/15/2011] [Indexed: 11/18/2022] Open
Abstract
Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.
Collapse
Affiliation(s)
- Hyun-Ho Lim
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America.
| | | | | |
Collapse
|
142
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 628] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Lieberman RL, Culver JA, Entzminger KC, Pai JC, Maynard JA. Crystallization chaperone strategies for membrane proteins. Methods 2011; 55:293-302. [PMID: 21854852 DOI: 10.1016/j.ymeth.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022] Open
Abstract
From G protein-coupled receptors to ion channels, membrane proteins represent over half of known drug targets. Yet, structure-based drug discovery is hampered by the dearth of available three-dimensional models for this large category of proteins. Other than efforts to improve membrane protein expression and stability, current strategies to improve the ability of membrane proteins to crystallize involve examining many orthologs and DNA constructs, testing the effects of different detergents for purification and crystallization, creating a lipidic environment during crystallization, and cocrystallizing with covalent or non-covalent soluble protein chaperones with an intrinsic high propensity to crystallize. In this review, we focus on this last category, highlighting successes of crystallization chaperones in membrane protein structure determination and recent developments in crystal chaperone engineering, including molecular display to enhance chaperone crystallizability, and end with a novel generic approach in development to target any membrane protein of interest.
Collapse
Affiliation(s)
- Raquel L Lieberman
- School of Chemistry and Biochemistry, Institute for Bioscience and Bioengineering, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | | | | | | | | |
Collapse
|
144
|
Abstract
Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States.
| |
Collapse
|
145
|
Tomitori H, Kashiwagi K, Igarashi K. Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Amino Acids 2011; 42:733-40. [DOI: 10.1007/s00726-011-0989-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 03/26/2011] [Indexed: 10/17/2022]
|
146
|
Abstract
There are two classes of glucose transporters involved in glucose homeostasis in the body, the facilitated transporters or uniporters (GLUTs) and the active transporters or symporters (SGLTs). The energy for active glucose transport is provided by the sodium gradient across the cell membrane, the Na(+) glucose cotransport hypothesis first proposed in 1960 by Crane. Since the cloning of SGLT1 in 1987, there have been advances in the genetics, molecular biology, biochemistry, biophysics, and structure of SGLTs. There are 12 members of the human SGLT (SLC5) gene family, including cotransporters for sugars, anions, vitamins, and short-chain fatty acids. Here we give a personal review of these advances. The SGLTs belong to a structural class of membrane proteins from unrelated gene families of antiporters and Na(+) and H(+) symporters. This class shares a common atomic architecture and a common transport mechanism. SGLTs also function as water and urea channels, glucose sensors, and coupled-water and urea transporters. We also discuss the physiology and pathophysiology of SGLTs, e.g., glucose galactose malabsorption and familial renal glycosuria, and briefly report on targeting of SGLTs for new therapies for diabetes.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095-1751, USA.
| | | | | |
Collapse
|
147
|
Zomot E, Bahar I. Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. J Biol Chem 2011; 286:19693-701. [PMID: 21487006 PMCID: PMC3103348 DOI: 10.1074/jbc.m110.202085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/05/2011] [Indexed: 11/06/2022] Open
Abstract
Virulent enteric pathogens have developed several systems that maintain intracellular pH to survive extreme acidic conditions. One such mechanism is the exchange of arginine (Arg(+)) from the extracellular region with its intracellular decarboxylated form, agmatine (Agm(2+)). The net result of this process is the export of a virtual proton from the cytoplasm per antiport cycle. Crystal structures of the arginine/agmatine antiporter from Escherichia coli, AdiC, have been recently resolved in both the apo and Arg(+)-bound outward-facing conformations, which permit us to assess for the first time the time-resolved mechanisms of interactions that enable the specific antiporter functionality of AdiC. Using data from ∼1 μs of molecular dynamics simulations, we show that the protonation of Glu-208 selectively causes the dissociation and release of Agm(2+), but not Arg(+), to the cell exterior. The impact of Glu-208 protonation is transmitted to the substrate binding pocket via the reorientation of Ile-205 carbonyl group at the irregular portion of transmembrane (TM) helix 6. This effect, which takes place only in the subunits where Agm(2+) is released, invites attention to the functional role of the unwound portion of TM helices (TM6 Trp-202-Glu-208 in AdiC) in facilitating substrate translocation, reminiscent of the behavior observed in structurally similar Na(+)-coupled transporters.
Collapse
Affiliation(s)
- Elia Zomot
- From the Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ivet Bahar
- From the Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
148
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
149
|
Merhi A, Gérard N, Lauwers E, Prévost M, André B. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One 2011; 6:e18457. [PMID: 21526172 PMCID: PMC3079708 DOI: 10.1371/journal.pone.0018457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Background The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER). Principal Findings We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT) impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a 16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be independent of Gap1 ubiquitylation. Conclusions This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity, and down-regulation.
Collapse
Affiliation(s)
- Ahmad Merhi
- Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, Gosselies, Belgium
| | - Nicolas Gérard
- Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, Gosselies, Belgium
| | - Elsa Lauwers
- Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, Gosselies, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bruno André
- Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
150
|
Bill RM, Henderson PJF, Iwata S, Kunji ERS, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H. Overcoming barriers to membrane protein structure determination. Nat Biotechnol 2011; 29:335-40. [PMID: 21478852 DOI: 10.1038/nbt.1833] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|