101
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
102
|
Akhmedov VA, Gaus OV. Role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. TERAPEVT ARKH 2019; 91:143-148. [DOI: 10.26442/00403660.2019.02.000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article provides an overview of modern views on the role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. The general questions of the pathogenesis of the syndrome of excessive bacterial growth in the intestine, the participation of opportunistic microflora, the deficit of representatives of normal microflora, changes in the species composition of bile acids in the pathogenesis of nonalcoholic fatty liver disease are considered.
Collapse
|
103
|
Miller CG, Schmidt EE. Disulfide reductase systems in liver. Br J Pharmacol 2019; 176:532-543. [PMID: 30221761 PMCID: PMC6346074 DOI: 10.1111/bph.14498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
Abstract
Intermediary metabolism and detoxification place high demands on the disulfide reductase systems in most hepatocyte subcellular compartments. Biosynthetic, metabolic, cytoprotective and signalling activities in the cytosol; regulation of transcription in nuclei; respiration in mitochondria; and protein folding in endoplasmic reticulum all require resident disulfide reductase activities. In the cytosol, two NADPH-dependent enzymes, glutathione reductase and thioredoxin reductase, as well as a recently identified NADPH-independent system that uses catabolism of methionine to maintain pools of reduced glutathione, supply disulfide reducing power. However the necessary discontinuity between the cytosol and the interior of organelles restricts the ability of the cytosolic systems to support needs in other compartments. Maintenance of molecular- and charge-gradients across the inner-mitochondrial membrane, which is needed for oxidative phosphorylation, mandates that the matrix maintain an autonomous set of NADPH-dependent disulfide reductase systems. Elsewhere, complex mechanisms mediate the transfer of cytosolic reducing power into specific compartments. The redox needs in each compartment also differ, with the lumen of the endoplasmic reticulum, the mitochondrial inter-membrane space and some signalling proteins in the cytosol each requiring different levels of protein oxidation. Here, we present an overview of the current understanding of the disulfide reductase systems in major subcellular compartments of hepatocytes, integrating knowledge obtained from direct analyses on liver with inferences from other model systems. Additionally, we discuss relevant advances in the expanding field of redox signalling. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Edward E Schmidt
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| |
Collapse
|
104
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
105
|
Lin J, Akiyama M, Bica I, Long FT, Henderson CF, Goddu RN, Suarez V, Baker B, Ida T, Shinkai Y, Nagy P, Akaike T, Fukuto JM, Kumagai Y. The Uptake and Release of Polysulfur Cysteine Species by Cells: Physiological and Toxicological Implications. Chem Res Toxicol 2019; 32:447-455. [DOI: 10.1021/acs.chemrestox.8b00340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States
| | - Masahiro Akiyama
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Iris Bica
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States
| | - Faith T. Long
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States
| | - Catherine F. Henderson
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States
| | - Robert N. Goddu
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States
| | - Valeria Suarez
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, United States
| | - Blaine Baker
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, United States
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest 1122, Hungary
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Jon M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, United States
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
106
|
Xiao Z, La Fontaine S, Bush AI, Wedd AG. Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol-Disulfide Exchange between Protein Thiols and Glutathione. J Mol Biol 2018; 431:158-177. [PMID: 30552876 DOI: 10.1016/j.jmb.2018.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol-disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol-disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.
Collapse
Affiliation(s)
- Zhiguang Xiao
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sharon La Fontaine
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anthony G Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
107
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
108
|
Kobayashi J, Sasaki D, Bamba T, Hasunuma T, Kondo A. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2018; 103:1243-1254. [DOI: 10.1007/s00253-018-9493-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
109
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
110
|
Ren X, Zou L, Lu J, Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic Biol Med 2018; 127:238-247. [PMID: 29807162 DOI: 10.1016/j.freeradbiomed.2018.05.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
Thioredoxin system is a ubiquitous disulfide reductase system evolutionarily conserved through all living organisms. It contains thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. TrxR can use NADPH to reduce Trx which passes the reducing equivalent to its downstream substrates involved in various biomedical events, such as ribonucleotide reductase for deoxyribonucleotide and DNA synthesis, or peroxiredoxins for counteracting oxidative stress. Obviously, TrxR stays in the center of the system to maintain the electron flow. Mammalian TrxR contains a selenocysteine (Sec) in its active site, which is not present in the low molecular weight prokaryotic TrxRs. Due to the special property of Sec, mammalian TrxR employs a different catalytic mechanism from prokaryotic TrxRs and has a broader substrate-spectrum. On the other hand, Sec is easily targeted by electrophilic compounds which inhibits the TrxR activity and may turn TrxR into an NADPH oxidase. Ebselen, a synthetic seleno-compound containing selenazol, has been tested in several clinical studies. In mammalian cells, ebselen works as a GSH peroxidase mimic and mainly as a peroxiredoxin mimic via Trx and TrxR to scavenge hydrogen peroxide and peroxynitrite. In prokaryotic cells, ebselen is an inhibitor of TrxR and leads to elevation of reactive oxygen species (ROS). Recent studies have made use of the difference and developed ebselen as a potential antibiotic, especially in combination with silver which enables ebselen to kill multi-drug resistant Gram-negative bacteria. Collectively, Sec is important for the biological functions of mammalian TrxR and distinguishes it from prokaryotic TrxRs, therefore it is a promising drug target.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
111
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
112
|
S-allylmercaptoglutathione Is a Substrate for Glutathione Reductase (E.C. 1.8.1.7) from Yeast ( Saccharomyces cerevisiae). Antioxidants (Basel) 2018; 7:antiox7070086. [PMID: 29986384 PMCID: PMC6070820 DOI: 10.3390/antiox7070086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Allicin (diallylthiosulfinate) is a potent thiol reagent and natural defense substance produced by garlic (Allium sativum) tissues when damaged. Allicin acts as a redox toxin and oxidizes the cellular glutathione (GSH) pool producing S-allylmercaptoglutathione (GSSA). The cellular enzyme glutathione reductase (GR) uses NADPH to reduce glutathione disulfide (GSSG) back to GSH and replenishes the GSH pool. It was not known whether GR could accept GSSA as a substrate. Here, we report that GR from yeast (Saccharomyces cerevisiae) shows Michaelis⁻Menten kinetics with GSSA as substrate in vitro (Km = 0.50 mM), but that GSSA is not as good a substrate as GSSG (Km = 0.07 mM). Furthermore, cells unable to synthesize GSH because the γ-glutamylcysteine synthetase (GSH1) gene is deleted, cannot grow without GSH supplementation and we show that the auxotrophic requirement for GSH in Δgsh1 mutants can be met by GSSA in the growth medium, suggesting that GSSA can be reduced to GSH in vivo.
Collapse
|
113
|
Radzinski M, Fassler R, Yogev O, Breuer W, Shai N, Gutin J, Ilyas S, Geffen Y, Tsytkin-Kirschenzweig S, Nahmias Y, Ravid T, Friedman N, Schuldiner M, Reichmann D. Temporal profiling of redox-dependent heterogeneity in single cells. eLife 2018; 7:37623. [PMID: 29869985 PMCID: PMC6023615 DOI: 10.7554/elife.37623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/22/2023] Open
Abstract
Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Yogev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William Breuer
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jenia Gutin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sidra Ilyas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yifat Geffen
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabina Tsytkin-Kirschenzweig
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Friedman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
114
|
Termathe M, Leidel SA. The Uba4 domain interplay is mediated via a thioester that is critical for tRNA thiolation through Urm1 thiocarboxylation. Nucleic Acids Res 2018; 46:5171-5181. [PMID: 29718331 PMCID: PMC6007339 DOI: 10.1093/nar/gky312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/29/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic ubiquitin-like proteins (UBLs) have evolved from prokaryotic sulfur-carrier proteins (SCPs). Ubiquitin related modifier 1 (Urm1) shares biochemical and structural features of UBLs and SCPs and is essential for 2-thiolation of cytoplasmic tRNA. This chemical modification of wobble uridine is highly conserved amongst species and is achieved via Urm1 thiocarboxylation by the non-canonical ubiquitin activating 4 enzyme (Uba4), which contains an E1- and a Rhodanese (RHD) domain. While the RHD catalyzes the last step in Urm1-thiocarboxylate formation, the previous steps in Urm1 activation and the interplay between the two domains have remained elusive. To define the underlying mechanism, we established an Urm1 in vitro thiocarboxylation assay, which combined with structure-function and chemical profiling analyses revealed a critical thioester linkage between Urm1 and Uba4 residue Cys225. This linkage is indispensable for the Urm1 intramolecular transfer between the two domains of Uba4 and it is thus, essential for tRNA thiolation in vivo. These findings contribute to a deeper understanding of UBL evolution.
Collapse
Affiliation(s)
- Martin Termathe
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
115
|
Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol 2018; 15:467-479. [PMID: 29413959 PMCID: PMC5975181 DOI: 10.1016/j.redox.2018.01.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in industrialized countries. NAFLD progresses through the inflammatory phase of non-alcoholic steatohepatitis (NASH) to fibrosis and cirrhosis, with some cases developing liver failure or hepatocellular carcinoma (HCC). Liver biopsy remains the gold standard approach to a definitive diagnosis of NAFLD and the distinction between simple steatosis and NASH. The pathogenesis of NASH is still not clear. Several theories have been proposed ranging from the "Two Hit Theory" to the "Multiple Hit Theory". However, the general consensus is that the gut microbiota, oxidative stress, and mitochondrial damage play key roles in the pathogenesis of NASH. The interaction between the gut epithelia and some commensal bacteria induces the rapid generation of reactive oxygen species (ROS). The main goal of any therapy addressing NASH is to reverse or prevent progression to liver fibrosis/cirrhosis. This problem represents the first "Achilles' heel" of the new molecules being evaluated in most ongoing clinical trials. The second is the inability of these molecules to reach the mitochondria, the primary sites of energy production and ROS generation. Recently, a variety of non-pharmacological and pharmacological treatment approaches for NASH have been evaluated including vitamin E, the thiazolidinediones, and novel molecules related to NASH pathogenesis (including obeticholic acid and elafibranor). Recently, a new isoform of human manganese superoxide dismutase (MnSOD) was isolated and obtained in a synthetic recombinant form designated rMnSOD. This protein has been shown to be a powerful antioxidant capable of mediating ROS dismutation, penetrating biological barriers via its uncleaved leader peptide, and reducing portal hypertension and fibrosis in rats affected by liver cirrhosis. Based on these distinctive characteristics, it can be hypothesized that this novel recombinant protein (rMnSOD) potentially represents a new and highly efficient adjuvant therapy to counteract the progression from NASH to HCC.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy.
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | | | | | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., Belvedere, CA, USA
| |
Collapse
|
116
|
Bachhawat AK, Yadav S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 2018; 70:585-592. [PMID: 29667297 DOI: 10.1002/iub.1756] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Glutathione was discovered in 1888, over 125 years ago. Since then, our understanding of various functions and metabolism of this important molecule has grown over these years. But it is only now, in the last decade, that a somewhat complete picture of its metabolism has emerged. Glutathione metabolism has till now been largely depicted and understood by the γ-glutamyl cycle that was proposed in 1970. However, new findings and knowledge particularly on the transport and degradation of glutathione have revealed that many aspects of the γ-glutamyl cycle are incorrect. Despite this, an integrated critical analysis of the cycle has never been undertaken and this has led to the cycle and its errors perpetuating in the literature. This review takes a careful look at the γ-glutamyl cycle and its shortcomings and presents a "glutathione cycle" that captures the current understanding of glutathione metabolism. © 2018 IUBMB Life, 70(7):585-592, 2018.
Collapse
Affiliation(s)
- Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab, India
| | - Shambhu Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab, India
| |
Collapse
|
117
|
König K, Vaseghi MJ, Dreyer A, Dietz KJ. The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. PHYSIOLOGIA PLANTARUM 2018; 162:262-273. [PMID: 28984358 DOI: 10.1111/ppl.12644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 05/13/2023]
Abstract
Retrograde signals from the chloroplast control expression of nuclear genes. A large fraction of these genes is affected rapidly upon light intensity shifts. This study was designed to address the interdependence of signaling pathways involved in the rapid high light response and redox and reactive oxygen species signaling by exploiting the glutathione and ascorbate deficient mutants pad2 and vtc1. In the first set of experiments the transcriptional response of the two transcription factors ERF6 and ERF105 that had previously been shown to rapidly respond to light was shown to be deregulated in the pad2 mutant but not in the vtc1 background. The transcriptional response after combining the low-to-high light transfer with methylviologen pretreatment further demonstrated the significance of glutathione in strongly modulating the retrograde response. Transcripts encoding small heat shock proteins (HSP17.4, HSP176a, HSP20-like1 and HSP20-like2) and the lipid transfer protein LTP3 were taken as markers responding to the combinatorial treatment in wild type, and most strongly in pad2 in high light or upon methylviologen treatment. A correlation with H2 O2 accumulation was not observed. It is concluded that glutathione-dependent processes participate in light-triggered rapid gene regulation independent on cellular H2 O2 .
Collapse
Affiliation(s)
- Katharina König
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Mohamad Javad Vaseghi
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| |
Collapse
|
118
|
A mitochondria-targeted ratiometric two-photon fluorescent probe for detecting intracellular cysteine and homocysteine. Talanta 2018; 178:24-30. [DOI: 10.1016/j.talanta.2017.08.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/19/2017] [Accepted: 08/27/2017] [Indexed: 11/21/2022]
|
119
|
Nishikiori M, Ahlquist P. Organelle luminal dependence of (+)strand RNA virus replication reveals a hidden druggable target. SCIENCE ADVANCES 2018; 4:eaap8258. [PMID: 29387794 PMCID: PMC5787378 DOI: 10.1126/sciadv.aap8258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/19/2017] [Indexed: 05/08/2023]
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bounded cytoplasmic complexes. We show that endoplasmic reticulum (ER)-linked genomic RNA replication by brome mosaic virus (BMV), a well-studied member of the alphavirus superfamily, depends on the ER luminal thiol oxidase ERO1. We further show that BMV RNA replication protein 1a, a key protein for the formation and function of vesicular BMV RNA replication compartments on ER membranes, permeabilizes these membranes to release oxidizing potential from the ER lumen. Conserved amphipathic sequences in 1a are sufficient to permeabilize liposomes, and mutations in these sequences simultaneously block membrane permeabilization, formation of a disulfide-linked, oxidized 1a multimer, 1a's RNA capping function, and productive genome replication. These results reveal new transmembrane complexities in positive-strand RNA virus replication, show that-as previously reported for certain picornaviruses and flaviviruses-some alphavirus superfamily members encode viroporins, identify roles for such viroporins in genome replication, and provide a potential new foundation for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Masaki Nishikiori
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author.
| |
Collapse
|
120
|
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017; 18:ijms18122772. [PMID: 29261130 PMCID: PMC5751370 DOI: 10.3390/ijms18122772] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
Collapse
Affiliation(s)
- Sandra Vomund
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Anne Schäfer
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Andreas von Knethen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
121
|
Schuh AK, Sheybani B, Jortzik E, Niemann B, Wilhelm J, Boening A, Becker K. Redox status of patients before cardiac surgery. Redox Rep 2017; 23:83-93. [PMID: 29257712 PMCID: PMC6748699 DOI: 10.1080/13510002.2017.1418620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives: Redox regulation plays a crucial role in balancing the
cardiovascular system. In this prospective study we aimed to identify currently
unknown correlations valuable to cardiovascular research and patient
management. Methods: Blood samples from 500 patients were collected directly
before cardiosurgical interventions (Ethics Committee reference number 85/11).
Four central redox parameters were determined together with about 30 clinical,
anthropometric, and metabolic parameters. Results: Creatinine levels and pulmonary hypertension were
significant predictors of the total antioxidant status (TAOS) in the patients;
total glutathione levels were linked to C-peptide, and creatinine, gender, and
ventricular arrhythmia influenced nitrate/nitrite levels. Notably, significant
interactions were found between medication and redox parameters. Calcium channel
blockers (CCBs) were positive predictors of total glutathione levels, whereas
angiotensin-converting enzyme inhibitors and CCBs were negative predictors of
NOx levels. Age showed the highest correlation with the duration of the
intensive care stay, followed by NOx levels, creatinine, TAOS, and C-reactive
protein. Discussion: In this prospective study we determined multiple
correlations between redox markers and parameters linked to cardiovascular
diseases. The data point towards so far unknown interdependencies, particularly
between antihypertensive drugs and redox metabolism. A thorough follow-up to
these data has the potential to improve patient management. Abbreviations: A: absorption; ΔA: absorption difference; ABTS:
2,2′-azino-di(3-ethylbenzothiazoline sulfonate); ACE:
angiotensin-converting enzyme; AO: antioxidant; ARB: angiotensin receptor
blocker; BMI: body mass index; CAD: coronary artery disease; CCB: calcium
channel blocker; CDC: coronary heart diseases; COPD: chronic obstructive
pulmonary disease; CRP: C-reactive protein; CVD: cardiovascular diseases;
Cu-OOH: cumene hydroperoxide; D: dilution factor; DAN: 2,3-diaminonaphtalene;
DMSO: dimethylsulfoxide; DNA: deoxyribonucleic acid; DTNB:
5,5-dithiobis(2-nitrobenzoate); ϵ: extinction coefficient;
EDRF: endothelium-derived relaxing factor; fc: final concentration; GPx:
glutathione peroxidases; (h)GR: (human) glutathione reductase; GSH: (reduced)
glutathione; GSSG: glutathione disulfide; GST: glutathione-S-transferase; Hb:
hemoglobin; HDL: high-density lipoprotein; Hk: hematocrit;
H2O2: hydrogen peroxide; ICS: intensive care stay;
LDH: lactate dehydrogenase; LDL: low-density lipoprotein; MI: myocardial
infarction; NED: N-(1-naphthyl)-ethylendiamine-dihydrochloride;
NOS: nitric oxide synthase; NOx: nitrate/nitrite; NR: nitrate reductase; PBS:
phosphate buffered saline; PCA: principle component analysis; PH: pulmonary
hypertension; ROS: reactive oxygen species; RNS: reactive nitrogen species; RT:
room temperature (25°C); SA: sulfanilamide; SOD: superoxide dismutase; SSA:
sulfosalicylic acid; TAC: total antioxidant capacity; TAOS: total antioxidant
status; TEAC: trolox equivalent antioxidative capacity; TG: triglycerides; tGSH:
total glutathione; TNB-: 2-nitro-5-thiobenzoate; U: unit; UV: ultraviolet; VA:
volume activity; Wc: working concentration; WHR: waist-hip ratio.
Collapse
Affiliation(s)
- Anna Katharina Schuh
- a Biochemistry and Molecular Biology, Interdisciplinary Research Center , Justus Liebig University , Giessen , Germany
| | - Babak Sheybani
- b Clinic for Heart, Pediatric Heart and Vascular Surgery, Faculty of Medicine , UKGM , Giessen , Germany
| | - Esther Jortzik
- a Biochemistry and Molecular Biology, Interdisciplinary Research Center , Justus Liebig University , Giessen , Germany
| | - Bernd Niemann
- b Clinic for Heart, Pediatric Heart and Vascular Surgery, Faculty of Medicine , UKGM , Giessen , Germany
| | - Jochen Wilhelm
- c Excellence Cluster Cardio-Pulmonary System , Justus Liebig University , Giessen , Germany
| | - Andreas Boening
- b Clinic for Heart, Pediatric Heart and Vascular Surgery, Faculty of Medicine , UKGM , Giessen , Germany
| | - Katja Becker
- a Biochemistry and Molecular Biology, Interdisciplinary Research Center , Justus Liebig University , Giessen , Germany
| |
Collapse
|
122
|
Abstract
SIGNIFICANCE Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. CRITICAL ISSUES Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. FUTURE DIRECTIONS A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal. 27, 1130-1161.
Collapse
Affiliation(s)
- Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University , Heidelberg, Germany
| |
Collapse
|
123
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
124
|
Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes. Biochem J 2017; 474:3799-3815. [DOI: 10.1042/bcj20170589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/26/2022]
Abstract
Glutaredoxins (Grxs) are a class of GSH (glutathione)-dependent thiol–disulfide oxidoreductase enzymes. They use the cellular redox buffer GSSG (glutathione disulfide)/GSH directly to catalyze these exchange reactions. Grxs feature dithiol active sites and can shuttle rapidly between three oxidation states, namely dithiol Grx(SH)2, mixed disulfide Grx(SH)(SSG) and oxidized disulfide Grx(SS). Each is characterized by a distinct standard reduction potential . The values for the redox couple Grx(SS)/Grx(SH)2 are available, but a recent estimate differs by over 100 mV from the literature values. No estimates are available for for the mixed disulfide couple Grx(SH)(SSG)/(Grx(SH)2 + GSH). This work determined both and for two representative Grx enzymes, Homo sapiens HsGrx1 and Escherichia coli EcGrx1. The empirical approaches were verified rigorously to overcome the sensitivity of these redox-labile enzymes to experimental conditions. The classic method of acid ‘quenching’ was demonstrated to shift the thiol–disulfide redox equilibria. Both enzymes exhibit an (vs. SHE) at a pH of 7.0. Their values (−213 and −230 mV for EcGrx1 and HsGrx1, respectively) are slightly less negative than that () of the redox buffer GSSG/2GSH. Both and vary with log [GSH], but the former more sensitively by a factor of 2. This confers dual catalytic functions to a Grx enzyme as either an oxidase at low [GSH] or as a reductase at high [GSH]. Consequently, these enzymes can participate efficiently in either glutathionylation or deglutathionylation. The catalysis is demonstrated to proceed via a monothiol ping-pong mechanism relying on a single Cys residue only in the dithiol active site.
Collapse
|
125
|
Staudacher V, Trujillo M, Diederichs T, Dick TP, Radi R, Morgan B, Deponte M. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells. Redox Biol 2017; 14:549-556. [PMID: 29128826 PMCID: PMC5684490 DOI: 10.1016/j.redox.2017.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Redox-sensitive green fluorescent protein 2 (roGFP2) is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis.
Collapse
Affiliation(s)
- Verena Staudacher
- University of Kaiserslautern, Erwin-Schrödinger-Straße 54, D-67663 Kaiserslautern, Germany; Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany; Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Tim Diederichs
- Department of Biology/Cellular Biochemistry, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tobias P Dick
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina and Center for Free Radical and Biomedical Research, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| | - Bruce Morgan
- Department of Biology/Cellular Biochemistry, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany.
| | - Marcel Deponte
- University of Kaiserslautern, Erwin-Schrödinger-Straße 54, D-67663 Kaiserslautern, Germany; Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| |
Collapse
|
126
|
Sun C, Du W, Wang P, Wu Y, Wang B, Wang J, Xie W. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione. Biochem Biophys Res Commun 2017; 494:518-525. [PMID: 29079191 DOI: 10.1016/j.bbrc.2017.10.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO-) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO-/GSH levels in cells. This probe can reversibly respond to ONOO- and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO- outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation.
Collapse
Affiliation(s)
- Chunlong Sun
- School of Biotechnology, Key Laboratory of Instrumental Analysis of Binzhou City, Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China.
| | - Wen Du
- School of Biotechnology, Key Laboratory of Instrumental Analysis of Binzhou City, Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Wu
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Baoqin Wang
- School of Biotechnology, Key Laboratory of Instrumental Analysis of Binzhou City, Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
| | - Jun Wang
- School of Biotechnology, Key Laboratory of Instrumental Analysis of Binzhou City, Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
| | - Wenjun Xie
- School of Biotechnology, Key Laboratory of Instrumental Analysis of Binzhou City, Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
| |
Collapse
|
127
|
Lucena SV, Moura GEDD, Rodrigues T, Watashi CM, Melo FH, Icimoto MY, Viana GM, Nader HB, Monteiro HP, Tersariol ILS, Ogata FT. Heparan sulfate proteoglycan deficiency up-regulates the intracellular production of nitric oxide in Chinese hamster ovary cell lines. J Cell Physiol 2017; 233:3176-3194. [PMID: 28833096 DOI: 10.1002/jcp.26160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH)-UFABC; Santo André São Paulo Brazil
| | - Carolina M. Watashi
- Centro de Ciências Naturais e Humanas (CCNH)-UFABC; Santo André São Paulo Brazil
| | - Fabiana H. Melo
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo São Paulo Brazil
| | | | | | - Helena B. Nader
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
| | | | - Ivarne L. S. Tersariol
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
- Centro Interdisciplinar de Investigação Bioquímica UMC; Mogi das Cruzes São PauloSão Paulo Brazil
| | - Fernando T. Ogata
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
- Division of Biochemistry, Medical Biochemistry & Biophysics, Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
128
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
129
|
Branco V, Coppo L, Solá S, Lu J, Rodrigues CMP, Holmgren A, Carvalho C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol 2017; 13:278-287. [PMID: 28600984 PMCID: PMC5466585 DOI: 10.1016/j.redox.2017.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg2+), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 2# Tiansheng Road, Beibei District, Chongqing 400715, PR China
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
130
|
Ponsero AJ, Igbaria A, Darch MA, Miled S, Outten CE, Winther JR, Palais G, D'Autréaux B, Delaunay-Moisan A, Toledano MB. Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip. Mol Cell 2017; 67:962-973.e5. [PMID: 28918898 DOI: 10.1016/j.molcel.2017.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/29/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.
Collapse
Affiliation(s)
- Alise J Ponsero
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Aeid Igbaria
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Maxwell A Darch
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Samia Miled
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jakob R Winther
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Gael Palais
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), CEA-Saclay, CNRS, Université Paris-Saclay, ISVJC/SBIGEM, Laboratoire Stress Oxydant et Cancer, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
131
|
Panieri E, Millia C, Santoro MM. Real-time quantification of subcellular H 2O 2 and glutathione redox potential in living cardiovascular tissues. Free Radic Biol Med 2017; 109:189-200. [PMID: 28192232 DOI: 10.1016/j.freeradbiomed.2017.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H2O2) levels and glutathione redox potential (EGSH), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Carlo Millia
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.
| |
Collapse
|
132
|
Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med 2017; 109:167-188. [PMID: 27939954 DOI: 10.1016/j.freeradbiomed.2016.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
133
|
De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 2017; 6. [PMID: 28716182 PMCID: PMC5515573 DOI: 10.7554/elife.26770] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.
Collapse
Affiliation(s)
- Valentina De Col
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thomas Nietzel
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marlene Elsässer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ingo Seeliger
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
134
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
135
|
Suzuki Y, Schwartz SL, Mueller NC, Schmitt MJ. Cysteine residues in a yeast viral A/B toxin crucially control host cell killing via pH-triggered disulfide rearrangements. Mol Biol Cell 2017; 28:1123-1131. [PMID: 28228551 PMCID: PMC5391188 DOI: 10.1091/mbc.e16-12-0842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 11/24/2022] Open
Abstract
K28 is a viral A/B protein toxin that intoxicates yeast and fungal cells by endocytosis and retrograde transport to the endoplasmic reticulum (ER). Although toxin translocation into the cytosol occurs on the oxidized α/β heterodimer, the precise mechanism of how the toxin crosses the ER membrane is unknown. Here we identify pH-triggered, toxin-intrinsic thiol rearrangements that crucially control toxin conformation and host cell killing. In the natural habitat and low-pH environment of toxin-secreting killer yeasts, K28 is structurally stable and biologically active as a disulfide-bonded heterodimer, whereas it forms inactive disulfide-bonded oligomers at neutral pH that are caused by activation and thiol deprotonation of β-subunit cysteines. Because such pH increase reflects the pH gradient during compartmental transport within target cells, potential K28 oligomerization in the ER lumen is prevented by protein disulfide isomerase. In addition, we show that pH-triggered thiol rearrangements in K28 can cause the release of cytotoxic α monomers, suggesting a toxin-intrinsic mechanism of disulfide bond reduction and α/β heterodimer dissociation in the cytosol.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Molecular and Cell Biology, Department of Biosciences, and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbruecken, Germany
| | - Sara L Schwartz
- Molecular and Cell Biology, Department of Biosciences, and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbruecken, Germany
| | - Nina C Mueller
- Molecular and Cell Biology, Department of Biosciences, and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbruecken, Germany
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences, and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbruecken, Germany
| |
Collapse
|
136
|
Deshpande AA, Bhatia M, Laxman S, Bachhawat AK. Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload. MICROBIAL CELL 2017; 4:112-126. [PMID: 28435838 PMCID: PMC5376351 DOI: 10.15698/mic2017.04.567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cysteine is an essential requirement in living organisms. However, due to its reactive thiol side chain, elevated levels of intracellular cysteine can be toxic and therefore need to be rapidly eliminated from the cellular milieu. In mammals and many other organisms, excess cysteine is believed to be primarily eliminated by the cysteine dioxygenase dependent oxidative degradation of cysteine, followed by the removal of the oxidative products. However, other mechanisms of tackling excess cysteine are also likely to exist, but have not thus far been explored. In this study, we use Saccharomyces cerevisiae, which naturally lacks a cysteine dioxygenase, to investigate mechanisms for tackling cysteine overload. Overexpressing the high affinity cysteine transporter, YCT1, enabled yeast cells to rapidly accumulate high levels of intracellular cysteine. Using targeted metabolite analysis, we observe that cysteine is initially rapidly interconverted to non-reactive cystine in vivo. A time course revealed that cells systematically convert excess cysteine to inert thiol forms; initially to cystine, and subsequently to cystathionine, S-Adenosyl-L-homocysteine (SAH) and S-Adenosyl L-methionine (SAM), in addition to eventually accumulating glutathione (GSH) and polyamines. Microarray based gene expression studies revealed the upregulation of arginine/ornithine biosynthesis a few hours after the cysteine overload, and suggest that the non-toxic, non-reactive thiol based metabolic products are eventually utilized for amino acid and polyamine biogenesis, thereby enabling cell growth. Thus, cells can handle potentially toxic amounts of cysteine by a combination of thiol trapping, metabolic redistribution to non-reactive thiols and subsequent consumption for anabolism.
Collapse
Affiliation(s)
- Anup Arunrao Deshpande
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| | - Muskan Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS campus, Bangalore 560065, India
| | - Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Mohali), S.A.S. Nagar, Punjab 140306, India
| |
Collapse
|
137
|
Yan J, Guo Y, Fei Y, Zhang R, Han Y, Lu S. GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress. Acta Biochim Biophys Sin (Shanghai) 2017; 49:110-118. [PMID: 28039148 DOI: 10.1093/abbs/gmw125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Glutathione peroxidase 1 (GPx1) is a selenium (Se)-containing protein and is induced in cartilage formation. GPx1 eliminates reactive oxygen species (ROS), which are required for chondrogenic induction. The physiological properties of GPx1 in cartilage and the redox mechanisms involved are not known. The effects of GPx1 on chondrogenic differentiation of ATDC5 cells were examined through short hairpin RNA-mediated gene silencing. The results demonstrated that GPx1 knockdown impaired gene expression of sex determining region Y-box 9, collagen II (Col II), and aggrecan. GPx1 knockdown suppressed the accumulation of cartilage glycosaminoglycans (GAGs) and the proliferation of chondrocyte. GPx1 knockdown also induced cell apoptosis. However, cell sensitivity toward exogenous oxidative stress was not increased after GPx1 knockdown. Unexpectedly, GPx1 knockdown not only induced oxidative stress characterized by the increased production of ROS but also caused reductive stress indicated by an elevation of glutathione (GSH)/oxidized GSH (GSSG) ratio. Furthermore, GPx1 knockdown-mediated reductive and oxidative stress could be antagonized by a thiol-oxidizing agent diamide and a thiol-containing compound N-acetylcysteine (NAC), respectively. Moreover, NAC attenuated GPx1 knockdown-induced cell apoptosis, while diamide prevented GPx1 knockdown-suppressed chondrocyte proliferation. Finally, diamide but not NAC could rescue GPx1 knockdown-mediated impaired chondrogenic differentiation. In summary, GPx1 is essential for chondrogenic induction in ATDC5 cells mainly through modulation of intracellular GSH/GSSG ratio, rather than an antioxidant enzyme to detoxify ROS. In addition, GPx1 knockdown-induced impaired chondrogenesis may participate in the pathogenesis of the endemic osteoarthropathy due to Se deficiency. These observations offer novel insights for the development of therapeutic target during cartilage degeneration.
Collapse
Affiliation(s)
- Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yao Fei
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Zhang
- Xi'an Hong Hui Hospital, The Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710054, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
138
|
The oxidation state of the cytoplasmic glutathione redox system does not correlate with replicative lifespan in yeast. NPJ Aging Mech Dis 2016; 2:16028. [PMID: 28721277 PMCID: PMC5515007 DOI: 10.1038/npjamd.2016.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
What is cause and what is consequence of aging and whether reactive oxygen species (ROS) contribute to this phenomenon is debated since more than 50 years. Notwithstanding, little is known about the cellular buffer and redox systems in aging Saccharomyces cerevisiae, which is a model for aging stem cells. Using genetically encoded fluorescent sensors, we measured pH, H2O2 levels and the glutathione redox potential compartment-specific in the cytosol of living, replicatively aging yeast cells, growing under fermenting and respiratory conditions until the end of their lifespan. We found that the pH decreases under both conditions at later stages of the replicative lifespan. H2O2 levels increase in fermenting cells in the post-replicative stage, but increase continuously with age in respiring cells. The glutathione redox couple becomes also more oxidizing in respiring cells but surprisingly more reducing under fermenting conditions. In strains deleted for the gene encoding glutathione reductase Glr1, such a reduction of the glutathione redox couple with age is not observed. We demonstrate that in vivo Glr1 is activated at lower pH explaining the reduced glutathione potential. The deletion of glr1 dramatically increases the glutathione redox potential especially under respiratory conditions but does not reduce lifespan. Our data demonstrate that pH and the glutathione redox couple is linked through Glr1 and that yeast cells can cope with a high glutathione redox potential without impact on longevity. Our data further suggest that a breakdown of cellular energy metabolism marks the end of replicative lifespan in yeast.
Collapse
|
139
|
Tarai S, Bit A, dos Reis HJ, Palotás A, Rizvanov A, Bissoyi A. Stratifying Heterogeneous Dimension of Neurodegenerative Diseases: Intervention for Stipulating Epigenetic Factors to Combat Oxidative Stress in Human Brain. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
140
|
Altıntaş A, Davidsen K, Garde C, Mortensen UH, Brasen JC, Sams T, Workman CT. High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radic Biol Med 2016; 101:143-153. [PMID: 27742413 DOI: 10.1016/j.freeradbiomed.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
Although the role of oxidative stress factors and their regulation is well studied, the temporal dynamics of stress recovery is still poorly understood. In particular, measuring the kinetics of stress recovery in the first minutes after acute exposure provides a powerful technique for assessing the role of regulatory proteins or enzymes through the use of mutant backgrounds. This project endeavors to screen the temporal dynamics of intracellular oxidant levels in live cells as a function of gene deletion in the budding yeast, Saccharomyces cerevisiae. Using the detailed time dynamics of extra- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10-20min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic factors. Surprisingly, we found that the deletion of transcription factors Yap1p or Skn7p was sufficient to disrupt the establishment of the second degradation phase but not the initial phase. A better fundamental understanding of the role protective factors play in the recovery from oxidative stress may lead to strategies for protecting or sensitizing cell to this stress.
Collapse
Affiliation(s)
- Ali Altıntaş
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Kristian Davidsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Christian Garde
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - J Christian Brasen
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Thomas Sams
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
141
|
Hamre K, Sissener NH, Lock EJ, Olsvik PA, Espe M, Torstensen BE, Silva J, Johansen J, Waagbø R, Hemre GI. Antioxidant nutrition in Atlantic salmon ( Salmo salar) parr and post-smolt, fed diets with high inclusion of plant ingredients and graded levels of micronutrients and selected amino acids. PeerJ 2016; 4:e2688. [PMID: 27843721 PMCID: PMC5103829 DOI: 10.7717/peerj.2688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
The shift from marine to plant-based ingredients in fish feeds affects the dietary concentrations and bioavailability of micronutrients, amino acids and lipids and consequently warrants a re-evaluation of dietary nutrient recommendations. In the present study, an Atlantic salmon diet high in plant ingredients was supplemented with graded levels of nutrient premix (NP), containing selected amino acids, taurine, cholesterol, vitamins and minerals. This article presents the results on the antioxidant nutrients vitamin C, E and selenium (Se), and effects on tissue redox status. The feed ingredients appeared to contain sufficient levels of vitamin E and Se to cover the requirements to prevent clinical deficiency symptoms. The body levels of α-tocopherol (TOH) in parr and that of Se in parr and post-smolt showed a linear relationship with dietary concentration, while α-TOH in post-smolt seemed to be saturable with a breakpoint near 140 mg kg−1. Ascorbic acid (Asc) concentration in the basal feed was below the expected minimum requirement, but the experimental period was probably too short for the fish to develop visible deficiency symptoms. Asc was saturable in both parr and post-smolt whole body at dietary concentrations of 190 and 63–89 mg kg−1, respectively. Maximum whole body Asc concentration was approximately 40 mg kg−1 in parr and 14 mg kg−1 in post-smolt. Retention ranged from 41 to 10% in parr and from −206 to 12% in post-smolt with increasing NP supplementation. This indicates that the post-smolts had an extraordinarily high consumption of Asc. Analyses of glutathione (GSH) and glutathione disulphide (GSSG) concentrations and the calculated GSH based redox potentials in liver and muscle tissue, indicated only minor effects of diets on redox regulation. However, the post-smolt were more oxidized than the parr. This was supported by the high consumption of Asc and high expression of gpx1 and gpx3 in liver. Based on the present trials, the recommendations for supplementation of vitamin C and E in diets for Atlantic salmon are similar to current practices, e.g. 150 mg kg−1 of α-TOH and 190 mg kg−1 Asc which was the saturating concentration in parr. Higher concentrations than what would prevent clinical deficiency symptoms are necessary to protect fish against incidents of oxidative stress and to improve immune and stress responses. There were no indications that the Se requirement exceeded the current recommendation of 0.3 mg kg−1.
Collapse
Affiliation(s)
- Kristin Hamre
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway
| | - Nini H Sissener
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | - Erik-Jan Lock
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | - Bente E Torstensen
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| | | | | | - Rune Waagbø
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Department of Biology, University of Bergen, Bergen, Norway
| | - Gro-Ingunn Hemre
- National Institute of Nutrition and Seafood Research (NIFES) , Bergen , Norway
| |
Collapse
|
142
|
Lu SC, Mato JM, Espinosa-Diez C, Lamas S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med 2016; 100:66-72. [PMID: 27033954 PMCID: PMC5749629 DOI: 10.1016/j.freeradbiomed.2016.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
The discovery of the microRNA (miRNA) family of small RNAs as fundamental regulators of post-transcriptional gene expression has fostered research on their importance in every area of biology and clinical medicine. In the particular area of liver metabolism and disease, miRNAs are gaining increasing importance. By focusing on two fundamental hepatic biosynthetic pathways, glutathione and methionine, we review recent advances on the comprehension of the role of miRNAs in liver pathophysiology and more specifically of models of hepatic cholestasis/fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- CIC bioGUNE, (CIBERehd), Parque Tecnológico de Bizcaia, Derio, Spain
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
143
|
Zhang J, Yu J, Jiang J, Chen X, Sun Y, Yang Z, Yang T, Cai C, Zhao X, Ding P. Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. J Cell Biochem 2016; 118:903-913. [PMID: 27764887 DOI: 10.1002/jcb.25769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Polymers of guanidinylated disulfide containing poly(amido amine)s (Gua-SS-PAAs), have shown high transfection efficiency and low cytotoxicity. Previously, we synthesized two Gua-SS-PAA polymers, using guanidino containing monomers (i.e., arginine and agmatine, denoted as ARG and AGM, respectively) and N,N'-cystaminebisacrylamide (CBA). In this study, these two polymers, AGM-CBA and ARG-CBA were complexed with plasmid DNA, and their uptake pathway was investigated. Complexes distribution in MCF-7 cells, and changes on cell endosomes/lysosomes and membrane after the cells were exposed to complexes were tested. In addition, how the transfection efficiency changed with the cell cycle status as well as endocytosis inhibitors were studied. The polymers of AGM-CBA and ARG-CBA can avoid endosomal/lysosomal trap, therefore, greatly delivering plasmid DNA (pDNA) to the cell nucleoli. It is the guanidine groups in the polymers that enhanced complexes' permeation through cell membrane with slight membrane damage, and targeting to the nucleoli. J. Cell. Biochem. 118: 903-913, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzheng Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
144
|
Verma PK, Verma S, Meher AK, Pande V, Mallick S, Bansiwal AK, Tripathi RD, Dhankher OP, Chakrabarty D. Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:208-217. [PMID: 27174139 DOI: 10.1016/j.plaphy.2016.04.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 05/05/2023]
Abstract
Arsenic (As) is an acute poison and class I carcinogen, can cause a serious health risk. Staple crops like rice are the primary source of As contamination in human food. Rice grown on As contaminated areas accumulates higher As in their edible parts. Based on our previous transcriptome data, two rice glutaredoxins (OsGrx_C7 and OsGrx_C2.1) were identified that showed up-regulated expression during As stress. Here, we report OsGrx_C7 and OsGrx_C2.1 from rice involved in the regulation of intracellular arsenite (AsIII). To elucidate the mechanism of OsGrx mediated As tolerance, both OsGrxs were cloned and expressed in Escherichia coli (Δars) and Saccharomyces cerevisiae mutant strains (Δycf1, Δacr3). The expression of OsGrxs increased As tolerance in E. coli (Δars) mutant strain (up to 4 mM AsV and up to 0.6 mM AsIII). During AsIII exposure, S. cerevisiae (Δacr3) harboring OsGrx_C7 and OsGrx_C2.1 have lower intracellular AsIII accumulation (up to 30.43% and 24.90%, respectively), compared to vector control. Arsenic accumulation in As-sensitive S. cerevisiae mutant (Δycf1) also reduced significantly on exposure to inorganic As. The expression of OsGrxs in yeast maintained intracellular GSH pool and increased extracellular GSH concentration. Purified OsGrxs displays in vitro GSH-disulfide oxidoreductase, glutathione reductase and arsenate reductase activities. Also, both OsGrxs are involved in AsIII extrusion by altering the Fps1 transcripts in yeast and protect the cell by maintaining cellular GSH pool. Thus, our results strongly suggest that OsGrxs play a crucial role in the maintenance of the intracellular GSH pool and redox status of the cell during both AsV and AsIII stress and might be involved in regulating intracellular AsIII levels by modulation of aquaporin expression and functions.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, India; Department of Biotechnology, Kumaun University, India
| | - Shikha Verma
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, India; Department of Biotechnology, Kumaun University, India
| | - Alok Kumar Meher
- Environmental Material Division, CSIR-National Environmental Engineering Research Institute, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, India
| | - Shekhar Mallick
- Environmental Biotechnology Division, CSIR-National Botanical Research Institute, India
| | - Amit Kumar Bansiwal
- Environmental Material Division, CSIR-National Environmental Engineering Research Institute, India
| | - Rudra Deo Tripathi
- Environmental Biotechnology Division, CSIR-National Botanical Research Institute, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Debasis Chakrabarty
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, India.
| |
Collapse
|
145
|
Li Q, Chen P, Fan Y, Wang X, Xu K, Li L, Tang B. Multicolor Fluorescence Detection-Based Microfluidic Device for Single-Cell Metabolomics: Simultaneous Quantitation of Multiple Small Molecules in Primary Liver Cells. Anal Chem 2016; 88:8610-6. [DOI: 10.1021/acs.analchem.6b01775] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Peilin Chen
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yuanyuan Fan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xu Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Kehua Xu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
146
|
Mora-Lorca JA, Sáenz-Narciso B, Gaffney CJ, Naranjo-Galindo FJ, Pedrajas JR, Guerrero-Gómez D, Dobrzynska A, Askjaer P, Szewczyk NJ, Cabello J, Miranda-Vizuete A. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development. Free Radic Biol Med 2016; 96:446-61. [PMID: 27117030 PMCID: PMC8386055 DOI: 10.1016/j.freeradbiomed.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022]
Abstract
Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.
Collapse
Affiliation(s)
- José Antonio Mora-Lorca
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham and Medical School Royal Derby Hospital, DE22 3DT Derby, United Kingdom
| | - Francisco José Naranjo-Galindo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - José Rafael Pedrajas
- Grupo de Bioquímica y Señalización Celular, Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | - David Guerrero-Gómez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham and Medical School Royal Derby Hospital, DE22 3DT Derby, United Kingdom
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
147
|
Lee BY, Li Z, Clemens DL, Dillon BJ, Hwang AA, Zink JI, Horwitz MA. Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3690-3702. [PMID: 27246117 DOI: 10.1002/smll.201600892] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Effective and rapid treatment of tularemia is needed to reduce morbidity and mortality of this potentially fatal infectious disease. The etiologic agent, Francisella tularensis, is a facultative intracellular bacterial pathogen which infects and multiplies to high numbers in macrophages. Nanotherapeutics are particularly promising for treatment of infectious diseases caused by intracellular pathogens, whose primary host cells are macrophages, because nanoparticles preferentially target and are avidly internalized by macrophages. A mesoporous silica nanoparticle (MSN) has been developed functionalized with disulfide snap-tops that has high drug loading and selectively releases drug intracellularly in response to the redox potential. These nanoparticles, when loaded with Hoechst fluorescent dye, release their cargo exclusively intracellularly and stain the nuclei of macrophages. The MSNs loaded with moxifloxacin kill F. tularensis in macrophages in a dose-dependent fashion. In a mouse model of lethal pneumonic tularemia, MSNs loaded with moxifloxacin prevent weight loss, illness, and death, markedly reduce the burden of F. tularensis in the lung, liver, and spleen, and are significantly more efficacious than an equivalent amount of free drug. An important proof-of-principle for the potential therapeutic use of a novel nanoparticle drug delivery platform for the treatment of infectious diseases is provided.
Collapse
Affiliation(s)
- Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, University of California, CHS 37-121, 10833 Le Conte Ave, Los Angeles, CA, 90095-1688, USA
| | - Zilu Li
- Department of Chemistry and Biochemistry, University of California, 3013 Young Dr. East, Los Angeles, CA, 90095-1569, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Daniel L Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, CHS 37-121, 10833 Le Conte Ave, Los Angeles, CA, 90095-1688, USA
| | - Barbara Jane Dillon
- Division of Infectious Diseases, Department of Medicine, University of California, CHS 37-121, 10833 Le Conte Ave, Los Angeles, CA, 90095-1688, USA
| | - Angela A Hwang
- Department of Chemistry and Biochemistry, University of California, 3013 Young Dr. East, Los Angeles, CA, 90095-1569, USA
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, 3013 Young Dr. East, Los Angeles, CA, 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095-8352, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, CHS 37-121, 10833 Le Conte Ave, Los Angeles, CA, 90095-1688, USA
| |
Collapse
|
148
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
149
|
|
150
|
Morgan B, Van Laer K, Owusu TNE, Ezeriņa D, Pastor-Flores D, Amponsah PS, Tursch A, Dick TP. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol 2016; 12:437-43. [DOI: 10.1038/nchembio.2067] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
|