101
|
Sutherland TD, Huson MG, Rapson TD. Rational design of new materials using recombinant structural proteins: Current state and future challenges. J Struct Biol 2017; 201:76-83. [PMID: 29097186 DOI: 10.1016/j.jsb.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/27/2022]
Abstract
Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials.
Collapse
Affiliation(s)
| | - Mickey G Huson
- CSIRO, Black Mountain, GPO Box 1700, Acton, ACT 2601, Australia
| | - Trevor D Rapson
- CSIRO, Black Mountain, GPO Box 1700, Acton, ACT 2601, Australia
| |
Collapse
|
102
|
Ouchi M, Sawamoto M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J 2017. [DOI: 10.1038/pj.2017.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
103
|
Anastasaki A, Oschmann B, Willenbacher J, Melker A, Van Son MHC, Truong NP, Schulze MW, Discekici EH, McGrath AJ, Davis TP, Bates CM, Hawker CJ. One-Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semi-Fluorinated Segments. Angew Chem Int Ed Engl 2017; 56:14483-14487. [PMID: 28980360 DOI: 10.1002/anie.201707646] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/04/2017] [Indexed: 01/22/2023]
Abstract
The scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16). Small-angle X-ray scattering showed that certain sequences can form well-ordered mesostructures. This synthetic approach constitutes a simple and versatile platform for expanding the availability of tailored polymeric materials from readily available monomers.
Collapse
Affiliation(s)
- Athina Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Bernd Oschmann
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Johannes Willenbacher
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Anna Melker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Martin H C Van Son
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Morgan W Schulze
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emre H Discekici
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alaina J McGrath
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
104
|
Anastasaki A, Oschmann B, Willenbacher J, Melker A, Van Son MHC, Truong NP, Schulze MW, Discekici EH, McGrath AJ, Davis TP, Bates CM, Hawker CJ. One‐Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semi‐Fluorinated Segments. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Athina Anastasaki
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Bernd Oschmann
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Johannes Willenbacher
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Anna Melker
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Martin H. C. Van Son
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville Melbourne Victoria 3052 Australia
| | - Morgan W. Schulze
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Emre H. Discekici
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Alaina J. McGrath
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville Melbourne Victoria 3052 Australia
| | - Christopher M. Bates
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
- Materials Department University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Craig J. Hawker
- Materials Research Laboratory University of California, Santa Barbara Santa Barbara CA 93106 USA
- Materials Department University of California, Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
105
|
Feng H, Lu X, Wang W, Kang NG, Mays JW. Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers (Basel) 2017; 9:E494. [PMID: 30965798 PMCID: PMC6418972 DOI: 10.3390/polym9100494] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Research on block copolymers (BCPs) has played a critical role in the development of polymer chemistry, with numerous pivotal contributions that have advanced our ability to prepare, characterize, theoretically model, and technologically exploit this class of materials in a myriad of ways in the fields of chemistry, physics, material sciences, and biological and medical sciences. The breathtaking progress has been driven by the advancement in experimental techniques enabling the synthesis and characterization of a wide range of block copolymers with tailored composition, architectures, and properties. In this review, we briefly discussed the recent progress in BCP synthesis, followed by a discussion of the fundamentals of self-assembly of BCPs along with their applications.
Collapse
Affiliation(s)
- Hongbo Feng
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Xinyi Lu
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Weiyu Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Nam-Goo Kang
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Jimmy W Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
106
|
Smith AAA, Autzen HE, Laursen T, Wu V, Yen M, Hall A, Hansen SD, Cheng Y, Xu T. Controlling Styrene Maleic Acid Lipid Particles through RAFT. Biomacromolecules 2017; 18:3706-3713. [DOI: 10.1021/acs.biomac.7b01136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton A. A. Smith
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
- Science
and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Henriette E. Autzen
- Science
and Technology, Aarhus University, 8000 Aarhus, Denmark
- Biochemistry
and Biophysics, UCSF, San Francisco, California 94143, United States
| | - Tomas Laursen
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Vincent Wu
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Max Yen
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Aaron Hall
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Scott D. Hansen
- California
Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, California 94720, United States
| | - Yifan Cheng
- Biochemistry
and Biophysics, UCSF, San Francisco, California 94143, United States
| | - Ting Xu
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
107
|
Affiliation(s)
- Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
108
|
Doncom KEB, Blackman LD, Wright DB, Gibson MI, O'Reilly RK. Dispersity effects in polymer self-assemblies: a matter of hierarchical control. Chem Soc Rev 2017; 46:4119-4134. [PMID: 28598465 PMCID: PMC5718301 DOI: 10.1039/c6cs00818f] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advanced applications of polymeric self-assembled structures require a stringent degree of control over such aspects as functionality location, morphology and size of the resulting assemblies. A loss of control in the polymeric building blocks of these assemblies can have drastic effects upon the final morphology or function of these structures. Gaining precise control over various aspects of the polymers, such as chain lengths and architecture, blocking efficiency and compositional distribution is a challenge and, hence, measuring the intrinsic mass and size dispersity within these areas is an important aspect of such control. It is of great importance that a good handle on how to improve control and accurately measure it is achieved. Additionally dispersity of the final structure can also play a large part in the suitability for a desired application. In this Tutorial Review, we aim to highlight the different aspects of dispersity that are often overlooked and the effect that a lack of control can have on both the polymer and the final assembled structure.
Collapse
Affiliation(s)
- Kay E B Doncom
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.
| | - Lewis D Blackman
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.
| | - Daniel B Wright
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK. and Warwick Medical School, University of Warwick, Coventry, CV47AL, UK
| | - Rachel K O'Reilly
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
109
|
Kaufman EA, Tarallo R, Elacqua E, Carberry TP, Weck M. Synthesis of Well-Defined Bifunctional Newkome-Type Dendrimers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizabeth A. Kaufman
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Rossella Tarallo
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Elizabeth Elacqua
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Tom P. Carberry
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
110
|
Engler MS, Scheubert K, Schubert US, Böcker S. Exploring the Limits of the Geometric Copolymerization Model. Polymers (Basel) 2017; 9:E101. [PMID: 30970781 PMCID: PMC6431939 DOI: 10.3390/polym9030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022] Open
Abstract
The geometric copolymerization model is a recently introduced statistical Markov chain model. Here, we investigate its practicality. First, several approaches to identify the optimal model parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated data. Directly optimizing the parameters is robust against noise but has impractically long running times. A compromise between robustness and running time is found by exploiting the relationship between monomer concentrations calculated by ordinary differential equations and the geometric model. Second, we investigate the applicability of the model to copolymerizations beyond living polymerization and show that the model is useful for copolymerizations involving termination and depropagation reactions.
Collapse
Affiliation(s)
- Martin S Engler
- Life Sciences Group, Centrum Wiskunde & Informatica, Science Park 123, 1089XG Amsterdam, The Netherlands.
| | - Kerstin Scheubert
- Chair of Bioinformatics, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Sebastian Böcker
- Chair of Bioinformatics, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
111
|
Ojika M, Satoh K, Kamigaito M. BAB-random
-C Monomer Sequence via Radical Terpolymerization of Limonene (A), Maleimide (B), and Methacrylate (C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masataka Ojika
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kotaro Satoh
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency; 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Masami Kamigaito
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
112
|
Ojika M, Satoh K, Kamigaito M. BAB-random
-C Monomer Sequence via Radical Terpolymerization of Limonene (A), Maleimide (B), and Methacrylate (C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angew Chem Int Ed Engl 2017; 56:1789-1793. [DOI: 10.1002/anie.201610768] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Masataka Ojika
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kotaro Satoh
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency; 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Masami Kamigaito
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
113
|
Jesson C, Pearce CM, Simon H, Werner A, Cunningham VJ, Lovett JR, Smallridge MJ, Warren NJ, Armes SP. H 2O 2 Enables Convenient Removal of RAFT End-Groups from Block Copolymer Nano-Objects Prepared via Polymerization-Induced Self-Assembly in Water. Macromolecules 2017; 50:182-191. [PMID: 31007283 PMCID: PMC6471490 DOI: 10.1021/acs.macromol.6b01963] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 12/21/2022]
Abstract
RAFT-synthesized polymers are typically colored and malodorous due to the presence of the sulfur-based RAFT end-group(s). In principle, RAFT end-groups can be removed by treating molecularly dissolved copolymer chains with excess free radical initiators, amines, or oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal impact on the copolymer morphology, and produces benign side products that can be readily removed via dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. The advantage of using UV GPC rather than UV spectroscopy is demonstrated for assessing both the kinetics and extent of end-group removal.
Collapse
Affiliation(s)
- Craig
P. Jesson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Charles M. Pearce
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Helene Simon
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Arthur Werner
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
114
|
Truong NP, Quinn JF, Anastasaki A, Rolland M, Vu MN, Haddleton DM, Whittaker MR, Davis TP. Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polym Chem 2017. [DOI: 10.1039/c6py02158a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile, high-scale, and versatile technique to prepare biocompatible nanoparticles with tailorable properties from thermoresponsive macro-CTAs and macro-stabilizers.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Athina Anastasaki
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Manon Rolland
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - David M. Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
115
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
116
|
Moriceau G, Gody G, Hartlieb M, Winn J, Kim H, Mastrangelo A, Smith T, Perrier S. Functional multisite copolymer by one-pot sequential RAFT copolymerization of styrene and maleic anhydride. Polym Chem 2017. [DOI: 10.1039/c7py00787f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional multisite copolymers with a controlled number and position of side chains were synthesized by a one-pot RAFT polymerization process and post-functionalization.
Collapse
Affiliation(s)
| | - Guillaume Gody
- Department of Chemistry
- The University of Warwick
- Coventry CV4 7AL
- UK
| | | | - Joby Winn
- Lubrizol Limited
- Derbyshire DE56 4AN
- UK
| | | | | | | | - Sébastien Perrier
- Department of Chemistry
- The University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
117
|
Fu C, Huang Z, Hawker CJ, Moad G, Xu J, Boyer C. RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polym Chem 2017. [DOI: 10.1039/c7py00713b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this communication, we report a catalyst-free methodology for single unit monomer insertion (SUMI) into reversible addition–fragmentation chain transfer (RAFT) agents initiated by low intensity visible light.
Collapse
Affiliation(s)
- Changkui Fu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials
- Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | | | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|
118
|
Fierens SK, Telitel S, Van Steenberge PHM, Reyniers MF, Marin GB, Lutz JF, D’hooge DR. Model-Based Design To Push the Boundaries of Sequence Control. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01699] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stijn K. Fierens
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9000 Gent, Belgium
- Precision
Macromolecular Chemistry, Institut Charles Sadron, 23 Rue du Loess, Strasbourg 67034, France
| | - Sofia Telitel
- Precision
Macromolecular Chemistry, Institut Charles Sadron, 23 Rue du Loess, Strasbourg 67034, France
| | | | | | - Guy B. Marin
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9000 Gent, Belgium
| | - Jean-François Lutz
- Precision
Macromolecular Chemistry, Institut Charles Sadron, 23 Rue du Loess, Strasbourg 67034, France
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9000 Gent, Belgium
- Department
of Textiles, Ghent University, Technologiepark 907, B-9000 Gent, Belgium
| |
Collapse
|
119
|
Xu J, Fu C, Shanmugam S, Hawker CJ, Moad G, Boyer C. Synthesis of Discrete Oligomers by Sequential PET‐RAFT Single‐Unit Monomer Insertion. Angew Chem Int Ed Engl 2016; 56:8376-8383. [DOI: 10.1002/anie.201610223] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/16/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| | - Changkui Fu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Graeme Moad
- CSIRO Manufacturing Clayton VIC 3168 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
120
|
Xu J, Fu C, Shanmugam S, Hawker CJ, Moad G, Boyer C. Synthesis of Discrete Oligomers by Sequential PET‐RAFT Single‐Unit Monomer Insertion. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| | - Changkui Fu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Graeme Moad
- CSIRO Manufacturing Clayton VIC 3168 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering, UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
121
|
Zydziak N, Konrad W, Feist F, Afonin S, Weidner S, Barner-Kowollik C. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation. Nat Commun 2016; 7:13672. [PMID: 27901024 PMCID: PMC5141382 DOI: 10.1038/ncomms13672] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/23/2016] [Indexed: 12/23/2022] Open
Abstract
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Collapse
Affiliation(s)
- Nicolas Zydziak
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| | - Waldemar Konrad
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| | - Florian Feist
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Department of Molecular Biophysics (IGB-2), Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Steffen Weidner
- BAM-Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Christopher Barner-Kowollik
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
122
|
Ma H, Han L, Li Y. Sequence Determination and Regulation in the Living Anionic Copolymerization of Styrene and 1,1-Diphenylethylene (DPE) Derivatives. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongwei Ma
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Li Han
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Liaoning Key Laboratory of Polymer Science and Engineering; Department of Polymer Science and Engineering; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
123
|
Engelis NG, Anastasaki A, Nurumbetov G, Truong NP, Nikolaou V, Shegiwal A, Whittaker MR, Davis TP, Haddleton DM. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nat Chem 2016; 9:171-178. [DOI: 10.1038/nchem.2634] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
|
124
|
Affiliation(s)
- Benjamin Wenn
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt, Belgium
- IMEC associated lab IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
125
|
Jennings J, He G, Howdle SM, Zetterlund PB. Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chem Soc Rev 2016; 45:5055-84. [DOI: 10.1039/c6cs00253f] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We review the range of CLRP-controlled syntheses of block copolymer particles in dispersed systems, which are being exploited to create new opportunities for the design of nanostructured soft materials.
Collapse
Affiliation(s)
- J. Jennings
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
- Department of Chemistry
| | - G. He
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - S. M. Howdle
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - P. B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
126
|
Wenn B, Martens AC, Chuang YM, Gruber J, Junkers T. Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms. Polym Chem 2016. [DOI: 10.1039/c6py00175k] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced copper-mediated polymerization (photoCMP) is employed for the synthesis of multiarm-multiblock star copolymers. Based on a core-first approach, star polymers with four, six and twenty-one arms have been synthesized.
Collapse
Affiliation(s)
- B. Wenn
- Polymer Reaction Design Group
- Institute for Materials Research (imo-imomec)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - A. C. Martens
- Polymer Reaction Design Group
- Institute for Materials Research (imo-imomec)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Y.-M. Chuang
- Polymer Reaction Design Group
- Institute for Materials Research (imo-imomec)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - J. Gruber
- Instituto de Química da Universidade de São Paulo
- São Paulo
- Brazil
| | - T. Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (imo-imomec)
- Hasselt University
- 3500 Hasselt
- Belgium
| |
Collapse
|