101
|
Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of bla CTX-M Gene-Bearing Plasmids in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.01130-19. [PMID: 31332067 PMCID: PMC6761558 DOI: 10.1128/aac.01130-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.
Collapse
|
102
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
103
|
Tan L, Wang F, Liang M, Wang X, Das R, Mao D, Luo Y. Antibiotic resistance genes attenuated with salt accumulation in saline soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:35-42. [PMID: 30978628 DOI: 10.1016/j.jhazmat.2019.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Salt accumulation on the surface of the soil layer driven by the strong evaporation is a natural phenomenon that usually happens in the dry season, particularly on the coastal lands reclaimed from tidal flats. However, the influence of salt accumulation on the distribution profile of antibiotic resistance genes (ARGs) and mobile gene elements (MGEs) remains unclear. In this study, we sampled a wild saline soil where the salt accumulation was frequently observed to investigate the vertical distribution profiles of ARGs and MGEs. The results showed that an increasing gradient of ARGs and MGEs was observed from the top to deep layer with the decreasing of electrical conductivity (EC1:5 values) indicating the salt-influenced attenuation of ARGs in the saline soil. The competing test suggested that the attenuation of ARGs in response to salinity gradient was attributable to the elimination of the ARG-harboring plasmids, due to the reduction of the relative fitness of plasmid-harboring strains. Additionally, the network analyses showed that the attenuation of ARGs might be associated with decreased abundance of Actinobacteria. Overall, this study identifies that salinity as an abiotic stress could re-shape the distribution of ARGs, which may influence the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Lu Tan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Fu Wang
- Tianjin Center of Geological Survey, China Geological Survey (CGS), Tianjin, China; Key Laboratory of Muddy Coast Geo-Environment, China Geological Survey, CGS, Tianjin, China
| | - Minmin Liang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China.
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
104
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
105
|
Ilhan J, Kupczok A, Woehle C, Wein T, Hülter NF, Rosenstiel P, Landan G, Mizrahi I, Dagan T. Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Mol Biol Evol 2019; 36:472-486. [PMID: 30517696 PMCID: PMC6389322 DOI: 10.1093/molbev/msy225] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquity of plasmids in all prokaryotic phyla and habitats and their ability to transfer between cells marks them as prominent constituents of prokaryotic genomes. Many plasmids are found in their host cell in multiple copies. This leads to an increased mutational supply of plasmid-encoded genes and genetically heterogeneous plasmid genomes. Nonetheless, the segregation of plasmid copies into daughter cells during cell division is considered to occur in the absence of selection on the plasmid alleles. We investigate the implications of random genetic drift of multicopy plasmids during cell division-termed here "segregational drift"-to plasmid evolution. Performing experimental evolution of low- and high-copy non-mobile plasmids in Escherichia coli, we find that the evolutionary rate of multicopy plasmids does not reflect the increased mutational supply expected according to their copy number. In addition, simulated evolution of multicopy plasmid alleles demonstrates that segregational drift leads to increased loss frequency and extended fixation time of plasmid mutations in comparison to haploid chromosomes. Furthermore, an examination of the experimentally evolved hosts reveals a significant impact of the plasmid type on the host chromosome evolution. Our study demonstrates that segregational drift of multicopy plasmids interferes with the retention and fixation of novel plasmid variants. Depending on the selection pressure on newly emerging variants, plasmid genomes may evolve slower than haploid chromosomes, regardless of their higher mutational supply. We suggest that plasmid copy number is an important determinant of plasmid evolvability due to the manifestation of segregational drift.
Collapse
Affiliation(s)
- Judith Ilhan
- Institute of Microbiology, Kiel University, Kiel, Germany
| | - Anne Kupczok
- Institute of Microbiology, Kiel University, Kiel, Germany
| | | | - Tanita Wein
- Institute of Microbiology, Kiel University, Kiel, Germany
| | - Nils F Hülter
- Institute of Microbiology, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Giddy Landan
- Institute of Microbiology, Kiel University, Kiel, Germany
| | - Itzhak Mizrahi
- The Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Dagan
- Institute of Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
106
|
Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun 2019; 10:2595. [PMID: 31197163 PMCID: PMC6565834 DOI: 10.1038/s41467-019-10600-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
Plasmid acquisition is an important mechanism of rapid adaptation and niche expansion in prokaryotes. Positive selection for plasmid-coded functions is a major driver of plasmid evolution, while plasmids that do not confer a selective advantage are considered costly and expected to go extinct. Yet, plasmids are ubiquitous in nature, and their persistence remains an evolutionary paradox. Here, we demonstrate that non-mobile plasmids persist over evolutionary timescales without selection for the plasmid function. Evolving a minimal plasmid encoding for antibiotics resistance in Escherichia coli, we discover that plasmid stability emerges in the absence of antibiotics and that plasmid loss is determined by transcription-replication conflicts. We further find that environmental conditions modulate these conflicts and plasmid persistence. Silencing the transcription of the resistance gene results in stable plasmids that become fixed in the population. Evolution of plasmid stability under non-selective conditions provides an evolutionary explanation for the ubiquity of plasmids in nature. It is expected that plasmids are costly and therefore that selection is required to maintain them within bacterial populations. Here, Wein et al. show that plasmid stability can emerge even in the absence of positive selection and that loss may be determined by transcription-replication conflict.
Collapse
|
107
|
Harrison E, Hall JPJ, Brockhurst MA. Migration promotes plasmid stability under spatially heterogeneous positive selection. Proc Biol Sci 2019; 285:rspb.2018.0324. [PMID: 29794045 DOI: 10.1098/rspb.2018.0324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode.
Collapse
Affiliation(s)
- Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 1AE, UK
| | - James P J Hall
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
108
|
Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. mBio 2019; 10:mBio.02899-18. [PMID: 30808697 PMCID: PMC6391923 DOI: 10.1128/mbio.02899-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring plasmids constitute a major category of mobile genetic elements responsible for harboring and transferring genes important in survival and fitness. A targeted evaluation of plasmidomes can reveal unique adaptations required by microbial communities. We developed a model system to optimize plasmid DNA isolation procedures targeted to groundwater samples which are typically characterized by low cell density (and likely variations in the plasmid size and copy numbers). The optimized method resulted in successful identification of several hundred circular plasmids, including some large plasmids (11 plasmids more than 50 kb in size, with the largest being 1.7 Mb in size). Several interesting observations were made from the analysis of plasmid DNA isolated in this study. The plasmid pool (plasmidome) was more conserved than the corresponding microbiome distribution (16S rRNA based). The circular plasmids were diverse as represented by the presence of seven plasmid incompatibility groups. The genes carried on these groundwater plasmids were highly enriched in metal resistance. Results from this study confirmed that traits such as metal, antibiotic, and phage resistance along with toxin-antitoxin systems are encoded on abundant circular plasmids, all of which could confer novel and advantageous traits to their hosts. This study confirms the ecological role of the plasmidome in maintaining the latent capacity of a microbiome, enabling rapid adaptation to environmental stresses.IMPORTANCE Plasmidomes have been typically studied in environments abundant in bacteria, and this is the first study to explore plasmids from an environment characterized by low cell density. We specifically target groundwater, a significant source of water for human/agriculture use. We used samples from a well-studied site and identified hundreds of circular plasmids, including one of the largest sizes reported in plasmidome studies. The striking similarity of the plasmid-borne ORFs in terms of taxonomical and functional classifications across several samples suggests a conserved plasmid pool, in contrast to the observed variability in the 16S rRNA-based microbiome distribution. Additionally, the stress response to environmental factors has stronger conservation via plasmid-borne genes as marked by abundance of metal resistance genes. Last, identification of novel and diverse plasmids enriches the existing plasmid database(s) and serves as a paradigm to increase the repertoire of biological parts that are available for modifying novel environmental strains.
Collapse
|
109
|
Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol 2019; 94:4689093. [PMID: 29228229 PMCID: PMC5812508 DOI: 10.1093/femsec/fix172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently, we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five diverse Pseudomonas species in environments with and without mercury selection. Plasmid fitness effects and stability varied extensively between host species and environments, as did the propensity for chromosomal capture of the Tn5042 mercury resistance transposon associated with loss of the plasmid. Whereas Pseudomonas fluorescens and Pseudomonas savastanoi stably maintained the plasmid in both environments, the plasmid was highly unstable in Pseudomonas aeruginosa and Pseudomonas putida, where plasmid-free genotypes with Tn5042 captured to the chromosome invaded to higher frequency under mercury selection. These data confirm that plasmid stability is dependent upon the specific genetic interaction of the plasmid and host chromosome rather than being a property of plasmids alone, and moreover imply that MGE dynamics in diverse natural communities are likely to be complex and driven by a subset of species capable of stably maintaining plasmids that would then act as hubs of HGT.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Corresponding author: Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. Tel: +44 (0)1142220051; E-mail:
| |
Collapse
|
110
|
Stevenson C, Hall JPJ, Brockhurst MA, Harrison E. Plasmid stability is enhanced by higher-frequency pulses of positive selection. Proc Biol Sci 2019; 285:rspb.2017.2497. [PMID: 29321301 PMCID: PMC5784203 DOI: 10.1098/rspb.2017.2497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022] Open
Abstract
Plasmids accelerate bacterial adaptation by sharing ecologically important traits between lineages. However, explaining plasmid stability in bacterial populations is challenging owing to their associated costs. Previous theoretical and experimental studies suggest that pulsed positive selection may explain plasmid stability by favouring gene mobility and promoting compensatory evolution to ameliorate plasmid cost. Here we test how the frequency of pulsed positive selection affected the dynamics of a mercury-resistance plasmid, pQBR103, in experimental populations of Pseudomonas fluorescens SBW25. Plasmid dynamics varied according to the frequency of Hg2+ positive selection: in the absence of Hg2+ plasmids declined to low frequency, whereas pulses of Hg2+ selection allowed plasmids to sweep to high prevalence. Compensatory evolution to ameliorate the cost of plasmid carriage was widespread across the entire range of Hg2+ selection regimes, including both constant and pulsed Hg2+ selection. Consistent with theoretical predictions, gene mobility via conjugation appeared to play a greater role in promoting plasmid stability under low-frequency pulses of Hg2+ selection. However, upon removal of Hg2+ selection, plasmids which had evolved under low-frequency pulse selective regimes declined over time. Our findings suggest that temporally variable selection environments, such as those created during antibiotic treatments, may help to explain the stability of mobile plasmid-encoded resistance.
Collapse
Affiliation(s)
- Cagla Stevenson
- Department of Biology, University of York, York YO10 5DD, UK .,Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
111
|
Mobile Compensatory Mutations Promote Plasmid Survival. mSystems 2019; 4:mSystems00186-18. [PMID: 30944871 PMCID: PMC6446977 DOI: 10.1128/msystems.00186-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
The global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids. IMPORTANCE Understanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.
Collapse
|
112
|
Ma K, Feng Y, Zong Z. Fitness cost of a mcr-1-carrying IncHI2 plasmid. PLoS One 2018; 13:e0209706. [PMID: 30586457 PMCID: PMC6306219 DOI: 10.1371/journal.pone.0209706] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
IncHI2 is a common type of large mcr-1-carrying plasmids that have been found worldwide. Large plasmids could impose metabolic burden for host bacterial strains, we therefore examine the stability and fitness cost of a mcr-1-carrying 265.5-kb IncHI2 plasmid, pMCR1_1943, in Escherichia coli in nutrient-rich LB and nutrient-restricted M9 broth. Stability tests revealed that pMCR1_1943 was stably maintained with a stability frequency of 0.99±0.01 (mean ± standard deviation) after 880 generations in LB and 0.97±0.00 after 220 generations in M9 broth. Relative fitness (expressed as w, defined as relative fitness of the plasmid-carrying strain compared to the plasmid-free progenitor strain) was examined using the 24-h head to head competitions. pMCR1_1943 initially imposed costs (w, 0.88±0.03 in LB, 0.87±0.01 in M9) but such costs were largely reduced after 14-day cultures (w, 0.97±0.03 in LB, 0.95±0.03 in M9). The stable maintenance and the largely compensated cost after passage may contribute to the wide spread of mcr-1-carrying IncHI2 plasmids. To investigate potential mechanisms for the reduced fitness cost, we performed whole genome sequencing and single nucleotide polymorphism calling for the competitor strains. We identified that molecular chaperone-encoding dnaK, cell division protein-encoding cpoB and repeat protein-encoding rhsC were associated with the cost reduction for pMCR1_1943, which may represent new mechanisms for host bacterial strains to compensate fitness costs imposed by large plasmids and warrant further studies.
Collapse
Affiliation(s)
- Ke Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
113
|
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. THE ISME JOURNAL 2018; 12:3014-3024. [PMID: 30097663 PMCID: PMC6246594 DOI: 10.1038/s41396-018-0224-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Horizontal gene transfer (HGT) mediated by the spread of plasmids fuels evolution in prokaryotes. Although plasmids provide bacteria with new adaptive genes, they also produce physiological alterations that often translate into a reduction in bacterial fitness. The fitness costs associated with plasmids represent an important limit to plasmid maintenance in bacterial communities, but their molecular origins remain largely unknown. In this work, we combine phenomics, transcriptomics and metabolomics to study the fitness effects produced by a collection of diverse plasmids in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Using this approach, we scan the physiological changes imposed by plasmids and test the generality of some main mechanisms that have been proposed to explain the cost of HGT, including increased biosynthetic burden, reduced translational efficiency, and impaired chromosomal replication. Our results suggest that the fitness effects of plasmids have a complex origin, since none of these mechanisms could individually provide a general explanation for the cost of plasmid carriage. Interestingly, our results also showed that plasmids alter the expression of a common set of metabolic genes in PAO1, and produce convergent changes in host cell metabolism. These surprising results suggest that there is a common metabolic response to plasmids in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Network Research Centre for Epidemiology and Public Health (CIBERESP), 28034, Madrid, Spain.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Qin Qi
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
114
|
Oladeinde A, Cook K, Orlek A, Zock G, Herrington K, Cox N, Plumblee Lawrence J, Hall C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 2018; 13:e0202286. [PMID: 30169497 PMCID: PMC6118388 DOI: 10.1371/journal.pone.0202286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2013 identified poultry litter (PL) as an important extra-intestinal environment that may have selected for specific S. Heidelberg strains. Poultry litter is a mixture of bedding materials and chicken excreta that contains chicken gastrointestinal (GI) bacteria, undigested feed, feathers, and other materials of chicken origin. In this study, we performed a series of controlled laboratory experiments which assessed the microevolution of two S. Heidelberg strains (SH-2813 and SH-116) in PL previously used to raise 3 flocks of broiler chickens. The strains are closely related at the chromosome level, differing from the reference genome by 109 and 89 single nucleotide polymorphisms/InDels, respectively. Whole genome sequencing was performed on 86 isolates recovered after 0, 1, 7 and 14 days of microevolution in PL. Only strains carrying an IncX1 (37kb), 2 ColE1 (4 and 6kb) and 1 ColpVC (2kb) plasmids survived more than 7 days in PL. Competition experiments showed that carriage of these plasmids was associated with increased fitness. This increased fitness was associated with an increased copy number of IncX1 and ColE1 plasmids. Further, all Col plasmid-bearing strains had hotspot mutations in 37 loci on the chromosome and in 3 loci on the IncX1 plasmid. Additionally, we observed a decrease in susceptibility to tobramycin, kanamycin, gentamicin, neomycin and fosfomycin for Col plasmid-bearing strains. Our study demonstrates how positive selection from poultry litter can change the evolutionary path of S. Heidelberg.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Greg Zock
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kyler Herrington
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Nelson Cox
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Jodie Plumblee Lawrence
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Carolina Hall
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| |
Collapse
|
115
|
Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sørensen SJ, Riber L. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 2018; 99:56-67. [PMID: 30086339 DOI: 10.1016/j.plasmid.2018.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The emergence of antimicrobial resistant bacteria constitutes an increasing global health concern. Although it is well recognized that the cornerstone underlying this phenomenon is the dissemination of antimicrobial resistance via plasmids and other mobile genetic elements, the antimicrobial resistance transfer routes remain largely uncharted. In this review, we describe different methods for assessing the transfer frequency and host ranges of plasmids within complex microbiomes. The discussion is centered around the critical evaluation of recent advances for monitoring the fate of fluorescently tagged plasmids in bacterial communities through the coupling of fluorescence activated cell sorting and next generation sequencing techniques. We argue that this approach constitutes an exceptional tool for obtaining quantitative data regarding the extent of plasmid transfer, key disseminating taxa, and possible propagation routes. The integration of this information will provide valuable insights on how to develop alternative avenues for fighting the rise of antimicrobial resistant pathogens, as well as the means for constructing more comprehensive risk assessment models.
Collapse
Affiliation(s)
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, Mons, Belgium
| | | | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Leise Riber
- Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
116
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
117
|
Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol 2018; 26:978-985. [PMID: 30049587 DOI: 10.1016/j.tim.2018.06.007] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
Antibiotic-resistant infections are an urgent problem in clinical settings because they sharply increase mortality risk in critically ill patients. The horizontal spread of antibiotic resistance genes among bacteria is driven by bacterial plasmids, promoting the evolution of resistance. Crucially, particular associations exist between resistance plasmids and bacterial clones that become especially successful in clinical settings. However, the factors underlying the success of these associations remain unknown. Recent in vitro evidence reveals (i) that plasmids produce fitness costs in bacteria, and (ii) that these costs are alleviated over time through compensatory mutations. I argue that plasmid-imposed costs and subsequent compensatory adaptation may determine the success of associations between plasmids and bacteria in clinical settings, shaping the in vivo evolution of antibiotic resistance.
Collapse
|
118
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
119
|
Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol 2018; 14:e1006179. [PMID: 29927925 PMCID: PMC6013025 DOI: 10.1371/journal.pcbi.1006179] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/06/2018] [Indexed: 01/21/2023] Open
Abstract
Polymicrobial interactions play an important role in shaping the outcome of antibiotic treatment, yet how multispecies communities respond to antibiotic assault is still little understood. Here we use an individual-based simulation model of microbial biofilms to investigate how competitive and mutualistic interactions between an antibiotic-resistant and a susceptible strain (or species) influence the two-lineage community response to antibiotic exposure. Our model predicts that while increasing competition and antibiotics leads to increasing competitive release of the antibiotic-resistant strain, hitting a mutualistic community of cross-feeding species with antibiotics leads to a mutualistic suppression effect where both susceptible and resistant species are harmed. We next show that the impact of antibiotics is further governed by emergent spatial feedbacks within communities. Mutualistic cross-feeding communities can rescue susceptible members by subsidizing their growth inside the biofilm despite lack of access to the nutrient-rich and high-antibiotic growing front. Moreover, we show that antibiotic detoxification by resistant cells can protect nearby susceptible cells, but such cross-protection is more effective in mutualistic communities because mutualism drives mixing of resistant and susceptible cells. In contrast, competition leads to segregation, which ultimately prevents susceptible cells to profit from detoxification. Understanding how the interplay between microbial metabolic interactions and community spatial structuring shapes the outcome of antibiotic treatment can be key to effectively leverage the power of antibiotics and promote microbiome health. Pathogens -microorganisms that make us sick- often live within dynamic and complex multispecies communities, where they may not only compete for limiting resources but also exchange beneficial resources or services with other resident species. While antibiotics are commonly used to get rid of such harmful microbes, the community-wide effects of antibiotic treatment and its consequences for antibiotic resistance are still not well understood. How do competitive or mutually beneficial interactions between antibiotic resistant and susceptible species influence community resistance to antibiotics? Here we investigate this question using a computational model. We find that antibiotic exposure favours the resistant lineage when resistant and susceptible strains are competitors but harms both types when they are mutualists. With antibiotic-detoxifying resistant cells, cross-protection of susceptible cells is more effective in mutualistic communities because mutualism drives mixing of susceptible and resistant cells. In contrast, competition leads to their segregation, precluding susceptible cells to profit from their competitor’s local detoxification. Our findings highlight that knowing not only what species are present but also how they interact with each other and arrange themselves in space is central to understanding antibiotic resistance and to informing the development of strategies that promote microbiome health.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- * E-mail:
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
120
|
Standley MS, Million-Weaver S, Alexander DL, Hu S, Camps M. Genetic control of ColE1 plasmid stability that is independent of plasmid copy number regulation. Curr Genet 2018; 65:179-192. [PMID: 29909438 DOI: 10.1007/s00294-018-0858-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
ColE1-like plasmid vectors are widely used for expression of recombinant genes in E. coli. For these vectors, segregation of individual plasmids into daughter cells during cell division appears to be random, making them susceptible to loss over time when no mechanisms ensuring their maintenance are present. Here we use the plasmid pGFPuv in a recA relA strain as a sensitized model to study factors affecting plasmid stability in the context of recombinant gene expression. We find that in this model, plasmid stability can be restored by two types of genetic modifications to the plasmid origin of replication (ori) sequence: point mutations and a novel 269 nt duplication at the 5' end of the plasmid ori, which we named DAS (duplicated anti-sense) ori. Combinations of these modifications produce a range of copy numbers and of levels of recombinant expression. In direct contradiction with the classic random distribution model, we find no correlation between increased plasmid copy number and increased plasmid stability. Increased stability cannot be explained by reduced levels of recombinant gene expression either. Our observations would be more compatible with a hybrid clustered and free-distribution model, which has been recently proposed based on detection of individual plasmids in vivo using super-resolution fluorescence microscopy. This work suggests a role for the plasmid ori in the control of segregation of ColE1 plasmids that is distinct from replication initiation, opening the door for the genetic regulation of plasmid stability as a strategy aimed at enhancing large-scale recombinant gene expression or bioremediation.
Collapse
Affiliation(s)
- Melissa S Standley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Samuel Million-Weaver
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- College of Engineering, University of Wisconsin-Madison, Madison, 53706, USA
| | - David L Alexander
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Department of Biomolecular Engineering, UCSC, Santa Cruz, USA
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
121
|
Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A, MacLean RC, Peña-Miller R, San Millan A. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat Ecol Evol 2018; 2:873-881. [PMID: 29632354 PMCID: PMC6055991 DOI: 10.1038/s41559-018-0529-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022]
Abstract
Understanding the mechanisms governing innovation is a central element of evolutionary theory. Novel traits usually arise through mutations in existing genes, but trade-offs between new and ancestral protein functions are pervasive and constrain the evolution of innovation. Classical models posit that evolutionary innovation circumvents the constraints imposed by trade-offs through genetic amplifications, which provide functional redundancy. Bacterial multicopy plasmids provide a paradigmatic example of genetic amplification, yet their role in evolutionary innovation remains largely unexplored. Here, we reconstructed the evolution of a new trait encoded in a multicopy plasmid using TEM-1 β-lactamase as a model system. Through a combination of theory and experimentation, we show that multicopy plasmids promote the coexistence of ancestral and novel traits for dozens of generations, allowing bacteria to escape the evolutionary constraints imposed by trade-offs. Our results suggest that multicopy plasmids are excellent platforms for evolutionary innovation, contributing to explain their extreme abundance in bacteria.
Collapse
Affiliation(s)
| | | | - Javier DelaFuente
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Jose A Escudero
- Departamento de Sanidad Animal and VISAVET, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain.
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
| |
Collapse
|
122
|
Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio 2018; 9:mBio.02303-17. [PMID: 29691332 PMCID: PMC5915730 DOI: 10.1128/mbio.02303-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains.IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections.
Collapse
|
123
|
Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. Nat Ecol Evol 2018; 2:1033-1039. [PMID: 29686236 PMCID: PMC5985954 DOI: 10.1038/s41559-018-0547-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Abstract
There is an urgent need to develop novel approaches for predicting and preventing the evolution of antibiotic resistance. Here we show that the ability to evolve de novo resistance to a clinically important β-lactam antibiotic, ceftazidime, varies drastically across the genus Pseudomonas. This variation arises because strains possessing the ampR global transcriptional regulator evolve resistance at a high rate. This does not arise because of mutations in ampR. Instead, this regulator potentiates evolution by allowing mutations in conserved peptidoglycan biosynthesis genes to induce high levels of β-lactamase expression. Crucially, blocking this evolutionary pathway by co-administering ceftazidime with the β-lactamase inhibitor avibactam can be used to eliminate pathogenic P. aeruginosa populations before they can evolve resistance. In summary, our study shows that identifying potentiator genes that act as evolutionary catalysts can be used to both predict and prevent the evolution of antibiotic resistance.
Collapse
|
124
|
Dietel AK, Kaltenpoth M, Kost C. Convergent Evolution in Intracellular Elements: Plasmids as Model Endosymbionts. Trends Microbiol 2018; 26:755-768. [PMID: 29650391 DOI: 10.1016/j.tim.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
Endosymbionts are organisms that live inside the cells of other species. This lifestyle is ubiquitous across the tree of life and is featured by unicellular eukaryotes, prokaryotes, and by extrachromosomal genetic elements such as plasmids. Given that all of these elements dwell in the cytoplasm of their host cell, they should be subject to similar selection pressures. Here we show that strikingly similar features have evolved in both bacterial endosymbionts and plasmids. Since host and endosymbiont are often metabolically tightly intertwined, they are difficult to disentangle experimentally. We propose that using plasmids as tractable model systems can help to solve this problem, thus allowing fundamental questions to be experimentally addressed about the ecology and evolution of endosymbiotic interactions.
Collapse
Affiliation(s)
- Anne-Kathrin Dietel
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Current address: Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| |
Collapse
|
125
|
Abstract
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Collapse
Affiliation(s)
- Amanda C Carroll
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
126
|
Sellera FP, Fernandes MR, Sartori L, Carvalho MPN, Esposito F, Nascimento CL, Dutra GHP, Mamizuka EM, Pérez-Chaparro PJ, McCulloch JA, Lincopan N. Escherichia coli carrying IncX4 plasmid-mediated mcr-1 and blaCTX-M genes in infected migratory Magellanic penguins (Spheniscus magellanicus). J Antimicrob Chemother 2018; 72:1255-1256. [PMID: 28031274 DOI: 10.1093/jac/dkw543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciana Sartori
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo P N Carvalho
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Elsa M Mamizuka
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula J Pérez-Chaparro
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - John A McCulloch
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
127
|
Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 2018; 41:374-391. [PMID: 28333270 PMCID: PMC5435765 DOI: 10.1093/femsre/fux004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.
Collapse
Affiliation(s)
- Diarmaid Hughes
- Corresponding author: Department of Medical Biochemistry and Microbiology, Biomedical Center (Box 582), Uppsala University, S-751 23 Uppsala, Sweden. Tel: +46 18 4714507; E-mail:
| | | |
Collapse
|
128
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
129
|
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689. [PMID: 29162798 PMCID: PMC5698434 DOI: 10.1038/s41467-017-01532-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance. It is unclear whether the transfer of plasmids carrying antibiotic resistance genes can explain their persistence when antibiotics are not present. Here, Lopatkin et al. show that conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah R Meredith
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Connor Pfeiffer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rick Durrett
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
130
|
Mortimer TD, Weber AM, Pepperell CS. Evolutionary Thrift: Mycobacteria Repurpose Plasmid Diversity during Adaptation of Type VII Secretion Systems. Genome Biol Evol 2017; 9:398-413. [PMID: 28391322 PMCID: PMC5381665 DOI: 10.1093/gbe/evx001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria have a distinct secretion system, termed type VII (T7SS), which is encoded by paralogous chromosomal loci (ESX) and associated with pathogenesis, conjugation, and metal homeostasis. Evolution of paralogous gene families is of interest because duplication is an important mechanism by which novel genes evolve, but there are potential conflicts between adaptive forces that stabilize duplications and those that enable evolution of new functions. Our objective was to delineate the adaptive forces underlying diversification of T7SS. Plasmid-borne ESX were described recently, and we found evidence that the initial duplication and divergence of ESX systems occurred on plasmids and was driven by selection for advantageous mutations. Plasmid conjugation has been linked to T7SS and type IV secretion systems (T4SS) in mycobacteria, and we discovered that T7SS and T4SS genes evolved in concert on the plasmids. We hypothesize that differentiation of plasmid ESX helps to prevent conjugation among cells harboring incompatible plasmids. Plasmid ESX appear to have been repurposed following migration to the chromosome, and there is evidence of positive selection driving further differentiation of chromosomal ESX. We hypothesize that ESX loci were initially stabilized on the chromosome by mediating their own transfer. These results emphasize the diverse adaptive paths underlying evolution of novelty, which in this case involved plasmid duplications, selection for advantageous mutations in the mobile and core genomes, migration of the loci between plasmids and chromosomes, and lateral transfer among chromosomes. We discuss further implications for the choice of model organism to study ESX functions in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tatum D Mortimer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI
| | - Alexandra M Weber
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
131
|
Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front Microbiol 2017; 8:1966. [PMID: 29062312 PMCID: PMC5640721 DOI: 10.3389/fmicb.2017.01966] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.
Collapse
Affiliation(s)
- Carlos Garbisu
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | - Olatz Garaiyurrebaso
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Lur Epelde
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | | | - Itziar Alkorta
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| |
Collapse
|
132
|
Affiliation(s)
- Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
133
|
San Millan A, MacLean RC. Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0016-2017. [PMID: 28944751 PMCID: PMC11687550 DOI: 10.1128/microbiolspec.mtbp-0016-2017] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Plasmids mediate the horizontal transmission of genetic information between bacteria, facilitating their adaptation to multiple environmental conditions. An especially important example of the ability of plasmids to catalyze bacterial adaptation and evolution is their instrumental role in the global spread of antibiotic resistance, which constitutes a major threat to public health. Plasmids provide bacteria with new adaptive tools, but they also entail a metabolic burden that, in the absence of selection for plasmid-encoded traits, reduces the competitiveness of the plasmid-carrying clone. Although this fitness reduction can be alleviated over time through compensatory evolution, the initial cost associated with plasmid carriage is the main constraint on the vertical and horizontal replication of these genetic elements. The fitness effects of plasmids therefore have a crucial influence on their ability to associate with new bacterial hosts and consequently on the evolution of plasmid-mediated antibiotic resistance. However, the molecular mechanisms underlying plasmid fitness cost remain poorly understood. Here, we analyze the literature in the field and examine the potential fitness effects produced by plasmids throughout their life cycle in the host bacterium. We also explore the various mechanisms evolved by plasmids and bacteria to minimize the cost entailed by these mobile genetic elements. Finally, we discuss potential future research directions in the field.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
134
|
Werbowy O, Werbowy S, Kaczorowski T. Plasmid stability analysis based on a new theoretical model employing stochastic simulations. PLoS One 2017; 12:e0183512. [PMID: 28846713 PMCID: PMC5573283 DOI: 10.1371/journal.pone.0183512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/05/2017] [Indexed: 12/03/2022] Open
Abstract
Here, we present a simple theoretical model to study plasmid stability, based on one input parameter which is the copy number of plasmids present in a host cell. The Monte Carlo approach was used to analyze random fluctuations affecting plasmid replication and segregation leading to gradual reduction in the plasmid population within the host cell. This model was employed to investigate maintenance of pEC156 derivatives, a high-copy number ColE1-type Escherichia coli plasmid that carries an EcoVIII restriction-modification system. Plasmid stability was examined in selected Escherichia coli strains (MG1655, wild-type; MG1655 pcnB, and hyper-recombinogenic JC8679 sbcA). We have compared the experimental data concerning plasmid maintenance with the simulations and found that the theoretical stability patterns exhibited an excellent agreement with those empirically tested. In our simulations, we have investigated the influence of replication fails (α parameter) and uneven partition as a consequence of multimer resolution fails (δ parameter), and the post-segregation killing factor (β parameter). All of these factors act at the same time and affect plasmid inheritance at different levels. In case of pEC156-derivatives we concluded that multimerization is a major determinant of plasmid stability. Our data indicate that even small changes in the fidelity of segregation can have serious effects on plasmid stability. Use of the proposed mathematical model can provide a valuable description of plasmid maintenance, as well as enable prediction of the probability of the plasmid loss.
Collapse
Affiliation(s)
- Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, Poland
| | - Sławomir Werbowy
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, ul. Wita Stwosza 57, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
135
|
Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol 2017; 1:1354-1363. [PMID: 29046540 PMCID: PMC5649373 DOI: 10.1038/s41559-017-0243-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/16/2017] [Indexed: 11/08/2022]
Abstract
Horizontal gene transfer mediated by broad-host-range plasmids is an important mechanism of antibiotic resistance spread. While not all bacteria maintain plasmids equally well, plasmid persistence can improve over time, yet no general evolutionary mechanisms have emerged. Our goal was to identify these mechanisms and to assess if adaptation to one plasmid affects the permissiveness to others. We experimentally evolved Pseudomonas sp. H2 containing multidrug resistance plasmid RP4, determined plasmid persistence and cost using a joint experimental-modelling approach, resequenced evolved clones, and reconstructed key mutations. Plasmid persistence improved in fewer than 600 generations because the fitness cost turned into a benefit. Improved retention of naive plasmids indicated that the host evolved towards increased plasmid permissiveness. Key chromosomal mutations affected two accessory helicases and the RNA polymerase β-subunit. Our and other findings suggest that poor plasmid persistence can be caused by a high cost involving helicase-plasmid interactions that can be rapidly ameliorated.
Collapse
|
136
|
Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol 2017; 15:689-696. [DOI: 10.1038/nrmicro.2017.75] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
137
|
Genomic characterization of novel IncFII-type multidrug resistant plasmids p0716-KPC and p12181-KPC from Klebsiella pneumoniae. Sci Rep 2017; 7:5830. [PMID: 28725038 PMCID: PMC5517477 DOI: 10.1038/s41598-017-06283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
This study aimed to genetically characterize two fully-sequenced novel IncFII-type multidrug resistant (MDR) plasmids, p0716-KPC and p12181-KPC, recovered from two different clinical Klebsiella pneumoniae isolates. p0716-KPC and p12181-KPC had a very similar genomic content. The backbones of p0716-KPC/p12181-KPC contained two different replicons (belonging to a novel IncFII subtype and the Rep_3 family), the IncFIIK and IncFIIY maintenance regions, and conjugal transfer gene sets from IncFIIK-type plasmids and unknown origins. p0716-KPC and p12181-KPC carried similar three accessory resistance regions, namely ΔTn6209, a MDR region, and the blaKPC-2 region. Resistance genes blaKPC-2, mph(A), strAB, aacC2, qacEΔ1, sul1, sul2, and dfrA25, which are associated with transposons, integrons, and insertion sequence-based mobile units, were located in these accessory regions. p0716-KPC carried two additional resistance genes: aphA1a and blaTEM-1. Together, our analyses showed that p0716-KPC and p12181-KPC belong to a novel IncFII subtype and display a complex chimeric nature, and that the carbapenem resistance gene blaKPC-2 coexists with a lot of additional resistance genes on these two plasmids.
Collapse
|
138
|
Stalder T, Rogers LM, Renfrow C, Yano H, Smith Z, Top EM. Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci Rep 2017; 7:4853. [PMID: 28687759 PMCID: PMC5501780 DOI: 10.1038/s41598-017-04662-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistant bacterial pathogens have become a serious global human health threat, and conjugative plasmids are important drivers of the rapid spread of resistance to last-resort antibiotics. Whereas antibiotics have been shown to select for adaptation of resistance plasmids to their new bacterial hosts, or vice versa, a general evolutionary mechanism has not yet emerged. Here we conducted an experimental evolution study aimed at determining general patterns of plasmid-bacteria evolution. Specifically, we found that a large conjugative resistance plasmid follows the same evolutionary trajectories as its non-conjugative mini-replicon in the same and other species. Furthermore, within a single host-plasmid pair three distinct patterns of adaptive evolution led to increased plasmid persistence: i) mutations in the replication protein gene (trfA1); ii) the acquisition by the resistance plasmid of a transposon from a co-residing plasmid encoding a putative toxin-antitoxin system; iii) a mutation in the host's global transcriptional regulator gene fur. Since each of these evolutionary solutions individually have been shown to increase plasmid persistence in other plasmid-host pairs, our work points towards common mechanisms of plasmid stabilization. These could become the targets of future alternative drug therapies to slow down the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Linda M Rogers
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Chris Renfrow
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Hirokazu Yano
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zachary Smith
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA. .,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
139
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
140
|
Ridenhour BJ, Metzger GA, France M, Gliniewicz K, Millstein J, Forney LJ, Top EM. Persistence of antibiotic resistance plasmids in bacterial biofilms. Evol Appl 2017; 10:640-647. [PMID: 28616070 PMCID: PMC5469168 DOI: 10.1111/eva.12480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
Abstract
The emergence and spread of antibiotic resistance is a crisis in health care today. Antibiotic resistance is often horizontally transferred to susceptible bacteria by means of multidrug resistance plasmids that may or may not persist in the absence of antibiotics. Because bacterial pathogens often grow as biofilms, there is a need to better understand the evolution of plasmid persistence in these environments. Here we compared the evolution of plasmid persistence in the pathogen Acinetobacter baumannii when grown under antibiotic selection in biofilms versus well-mixed liquid cultures. After 4 weeks, clones in which the plasmid was more stably maintained in the absence of antibiotic selection were present in both populations. On average plasmid persistence increased more in liquid batch cultures, but variation in the degree of persistence was greater among biofilm-derived clones. The results of this study show for the first time that the persistence of MDR plasmids improves in biofilms.
Collapse
Affiliation(s)
- Benjamin J Ridenhour
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Genevieve A Metzger
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Michael France
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Karol Gliniewicz
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA
| | - Jack Millstein
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA
| | - Larry J Forney
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| | - Eva M Top
- Department of Biological Sciences Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID USA.,Bioinformatics and Computational Biology Program University of Idaho Moscow ID USA
| |
Collapse
|
141
|
Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid 2017; 91:96-104. [PMID: 28461122 DOI: 10.1016/j.plasmid.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/27/2022]
Abstract
Some plasmids can be transferred by conjugation to other bacterial hosts. But almost half of the plasmids are non-transmissible. These plasmid types can only be transmitted to the daughter cells of their host after bacterial fission. Previous studies suggest that non-transmissible plasmids become extinct in the absence of selection of their encoded traits, as plasmid-free bacteria are more competitive. Here, we aim to identify mechanisms that enable non-transmissible plasmids to persist, even if they are not beneficial. For this purpose, an individual-based model for plasmid population dynamics was set up and carefully tested for structural consistency and plausibility. Our results demonstrate that non-transmissible plasmids can be stably maintained in a population, even if they impose a substantial burden on their host cells growth. A prerequisite is the co-occurrence of an incompatible and costly conjugative plasmid type, which indirectly facilitates the preservation of the non-transmissible type. We suggest that this constellation might be considered as a potential mechanism maintaining plasmids and associated antibiotic resistances. It should be investigated in upcoming laboratory experiments.
Collapse
Affiliation(s)
- Martin Werisch
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany.
| | - Uta Berger
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Department of Hydro Sciences, Institute of Hydrobiology, Dresden 01217, Germany
| |
Collapse
|
142
|
Bedhomme S, Perez Pantoja D, Bravo IG. Plasmid and clonal interference during post horizontal gene transfer evolution. Mol Ecol 2017; 26:1832-1847. [PMID: 28206693 DOI: 10.1111/mec.14056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023]
Abstract
Plasmids are nucleic acid molecules that can drive their own replication in a living cell. They can be transmitted horizontally and can thrive in the host cell to high-copy numbers. Plasmid replication and gene expression consume cellular resources and cells carrying plasmids incur fitness costs. But many plasmids carry genes that can be beneficial under certain conditions, allowing the cell to endure in the presence of antibiotics, toxins, competitors or parasites. Horizontal transfer of plasmid-encoded genes can thus instantaneously confer differential adaptation to local or transient selection conditions. This conflict between cellular fitness and plasmid spread sets the scene for multilevel selection processes. We have engineered a system to study the short-term evolutionary impact of different synonymous versions of a plasmid-encoded antibiotic resistance gene. Applying experimental evolution under different selection conditions and deep sequencing allowed us to show rapid local adaptation to the presence of antibiotic and to the specific version of the resistance gene transferred. We describe the presence of clonal interference at two different levels: at the within-cell level, because a single cell can carry several plasmids, and at the between-cell level, because a bacterial population may contain several clones carrying different plasmids and displaying different fitness in the presence/absence of antibiotic. Understanding the within-cell and between-cell dynamics of plasmids after horizontal gene transfer is essential to unravel the dense network of mobile elements underlying the worldwide threat to public health of antibiotic resistance.
Collapse
Affiliation(s)
- S Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, 34293, Montpellier, France.,Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, 911 avenue Agropolis, BP64501, 34394, Montpellier Cedex 05, France
| | - D Perez Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - I G Bravo
- Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, 911 avenue Agropolis, BP64501, 34394, Montpellier Cedex 05, France
| |
Collapse
|
143
|
Wong A. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol 2017; 8:246. [PMID: 28261193 PMCID: PMC5313483 DOI: 10.3389/fmicb.2017.00246] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The fitness effects of a mutation can depend, sometimes dramatically, on genetic background; this phenomenon is often referred to as “epistasis.” Epistasis can have important practical consequences in the context of antimicrobial resistance (AMR). For example, genetic background plays an important role in determining the costs of resistance, and hence in whether resistance will persist in the absence of antibiotic pressure. Furthermore, interactions between resistance mutations can have important implications for the evolution of multi-drug resistance. I argue that there is a need to better characterize the extent and nature of epistasis for mutations and horizontally transferred elements conferring AMR, particularly in clinical contexts. Furthermore, I suggest that epistasis should be an important consideration in attempts to slow or limit the evolution of AMR.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa ON, Canada
| |
Collapse
|
144
|
Reding-Roman C, Hewlett M, Duxbury S, Gori F, Gudelj I, Beardmore R. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. Nat Ecol Evol 2017; 1:50. [DOI: 10.1038/s41559-016-0050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022]
|
145
|
A Naturally Occurring Single Nucleotide Polymorphism in a Multicopy Plasmid Produces a Reversible Increase in Antibiotic Resistance. Antimicrob Agents Chemother 2017; 61:AAC.01735-16. [PMID: 27895020 DOI: 10.1128/aac.01735-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022] Open
Abstract
ColE1 plasmids are small mobilizable replicons that play an important role in the spread of antibiotic resistance in Pasteurellaceae In this study, we describe how a natural single nucleotide polymorphism (SNP) near the origin of replication of the ColE1-type plasmid pB1000 found in a Pasteurella multocida clinical isolate generates two independent plasmid variants able to coexist in the same cell simultaneously. Using the Haemophilus influenzae Rd KW20 strain as a model system, we combined antibiotic susceptibility tests, quantitative PCRs, competition assays, and experimental evolution to characterize the consequences of the coexistence of the pB1000 plasmid variants. This coexistence produced an increase of the total plasmid copy number (PCN) in the host bacteria, leading to a rise in both the antibiotic resistance level and the metabolic burden produced by pB1000. Using experimental evolution, we showed that in the presence of ampicillin, the bacteria maintained both plasmid variants for 300 generations. In the absence of antibiotics, on the other hand, the bacteria are capable of reverting to the single-plasmid genotype via the loss of one of the plasmid variants. Our results revealed how a single mutation in plasmid pB1000 provides the bacterial host with a mechanism to increase the PCN and, consequently, the ampicillin resistance level. Crucially, this mechanism can be rapidly reversed to avoid the extra cost entailed by the increased PCN in the absence of antibiotics.
Collapse
|
146
|
San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 2016; 1:10. [PMID: 28812563 DOI: 10.1038/s41559-016-0010] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Plasmids are thought to play a key role in bacterial evolution by acting as vehicles for horizontal gene transfer, but the role of plasmids as catalysts of gene evolution remains unexplored. We challenged populations of Escherichia coli carrying the blaTEM-1 β-lactamase gene on either the chromosome or a multicopy plasmid (19 copies per cell) with increasing concentrations of ceftazidime. The plasmid accelerated resistance evolution by increasing the rate of appearance of novel TEM-1 mutations, thereby conferring resistance to ceftazidime, and then by amplifying the effect of TEM-1 mutations due to the increased gene dosage. Crucially, this dual effect was necessary and sufficient for the evolution of clinically relevant levels of resistance. Subsequent evolution occurred by mutations in a regulatory RNA that increased the plasmid copy number, resulting in marginal gains in ceftazidime resistance. These results uncover a role for multicopy plasmids as catalysts for the evolution of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Jose Antonio Escudero
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr. Roux, 75015 Paris, France.,CNRS, UMR3525, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Danna R Gifford
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr. Roux, 75015 Paris, France.,CNRS, UMR3525, 28 Rue du Dr. Roux, 75015 Paris, France
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
147
|
Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species. Sci Rep 2016; 6:36116. [PMID: 27796355 PMCID: PMC5086877 DOI: 10.1038/srep36116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and “Clustered regularly-interspaced short palindromic repeats”. Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
Collapse
Affiliation(s)
- Shi Yang Tan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Irene Kit Ping Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mui Fern Tan
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
148
|
Medaney F, Ellis RJ, Raymond B. Ecological and genetic determinants of plasmid distribution inEscherichia coli. Environ Microbiol 2016; 18:4230-4239. [DOI: 10.1111/1462-2920.13552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Frances Medaney
- School of Biological Science; Royal Holloway University of London; Egham Surrey TW20 0EX UK
| | - Richard J. Ellis
- Specialist Scientific Support Department; Animal and Plant Health Agency, APHA Weybridge, Addlestone; Surrey KT15 3NB UK
| | - Ben Raymond
- School of Biological Science; Royal Holloway University of London; Egham Surrey TW20 0EX UK
- University of Exeter, Penryn Campus; Penryn Cornwall TR10 9FE UK
| |
Collapse
|
149
|
Qi Q, Toll-Riera M, Heilbron K, Preston GM, MacLean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proc Biol Sci 2016; 283:rspb.2015.2452. [PMID: 26763710 PMCID: PMC4721101 DOI: 10.1098/rspb.2015.2452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings.
Collapse
Affiliation(s)
- Qin Qi
- Department of Zoology, University of Oxford, Oxford, UK Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, UK Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Karl Heilbron
- Department of Zoology, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
150
|
McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, Vehkala M, Välimäki N, Prentice MB, Ashour A, Avram O, Pupko T, Dobrindt U, Literak I, Guenther S, Schaufler K, Wieler LH, Zhiyong Z, Sheppard SK, McInerney JO, Corander J. Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLoS Genet 2016; 12:e1006280. [PMID: 27618184 PMCID: PMC5019451 DOI: 10.1371/journal.pgen.1006280] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023] Open
Abstract
The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements. We present an approach to evolutionary analysis of bacterial pathogens combining core genome, accessory genome, and gene regulatory region analyses. This enables unparalleled resolution of the evolution of a multi-drug resistant pandemic pathogen that would remain invisible to a core genome phylogenetic analysis alone. In particular, our combined analysis approach identifies population-level evidence for compensatory mutations offsetting the costs of resistance plasmid maintenance as a key event in the emergence of dominant MDR lineages of E. coli.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Yaara Oren
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darren Kelly
- Department of Biology, National University Ireland, Maynooth, Ireland
| | - Ben Pascoe
- College of Medicine, University of Swansea, Swansea, United Kingdom
| | - Steven Dunn
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Tristan Sreecharan
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Michael B. Prentice
- Departments of Pathology and Microbiology, University College Cork, Cork, Ireland
| | - Amgad Ashour
- Departments of Pathology and Microbiology, University College Cork, Cork, Ireland
| | - Oren Avram
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ulrich Dobrindt
- Institute of Hygiene, Universitat Muenster, Muenster, Germany
| | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, and CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Sebastian Guenther
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
| | - Katharina Schaufler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
| | - Lothar H. Wieler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Zong Zhiyong
- Centre for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | | | - James O. McInerney
- Department of Biology, National University Ireland, Maynooth, Ireland
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| |
Collapse
|