101
|
Abstract
Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.
Collapse
Affiliation(s)
- Per Hammarström
- a IFM-Department of Chemistry ; Linköping University ; Linköping , Sweden
| | | |
Collapse
|
102
|
Review: A review on classical and atypical scrapie in caprine: Prion protein gene polymorphisms and their role in the disease. Animal 2016; 10:1585-93. [PMID: 27109462 DOI: 10.1017/s1751731116000653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy in sheep and goat. It has been known for ~250 years and is characterised by the accumulation of an abnormal isoform of a host-encoded prion protein that leads to progressive neurodegeneration and death. Scrapie is recognised in two forms, classical and atypical scrapie. The susceptibility to both types of scrapie is influenced by polymorphisms of the prion protein gene (PRNP). Sheep susceptibility or resistance to classical scrapie is strongly regulated by the polymorphisms at codons 136, 154 and 171 of the PRNP. The genetic role in atypical scrapie in sheep has been defined by polymorphisms at codons 141, 154 and 171, which are associated with different degrees of risk in the occurrence of the ovine disease. Progress has been achieved in the prevention of scrapie in sheep due to efficient genetic breeding programmes based on eradication and control of the disease. In Europe, the success of these programmes has been verified by applying eradication and genetic selection plans. In general terms, the ovine selection plans aim to eliminate and reduce the susceptible allele and to enrich the resistant allele ARR. During outbreaks all susceptible animals are slaughtered, only ARR/ARR resistant rams and sheep and semi-resistant females are preserved. In the occurrence of scrapie positive goats a complete cull of the flock (stamping out) is performed with great economic loss and severe risk of extinction for the endangered breeds. The ability to select scrapie-resistant animals allows to define new breeding strategies aimed to boost genetic progress while reducing costs during scrapie outbreaks. Allelic variants of PRNP can be protective for caprine scrapie, and the knowledge of their distribution in goats has become very important. Over the past few years, the integration of genetic information on goat populations could be used to make selection decisions, commonly referred to as genetic selection. The objective of this review was to summarise the main findings of polymorphisms of the caprine prion protein (PrP) gene and to discuss the possible application of goat breeding schemes integrating genetic selection, with their relative advantages and limitations.
Collapse
|
103
|
Prion 2016 Invited Lecture Abstracts. Prion 2016; 10 Suppl 1:S3-S14. [PMID: 27088810 DOI: 10.1080/19336896.2016.1163050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
104
|
Defining and Assessing Analytical Performance Criteria for Transmissible Spongiform Encephalopathy-Detecting Amyloid Seeding Assays. J Mol Diagn 2016; 18:454-467. [PMID: 27068712 DOI: 10.1016/j.jmoldx.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases that affect production animal health, and thus human food safety. Enhanced TSE detection methods mimic the conjectured basis for prion replication, in vitro; biological matrices can be tested for prion activity via their ability to convert recombinant cellular prion protein (PrP) into amyloid fibrils; fluorescent spectra changes of amyloid-binding fluorophores in the reaction vessel detect fibril formation. In vitro PrP conversion techniques have high analytical sensitivity for prions, comparable with that of bioassays, yet no such protocol has gained regulatory approval for use in animal TSE surveillance programs. This study describes a timed in vitro PrP conversion protocol with accurate, well-defined analytical criteria based on probability density and mass functions of TSE(+) and TSE(-) associated thioflavin T signal times, a new approach within this field. The prion detection model used is elk chronic wasting disease (CWD) in brain tissues. The protocol and analytical criteria proved as sensitive for elk CWD as two bioassay models, and upward of approximately 1.2 log10 more sensitive than the most sensitive TSE rapid test we assessed. Furthermore, we substantiate that timing in vitro PrP conversion may be used to titrate TSE infectivity, and, as a result, provide a comprehensive extrapolation of analytical sensitivity differences between bioassay, TSE rapid tests, and in vitro PrP conversion for elk CWD.
Collapse
|
105
|
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal protein-misfolding neurodegenerative diseases. TSEs have been described in several species, including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME) in mink, and Kuru and Creutzfeldt-Jakob disease (CJD) in humans. These diseases are associated with the accumulation of a protease-resistant, disease-associated isoform of the prion protein (called PrP(Sc)) in the central nervous system and other tissues, depending on the host species. Typically, TSEs are acquired through exposure to infectious material, but inherited and spontaneous TSEs also occur. All TSEs share pathologic features and infectious mechanisms but have distinct differences in transmission and epidemiology due to host factors and strain differences encoded within the structure of the misfolded prion protein. The possibility that BSE can be transmitted to humans as the cause of variant Creutzfeldt-Jakob disease has brought attention to this family of diseases. This review is focused on the TSEs of livestock: bovine spongiform encephalopathy in cattle and scrapie in sheep and goats.
Collapse
Affiliation(s)
- Justin J Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| | - M Heather West Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| |
Collapse
|
106
|
Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, Quadrio I, Boulliat J, Perret-Liaudet A, Dron M, Laude H, Rezaei H, Béringue V. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions. Acta Neuropathol Commun 2016; 4:10. [PMID: 26847207 PMCID: PMC4743415 DOI: 10.1186/s40478-016-0284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Introduction Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrPSc, a misfolded isoform of the host-encoded prion protein PrPC. Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrPSc in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to ‘mutate’ conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrPSc), to transgenic mice overexpressing either human or the VRQ allele of ovine PrPC. Results In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrPSc biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the ‘physical’ cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Conclusions Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0284-9) contains supplementary material, which is available to authorized users.
Collapse
|
107
|
Murdoch BM, Murdoch GK. Genetics of Prion Disease in Cattle. Bioinform Biol Insights 2015; 9:1-10. [PMID: 26462233 PMCID: PMC4589088 DOI: 10.4137/bbi.s29678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/03/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - Gordon K Murdoch
- Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| |
Collapse
|
108
|
Sarradin P, Viglietta C, Limouzin C, Andréoletti O, Daniel-Carlier N, Barc C, Leroux-Coyau M, Berthon P, Chapuis J, Rossignol C, Gatti JL, Belghazi M, Labas V, Vilotte JL, Béringue V, Lantier F, Laude H, Houdebine LM. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathog 2015; 11:e1005077. [PMID: 26248157 PMCID: PMC4527776 DOI: 10.1371/journal.ppat.1005077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.
Collapse
Affiliation(s)
- Pierre Sarradin
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
- * E-mail: (PS); (VB)
| | - Céline Viglietta
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Claude Limouzin
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
| | | | - Nathalie Daniel-Carlier
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Céline Barc
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Mathieu Leroux-Coyau
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Patricia Berthon
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Jérôme Chapuis
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Christelle Rossignol
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Jean-Luc Gatti
- INRA- CNRS-UNS, UMR1355, Institut Sophia Agrobiotech, ISA, Sophia Antipolis, France
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, Institut Français du Cheval et de l’Equitation, Physiologie de la Reproduction et des Comportements, Plate-forme d’Analyse Intégrative des Biomolécules, Nouzilly, France
| | - Maya Belghazi
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, Institut Français du Cheval et de l’Equitation, Physiologie de la Reproduction et des Comportements, Plate-forme d’Analyse Intégrative des Biomolécules, Nouzilly, France
- CNRS-Aix-Marseille Université, UMR7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CRN2M, Marseille, France
| | - Valérie Labas
- CNRS-Aix-Marseille Université, UMR7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CRN2M, Marseille, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (PS); (VB)
| | - Frédéric Lantier
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Hubert Laude
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Louis-Marie Houdebine
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| |
Collapse
|
109
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
110
|
Longitudinal Detection of Prion Shedding in Saliva and Urine by Chronic Wasting Disease-Infected Deer by Real-Time Quaking-Induced Conversion. J Virol 2015; 89:9338-47. [PMID: 26136567 DOI: 10.1128/jvi.01118-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic wasting disease (CWD) is an emergent, rapidly spreading prion disease of cervids. Shedding of infectious prions in saliva and urine is thought to be an important factor in CWD transmission. To help to elucidate this issue, we applied an in vitro amplification assay to determine the onset, duration, and magnitude of prion shedding in longitudinally collected saliva and urine samples from CWD-exposed white-tailed deer. We detected prion shedding as early as 3 months after CWD exposure and sustained shedding throughout the disease course. We estimated that the 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 ml of infected deer saliva or 10 ml of urine. Given the average course of infection and daily production of these body fluids, an infected deer would shed thousands of prion infectious doses over the course of CWD infection. The direct and indirect environmental impacts of this magnitude of prion shedding on cervid and noncervid species are surely significant. IMPORTANCE Chronic wasting disease (CWD) is an emerging and uniformly fatal prion disease affecting free-ranging deer and elk and is now recognized in 22 U.S. states and 2 Canadian provinces. It is unique among prion diseases in that it is transmitted naturally through wild populations. A major hypothesis to explain CWD's florid spread is that prions are shed in excreta and transmitted via direct or indirect environmental contact. Here we use a rapid in vitro assay to show that infectious doses of CWD prions are in fact shed throughout the multiyear disease course in deer. This finding is an important advance in assessing the risks posed by shed CWD prions to animals as well as humans.
Collapse
|
111
|
Transmission of scrapie prions to primate after an extended silent incubation period. Sci Rep 2015; 5:11573. [PMID: 26123044 PMCID: PMC4485159 DOI: 10.1038/srep11573] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022] Open
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
Collapse
|
112
|
Race B, Phillips K, Meade-White K, Striebel J, Chesebro B. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein. J Virol 2015; 89:6022-32. [PMID: 25810548 PMCID: PMC4442444 DOI: 10.1128/jvi.00362-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|