101
|
Dhanwani R, Khan M, Alam SI, Rao PVL, Parida M. Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 2011; 11:1936-51. [PMID: 21472854 DOI: 10.1002/pmic.201000500] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/08/2022]
Abstract
Chikungunya infection is a major disease of public health concern. The recurrent outbreaks of this viral disease and its progressive evolution demands a potential strategy to understand major aspects of its pathogenesis. Unlike other alphaviruses, Chikungunya virus (CHIKV) pathogenesis is poorly understood. In every consecutive outbreak, some new symptoms associated with virulence and disease manifestations are being reported such as neurological implication, increased severity and enhanced vector competence. In order to unravel the mechanism of the disease process, proteomic analysis was performed to evaluate the host response in CHIKV-infected mice tissues. Comparative analysis of the multiple gels representing the particular tissue extract from mock and CHIKV-infected tissues revealed a drastic reprogramming of physiological conditions through 35 and 15 differentially expressed proteins belonging to different classes such as stress, inflammation, apoptosis, urea cycle, energy metabolism, etc. from liver and brain, respectively. Based on the alterations obtained in the CHIKV mouse model, most of the aspects of CHIKV infection such as disease severity, neurological complications, disease susceptibility and immunocompetence could be defined. This is the first report unravelling the complicated pathways involved in the mechanism of Chikungunya disease pathogenesis employing proteomic approach.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Virology, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
102
|
Mueller P, Liu X, Pieters J. Migration and homeostasis of naive T cells depends on coronin 1-mediated prosurvival signals and not on coronin 1-dependent filamentous actin modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4039-4050. [PMID: 21339362 DOI: 10.4049/jimmunol.1003352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Coronins are WD repeat-containing proteins highly conserved in the eukaryotic kingdom implicated in the regulation of F-actin. Mammalian coronin 1, one of the most conserved isoforms expressed in leukocytes, regulates survival of T cells, which has been suggested to be due to its role in preventing F-actin-induced apoptosis. In this study, we come to a different conclusion. We show that coronin 1 does not modulate F-actin and that induction of F-actin failed to induce apoptosis. Instead, coronin 1 was required for providing prosurvival signals, in the absence of which T cells rapidly underwent apoptosis. These results argue against a role for coronin 1 in F-actin-mediated T cell apoptosis and establish coronin 1 as an essential regulator of the balance between prosurvival and proapoptotic signals in naive T cells.
Collapse
|
103
|
Siegmund K, Zeis T, Kunz G, Rolink T, Schaeren-Wiemers N, Pieters J. Coronin 1-Mediated Naive T Cell Survival Is Essential for the Development of Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3452-61. [DOI: 10.4049/jimmunol.1003491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
104
|
Matheis KA, Com E, Gautier JC, Guerreiro N, Brandenburg A, Gmuender H, Sposny A, Hewitt P, Amberg A, Boernsen O, Riefke B, Hoffmann D, Mally A, Kalkuhl A, Suter L, Dieterle F, Staedtler F. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers. Toxicol Appl Pharmacol 2010; 252:112-22. [PMID: 21081137 DOI: 10.1016/j.taap.2010.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022]
Abstract
The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with "omics" data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinical chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.
Collapse
Affiliation(s)
- Katja A Matheis
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. THE JOURNAL OF IMMUNOLOGY 2010; 186:143-55. [PMID: 21084666 DOI: 10.4049/jimmunol.1000290] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We recently reported that TNFR-associated factor (TRAF)3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. In this article, we report the generation and characterization of T cell-specific TRAF3(-/-) mice, in which the traf3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell lineage did not affect CD4 or CD8 T cell populations in secondary lymphoid organs or the numbers or proportions of CD4(+),CD8(+) or double-positive or double-negative thymocytes, except that the T cell-specific TRAF3(-/-) mice had a 2-fold increase in FoxP3(+) T cells. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3-deficient mice exhibited defective IgG1 responses to a T-dependent Ag, as well as impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon costimulation and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
106
|
Pareek TK, Lam E, Zheng X, Askew D, Kulkarni AB, Chance MR, Huang AY, Cooke KR, Letterio JJ. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2010; 207:2507-19. [PMID: 20937706 PMCID: PMC2964575 DOI: 10.1084/jem.20100876] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a ubiquitously expressed serine/threonine kinase. However, a requirement for Cdk5 has been demonstrated only in postmitotic neurons where there is abundant expression of its activating partners p35 and/or p39. Although hyperactivation of the Cdk5-p35 complex has been found in a variety of inflammatory neurodegenerative disorders, the potential contribution of nonneuronal Cdk5-p35 activity has not been explored in this context. We describe a previously unknown function of the Cdk5-p35 complex in T cells that is required for induction of experimental autoimmune encephalomyelitis (EAE). T cell receptor (TCR) stimulation leads to a rapid induction of Cdk5-p35 expression that is required for T lymphocyte activation. Chimeric mice lacking Cdk5 gene expression in hematopoietic tissues (Cdk5(-/-C)) are resistant to induction of EAE, and adoptive transfer of either Cdk5(-/-C) or p35(-/-) encephalitogenic lymphocytes fails to transfer disease. Moreover, our data reveal a novel mechanism involving Cdk5-mediated phosphorylation of the actin modulator coronin 1a on threonine 418. Cdk5-deficient lymphocytes lack this posttranslational modification of coronin 1a and exhibit defective TCR-induced actin polarization and reduced migration toward CCL-19. These data define a distinct role for Cdk5 in lymphocyte biology and suggest that inhibition of this kinase may be beneficial in the treatment of T cell-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Tej K Pareek
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University Hospitals Case Medical Center and The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Ponce J, Brea D, Carrascal M, Guirao V, Degregorio-Rocasolano N, Sobrino T, Castillo J, Dávalos A, Gasull T. The effect of simvastatin on the proteome of detergent-resistant membrane domains: decreases of specific proteins previously related to cytoskeleton regulation, calcium homeostasis and cell fate. Proteomics 2010; 10:1954-65. [PMID: 20217863 DOI: 10.1002/pmic.200900055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell death induced by over-activation of glutamate receptors occurs in different neuropathologies. Cholesterol depletors protect from neurotoxic over-activation of glutamate receptors, and we have recently reported that this neuroprotection is associated with a reduction of the N-methyl-D-aspartate subtype of glutamate receptors in detergent-resistant membrane domains (DRM). In the present study we used comparative proteomics to further identify which proteins, besides the N-methyl-D-aspartate receptor, change its percentage of association to DRM after treatment of neurons with simvastatin. We detected 338 spots in neuronal DRM subjected to 2-DE; eleven of these spots changed its intensity after treatment with simvastatin. All 11 differential spots showed reduced intensity in simvastatin-treated samples and were identified as adipocyte plasma membrane associated protein, enolase, calretinin, coronin 1a, f-actin capping protein alpha1, f-actin capping protein alpha2, heat shock cognate protein 71, malate dehydrogenase, n-myc downregulated gene 1, prohibitin 2, Rab GDP dissociation inhibitor, translationally controlled tumor protein and voltage dependent anion selective channel protein 1. The proteins tested colocalized with the lipid raft marker caveolin-1. Interestingly, the proteins we have identified in the present study had been previously reported to play a role in cell fate and, thus, they might represent novel targets for neuroprotection.
Collapse
Affiliation(s)
- Jovita Ponce
- Cellular and Molecular Neurobiology Research Group and Grup de Recerca en Neurociencies del IGTP, Department of Neurosciences, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol-Universitat Autónoma de Barcelona, Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Arandjelovic S, Wickramarachchi D, Hemmers S, Leming SS, Kono DH, Mowen KA. Mast cell function is not altered by Coronin-1A deficiency. J Leukoc Biol 2010; 88:737-45. [PMID: 20643816 DOI: 10.1189/jlb.0310131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronin-1A is a WD repeat protein family member, highly expressed in all hematopoietic lineages, and acts as a regulator of F-actin dynamics and Ca2+ signaling. In Coro1a(Lmb3) mice results in inactivation of the protein and leads to disease resistance in a model of lupus erythematosus. In Coro1a(-/-) and Coro1a(Lmb3) mice, peripheral T cells exhibit impairments in survival, migration, activation, and Ca2+ flux. In this study, we show that in vitro-differentiated mast cells from Coro1a(Lmb3) mice are viable, developed normally, and are fully functional in assays of degranulation, cytokine secretion, and chemotactic migration, despite increased F-actin levels. In Coro1a(Lmb3) mast cells, Ca2+ flux in response to physiological FcεRI stimulation is unaffected. Finally, Coro1a(Lmb3) mice showed similar in vivo mast cell responses as the WT mice. Coronin-1B and Coronin-1C expression levels were not increased in Coro1a(Lmb3) mast cells but were higher in mast cells than in CD4 T cells or B cells in WT mice. We conclude that Coronin-1A activity is not required for mast cell function.
Collapse
Affiliation(s)
- Sanja Arandjelovic
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
109
|
Imperlini E, Mancini A, Spaziani S, Martone D, Alfieri A, Gemei M, Vecchio LD, Buono P, Orrù S. Androgen receptor signaling induced by supraphysiological doses of dihydrotestosterone in human peripheral blood lymphocytes. Proteomics 2010; 10:3165-75. [DOI: 10.1002/pmic.201000079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
110
|
Borro M, Gentile G, De Luca O, Torre MS, Aimati L, Tatarelli C, Antonietta Aloe Spiriti M, Christina Cox M, Simmaco M. Specific effects exerted by B-lymphoproliferative diseases on peripheral T-lymphocyte protein expression. Br J Haematol 2010; 150:463-72. [PMID: 20618332 DOI: 10.1111/j.1365-2141.2010.08285.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was applied to study the protein expression profile of peripheral T-cells derived from patients at the onset of different B-lymphoproliferative diseases, because a rising interest in specific actions played by T-cells in such pathologies has emerged. Decreased levels of profilin-1 and cofilin-1 and increased levels of coronin1A and prohibitin were found in patients, compared with healthy controls. The protein-protein interaction network of these proteins was studied using a web-based bioinformatics tool, highlighting the actin cytoskeleton regulation as the main biological process involved in peripheral T-cells of such patients. Unsupervised cluster analysis of protein expression data shows that the recorded alteration of T-cell proteome was specifically induced by B-cell pathologies.
Collapse
Affiliation(s)
- Marina Borro
- 2nd Faculty of Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Thanthrige-Don N, Parvizi P, Sarson AJ, Shack LA, Burgess SC, Sharif S. Proteomic analysis of host responses to Marek's disease virus infection in spleens of genetically resistant and susceptible chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:699-704. [PMID: 20138080 DOI: 10.1016/j.dci.2010.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/26/2010] [Indexed: 05/28/2023]
Abstract
Resistance to Marek's disease (MD) in chickens is genetically regulated and there are lines of chickens with differential susceptibility or resistance to this disease. The present study was designed to study comparative changes in the spleen proteomes of MD-susceptible B19 and MD-resistant B21 chickens in response to MDV infection. Spleen proteomes were examined at 4, 7, 14 and 21 days post-infection (d.p.i.) using two-dimensional gel electrophoresis and subsequently the protein spots were identified by one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). On average, there were 520+/-27 distinct protein spots on each gel and 1.6+/-0.7% of the spots differed quantitatively in their expression (p< or =0.05 and fold change > or =2) between infected B19 and B21 chickens. There was one spot at 4d.p.i. and three spots each at the rest of the time points, which had a qualitative difference in expression. Most of the differentially expressed proteins at 4 and 7d.p.i. displayed increased expression in B21 chickens; conversely the differentially expressed proteins at 14 and 21d.p.i. showed an increase in expression in B19 chickens. The differentially expressed proteins identified in the present study included antioxidants, molecular chaperones, proteins involved in the formation of cytoskeleton, protein degradation and antigen presentation, signal transduction, protein translation and elongation, RNA processing and cell proliferation. These findings shed light on some of the underlying processes of genetic resistance or susceptibility to MD.
Collapse
|
112
|
Wickramarachchi DC, Theofilopoulos AN, Kono DH. Immune pathology associated with altered actin cytoskeleton regulation. Autoimmunity 2010; 43:64-75. [PMID: 20001423 DOI: 10.3109/08916930903374634] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The actin cytoskeleton plays a crucial role in a variety of important cellular processes required for normal immune function, including locomotion, intercellular interactions, endocytosis, cytokinesis, signal transduction, and maintenance of cell morphology. Recent studies have uncovered not only many of the components and mechanisms that regulate the cortical actin cytoskeleton but have also revealed significant immunopathological consequences associated with genetic alteration of actin cytoskeletal regulatory genes. These advances have provided new insights into the role of cortical actin cytoskeletal regulation in a number of immune cell functions and have identified cytoskeletal regulatory proteins critical for normal immune system activity and susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Dilki C Wickramarachchi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
113
|
Tsujita K, Itoh T, Kondo A, Oyama M, Kozuka-Hata H, Irino Y, Hasegawa J, Takenawa T. Proteome of acidic phospholipid-binding proteins: spatial and temporal regulation of Coronin 1A by phosphoinositides. J Biol Chem 2009; 285:6781-9. [PMID: 20032464 DOI: 10.1074/jbc.m109.057018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible interactions between acidic phospholipids in the cellular membrane and proteins in the cytosol play fundamental roles in a wide variety of physiological events. Here, we present a novel approach to the identification of acidic phospholipid-binding proteins using nano-liquid chromatography-tandem mass spectrometry. We found more than 400 proteins, including proteins with previously known acidic phospholipid-binding properties, and confirmed that several candidates, such as Coronin 1A, mDia1 (Diaphanous-related formin-1), PIR121/CYFIP2, EB2 (end plus binding protein-2), KIF21A (kinesin family member 21A), eEF1A1 (translation elongation factor 1alpha1), and TRIM2, directly bind to acidic phospholipids. Among such novel proteins, we provide evidence that Coronin 1A activity, which disassembles Arp2/3-containing actin filament branches, is spatially and temporally regulated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). Whereas Coronin 1A co-localizes with PI(4,5)P(2) at the plasma membrane in resting cells, it is dissociated from the plasma membrane during lamellipodia formation where the PI(4,5)P(2) signal is significantly reduced. Our in vitro experiments show that Coronin 1A preferentially binds to PI(4,5)P(2)-containing liposomes and that PI(4,5)P(2) antagonizes the ability of Coronin 1A to disassemble actin filament branches, indicating a spatiotemporal regulation of Coronin 1A via a direct interaction with the plasma membrane lipid. Collectively, our proteomics data provide a list of potential acidic phospholipid-binding protein candidates ranging from the actin regulatory proteins to translational regulators.
Collapse
Affiliation(s)
- Kazuya Tsujita
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Cheung YH, Loh C, Pau E, Kim J, Wither J. Insights into the genetic basis and immunopathogenesis of systemic lupus erythematosus from the study of mouse models. Semin Immunol 2009; 21:372-82. [DOI: 10.1016/j.smim.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/15/2023]
|
115
|
Choi J, Oh S, Lee D, Oh HJ, Park JY, Lee SB, Lim DS. Mst1-FoxO signaling protects Naïve T lymphocytes from cellular oxidative stress in mice. PLoS One 2009; 4:e8011. [PMID: 19956688 PMCID: PMC2776980 DOI: 10.1371/journal.pone.0008011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022] Open
Abstract
Background The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood. Methodology/Principal Findings Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1−/− mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1−/− T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1−/− T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1−/− mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1−/− progeny. Interestingly, peripheral T cells from Mst1−/− mice were hypersensitive to γ-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant. Conclusions/Significance These data support the hypothesis that tolerance to increased levels of intracellular ROS provided by the Mst1-FoxOs signaling pathway is crucial for the maintenance of naïve T cell homeostasis in the periphery.
Collapse
Affiliation(s)
- Juhyun Choi
- National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangphil Oh
- National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dongjun Lee
- National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyun Jung Oh
- National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jik Young Park
- Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sean Bong Lee
- Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dae-Sik Lim
- National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
116
|
Sauer K, Huang YH, Lin H, Sandberg M, Mayr GW. Phosphoinositide and inositol phosphate analysis in lymphocyte activation. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.1.1-11.1.46. [PMID: 19918943 PMCID: PMC4500525 DOI: 10.1002/0471142735.im1101s87] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable non-chromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development.
Collapse
Affiliation(s)
- Karsten Sauer
- The Scripps Research Institute, La Jolla, California
| | | | - Hongying Lin
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Sandberg
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California
| | - Georg W Mayr
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
117
|
Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 2009; 231:132-47. [DOI: 10.1111/j.1600-065x.2009.00811.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
118
|
Abstract
We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57–97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d’Etude du Polymorphisme Humain – Utah) families, for whom lymphoblastoid cell lines were established in the 1980s. Combining publicly available gene expression data from these cell lines, and survival data from the Utah Population Database, we tested the relationship between expression of 2151 always-expressed genes, age, and survival of the donors. Approximately 16% of 2151 expression levels were associated with donor age: 10% decreased in expression with age, and 6% increased with age. Cell division cycle 42 (CDC42) and CORO1A exhibited strong associations both with age at draw and survival after draw (multiple comparisons-adjusted Monte Carlo P-value < 0.05). In general, gene expressions that increased with age were associated with increased mortality. Gene expressions that decreased with age were generally associated with reduced mortality. A multivariate estimate of biological age modeled from expression data was dominated by CDC42 expression, and was a significant predictor of survival after blood draw. A multivariate model of survival as a function of gene expression was dominated by CORO1A expression. This model accounted for approximately 23% of the variation in survival among the CEU grandparents. Some expression levels were negligibly associated with age in this cross-sectional dataset, but strongly associated with inter-individual differences in survival. These observations may lead to new insights regarding the genetic contribution to exceptional longevity.
Collapse
Affiliation(s)
- Richard A Kerber
- Department of Oncological Sciences, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA.
| | | | | |
Collapse
|
119
|
Moriceau S, Kantari C, Mocek J, Davezac N, Gabillet J, Guerrera IC, Brouillard F, Tondelier D, Sermet-Gaudelus I, Danel C, Lenoir G, Daniel S, Edelman A, Witko-Sarsat V. Coronin-1 Is Associated with Neutrophil Survival and Is Cleaved during Apoptosis: Potential Implication in Neutrophils from Cystic Fibrosis Patients. THE JOURNAL OF IMMUNOLOGY 2009; 182:7254-63. [DOI: 10.4049/jimmunol.0803312] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
120
|
Drennan MB, Elewaut D, Hogquist KA. Thymic emigration: sphingosine-1-phosphate receptor-1-dependent models and beyond. Eur J Immunol 2009; 39:925-30. [PMID: 19224640 DOI: 10.1002/eji.200838912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thymus is a primary lymphoid organ supporting the development of self-tolerant T cells. Key events in T-cell development in the thymus include lineage commitment, selection events, and thymic emigration. This review discusses the proposed role of sphingosine-1-phosphate and its receptors in the emigration of both conventional and unconventional T-cell subsets from the thymus, and the molecular machinery currently understood to regulate this process. Furthermore, we highlight a role for chemokines and actin-associated proteins in T-cell motility as recent data suggest that T-cell emigration is regulated by more than just a sphingosine-1-phosphate receptor-1-dependent chemotactic axis.
Collapse
Affiliation(s)
- Michael B Drennan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
121
|
Beyersdorf N, Braun A, Vögtle T, Varga-Szabo D, Galdos RR, Kissler S, Kerkau T, Nieswandt B. STIM1-independent T cell development and effector function in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:3390-7. [PMID: 19265116 DOI: 10.4049/jimmunol.0802888] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is believed to be of pivotal importance in T cell physiology. To test this hypothesis, we generated mice constitutively lacking the SOCE-regulating Ca(2+) sensor stromal interaction molecule 1 (STIM1). In vitro analyses showed that SOCE and Ag receptor complex-triggered Ca(2+) flux into STIM1-deficient T cells is virtually abolished. In vivo, STIM1-deficient mice developed a lymphoproliferative disease despite normal thymic T cell maturation and normal frequencies of CD4(+)Foxp3(+) regulatory T cells. Unexpectedly, STIM1-deficient bone marrow chimeric mice mounted humoral immune responses after vaccination and STIM1-deficient T cells were capable of inducing acute graft-versus-host disease following adoptive transfer into allogeneic hosts. These results demonstrate that STIM1-dependent SOCE is crucial for homeostatic T cell proliferation, but of much lesser importance for thymic T cell differentiation or T cell effector functions.
Collapse
Affiliation(s)
- Niklas Beyersdorf
- Institute for Virology and Immunobiology, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Nguyen L, Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 2009; 49:427-53. [PMID: 19281311 DOI: 10.1146/annurev-pharmtox-061008-103123] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent worldwide emergence of multidrug-resistant and extensively drug-resistant tuberculosis is threatening to destabilize tuberculosis control programs and urging global attention to the development of alternative tuberculosis therapies. Major roadblocks limiting the development and effectiveness of new drugs to combat tuberculosis are the profound innate resistance of Mycobacterium tuberculosis to host defense mechanisms as well as its intrinsic tolerance to chemotherapeutic reagents. The triangle of interactions among the pathogen, the host responses, and the drugs used to cure the disease are critical for the outcome of tuberculosis. We must better understand this three-way interaction in order to develop drugs that are able to kill the bacillus in the most effective way and minimize the emergence of drug resistance. Here we review our recent understanding of the molecular basis underlying intrinsic antibiotic resistance and survival tactics of M. tuberculosis. This knowledge may help to reveal current targets for the development of novel antituberculosis drugs.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
123
|
Combaluzier B, Pieters J. Chemotaxis and phagocytosis in neutrophils is independent of coronin 1. THE JOURNAL OF IMMUNOLOGY 2009; 182:2745-52. [PMID: 19234169 DOI: 10.4049/jimmunol.0801812] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The WD repeat protein family member coronin 1 is exclusively expressed in leukocytes, where it colocalizes with the cortical cytoskeleton. Although initially coronin 1 was believed to regulate F-actin dynamics such as leukocyte motility, phagocytosis, and membrane ruffling, recent work showed that in macrophages, T cells, and B cells, coronin 1 is dispensable for these F-actin dependent processes, instead being involved in the regulation of calcium dependent signaling reactions. In this study, we show that in mice lacking coronin 1 neutrophil populations developed normally, and that coronin 1-deficient neutrophils are fully functional with respect to adherence, membrane dynamics, migration, phagocytosis and the oxidative burst. Therefore, these data argue against a role for coronin 1 in the modulation of F-actin and suggest that coronin 1 is dispensable for neutrophil functioning.
Collapse
|
124
|
Combaluzier B, Mueller P, Massner J, Finke D, Pieters J. Coronin 1 is essential for IgM-mediated Ca2+ mobilization in B cells but dispensable for the generation of immune responses in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:1954-61. [PMID: 19201848 DOI: 10.4049/jimmunol.0801811] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronin 1 is a leukocyte specific regulator of Ca(2+)-dependent signaling and is essential for the survival of peripheral T lymphocytes, but its role in B cells is unknown. In this study, we show that coronin 1 is essential for intracellular Ca(2+) mobilization and proliferation upon triggering of the BCR. However, the presence of costimulatory signals rendered coronin 1 dispensable for B cell signaling, consistent with the generation of normal immune responses against a variety of Ags in coronin 1-deficient mice. We conclude that coronin 1, while being essential for T cell function and survival, is dispensable for B cell function in vivo.
Collapse
|
125
|
Abstract
The peripheral mature T cell pool is regulated by complex homeostatic mechanisms. Naive T cells are maintained by interleukin-7 (IL-7) and T cell receptor (TCR) signaling from contact with major histocompatibility complex (MHC), which sustain expression of antiapoptotic molecules and allow the cells to survive in interphase. Competition for these ligands declines when T cell numbers are reduced and causes residual naive T cells to proliferate and differentiate into memory-like cells. This memory cell population is thus heterogeneous and comprised of cells derived from responses to both foreign and self-antigens. Typical memory cells are kept alive and induced to divide intermittently by a mixture of IL-7 and IL-15. This review highlights recent advances in how naive and memory T cell homeostasis is regulated.
Collapse
Affiliation(s)
- Charles D Surh
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
126
|
Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol 2008; 131:24-30. [PMID: 19097825 DOI: 10.1016/j.clim.2008.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/17/2022]
Abstract
Defects causing severe combined immunodeficiency (SCID) have been reported in pathways mediating antigen receptor rearrangement, antigen receptor and cytokine signaling, and purine metabolism. Recognizing that the actin regulator Coronin-1A is essential for development of a normal peripheral T cell compartment in mouse models, we identified absence of Coronin-1A in a girl with T-B+NK+ SCID who suffered recurrent infections including severe post-vaccination varicella at age 13 months. Murine Coronin-1A is essential for the release of T cells from the thymus, consistent with the paradoxically detectable thymus in our patient. Molecular analysis revealed a 2 bp deletion in the paternal CORO1A coding sequence paired with a 600 kb de novo deletion encompassing CORO1A on the maternal allele. This genomic region at 16p11.2 is subject to recurrent copy number variations associated with autism spectrum disorders, including attention deficit and hyperactivity, present in our patient. This case highlights the first link between actin cytoskeleton regulation and SCID.
Collapse
|
127
|
Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Föger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 2008; 9:1307-15. [PMID: 18836449 PMCID: PMC2672406 DOI: 10.1038/ni.1662] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/04/2008] [Indexed: 01/15/2023]
Abstract
Mice carrying the recessive locus for peripheral T cell deficiency (Ptcd) have a block in thymic egress, but the mechanism responsible is undefined. Here we found that Ptcd T cells had an intrinsic migration defect, impaired lymphoid tissue trafficking and irregularly shaped protrusions. Characterization of the Ptcd locus showed a point substitution of lysine for glutamic acid at position 26 in the actin regulator coronin 1A that enhanced its inhibition of the actin regulator Arp2/3 and resulted in its mislocalization from the leading edge of migrating T cells. The discovery of another coronin 1A mutant during an N-ethyl-N-nitrosourea-mutagenesis screen for T cell-lymphopenic mice prompted us to evaluate a T cell-deficient, B cell-sufficient and natural killer cell-sufficient patient with severe combined immunodeficiency, whom we found had mutations in both CORO1A alleles. Our findings establish a function for coronin 1A in T cell egress, identify a surface of coronin involved in Arp2/3 regulation and demonstrate that actin regulation is a biological process defective in human and mouse severe combined immunodeficiency.
Collapse
Affiliation(s)
- Lawrence R Shiow
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
A flurry of recent studies has suggested the importance of the actin regulator coronin-1A in lymphocyte development. Now, mutations in this regulator are shown to cause immunodeficiency in both mice and humans.
Collapse
Affiliation(s)
- Kristin A. Hogquist
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
129
|
Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling. PLoS One 2008; 3:e3467. [PMID: 18941544 PMCID: PMC2568942 DOI: 10.1371/journal.pone.0003467] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/20/2008] [Indexed: 11/19/2022] Open
Abstract
Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.
Collapse
|
130
|
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 2008; 3:399-407. [PMID: 18541216 DOI: 10.1016/j.chom.2008.05.006] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 01/03/2023]
Abstract
Mycobacterium tuberculosis is a highly efficient pathogen, killing millions of infected people annually. The capacity of M. tuberculosis to survive and cause disease is strongly correlated to their ability to escape immune defense mechanisms. In particular, M. tuberculosis has the remarkable capacity to survive within the hostile environment of the macrophage. Understanding M. tuberculosis virulence strategies will not only define novel targets for drug development but will also help to uncover previously unknown signaling pathways related to the host's response to M. tuberculosis infection.
Collapse
Affiliation(s)
- Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|