101
|
Hu MZ, Dai ZZ, Ji HY, Zheng AQ, Liang H, Shen MM, Liu JN, Tang KF, Zhu SJ, Wang KJ. Upregulation of FAM50A promotes cancer development. Med Oncol 2023; 40:217. [PMID: 37393403 DOI: 10.1007/s12032-023-02072-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Mei-Zhen Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhi-Zheng Dai
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong-Yu Ji
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - An-Qi Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325015, People's Republic of China
| | - Hang Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Choqing, 400016, People's Republic of China
| | - Jun-Nan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shu-Juan Zhu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ke-Jian Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
102
|
Ingles Garces AH, Porta N, Graham TA, Banerji U. Clinical trial designs for evaluating and exploiting cancer evolution. Cancer Treat Rev 2023; 118:102583. [PMID: 37331179 DOI: 10.1016/j.ctrv.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
The evolution of drug-resistant cell subpopulations causes cancer treatment failure. Current preclinical evidence shows that it is possible to model herding of clonal evolution and collateral sensitivity where an initial treatment could favourably influence the response to a subsequent one. Novel therapy strategies exploiting this understanding are being considered, and clinical trial designs for steering cancer evolution are needed. Furthermore, preclinical evidence suggests that different subsets of drug-sensitive and resistant clones could compete between themselves for nutrients/blood supply, and clones that populate a tumour do so at the expense of other clones. Treatment paradigms based on this clinical application of exploiting cell-cell competition include intermittent dosing regimens or cycling different treatments before progression. This will require clinical trial designs different from the conventional practice of evaluating responses to individual therapy regimens. Next-generation sequencing to assess clonal dynamics longitudinally will improve current radiological assessment of clinical response/resistance and be incorporated into trials exploiting evolution. Furthermore, if understood, clonal evolution can be used to therapeutic advantage, improving patient outcomes based on a new generation of clinical trials.
Collapse
Affiliation(s)
- Alvaro H Ingles Garces
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Nuria Porta
- Clinical Trials and Statistical Unit, The Institute of Cancer Research, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK.
| |
Collapse
|
103
|
Gao H, Sun L, Ni D, Zhang L, Wang H, Bu W, Li J, Shen Q, Wang Y, Liu Y, Zheng X. Regulating electron transportation by tungsten oxide nanocapacitors for enhanced radiation therapy. J Nanobiotechnology 2023; 21:205. [PMID: 37386437 DOI: 10.1186/s12951-023-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Sun
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Bu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ya Wang
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
104
|
Zhang X, Zhou Y, Hu J, Yu X, Xu H, Ba Z, Zhang H, Sun Y, Wang R, Du X, Mou R, Li X, Zhu J, Xie R. Comprehensive analysis identifies cuproptosis-related gene DLAT as a potential prognostic and immunological biomarker in pancreatic adenocarcinoma. BMC Cancer 2023; 23:560. [PMID: 37330494 DOI: 10.1186/s12885-023-11042-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuxin Zhou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiahe Hu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuefeng Yu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichang Ba
- Medical Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haoxin Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanan Sun
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Rongfang Wang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinlian Du
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ruishu Mou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuedong Li
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiuxin Zhu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
105
|
Wu J, Yu X, Zhu H, Chen P, Liu T, Yin R, Qiang Y, Xu L. RelB is a potential molecular biomarker for immunotherapy in human pan-cancer. Front Mol Biosci 2023; 10:1178446. [PMID: 37388242 PMCID: PMC10303125 DOI: 10.3389/fmolb.2023.1178446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: The nuclear factor kB (NF-κB) pathway emerges as a critical regulator of immune responses and is often dysregulated in human cancers. It consists of a family of transcription factors involved in many biological responses. Activated NF-κB subunits results in the nuclear translocation and activation of transcription, and the NF-κB pathway is known to influence the transcription of many genes. Noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Besides, NF-κB signaling had diverse and complicated roles in cancer with studies that NF-κB could both contribute to tumor promotion and suppression of oncogenesis relying on the cellular context. RelB, a member of noncanonical NF-κB was abnormally regulated in most cancer types, however the molecular features and clinical signature of RelB expression, as well as its role in cancer immunity in human pan-cancer remains to be elucidated. Methods: We used the open databases to explore RelB expression, clinical features and the association with tumor-infiltration cells in human pan-cancer. In this study, we investigated the aberration expression and prognostic significance of RelB, and the correlation with clinicopathological characters and immune cells infiltration in various cancers. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the mRNA expression level in different cancer types. Kaplan-Meier analysis and Cox regression were used to explore the prognostic significance of RelB in human pan-cancer. Then we took advantage of the TCGA database to analyze the relationship between RelB expression and DNA methylation, the infiltration of immune cells, immune checkpoint genes, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MSS). Results: Higher expression of RelB was significantly detected in human cancer tissues and a high level of RelB expression was significantly linked with a worse outcome in LGG, KIPAN, ACC, UVM, LUAD,THYM, GBM, LIHC and TGCT but associated with a favorable overall survival (OS) in SARC, SKCM and BRCA. According to the Human Protein Altas database, RelB was considered as an independent factor in breast cancer and renal cancer prognosis. GSEA results revealed that RelB was involved in many oncogenesisrelated processes and immunity-related pathways. RelB was significantly correlated with DNA methylation in 13 types of cancer. Meanwhile, RelB expression was associated with TMB in 5 types of cancer and MSI in 8 types of cancer. In the final, we analyzed the relationship between RelB expression and immune-infiltration cells in human pan-cancer, which suggested RelB could be a promising therapeutic target for cancer immunotherapy. Discussion: Our study further provided insights into a deeper understanding of RelB as a prognostic biomarker.
Collapse
Affiliation(s)
- Jintao Wu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinyu Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongyu Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Peng Chen
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tongyan Liu
- Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Qiang
- Department of Intensive Care Unit, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
106
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
107
|
Lee H, Ha S, Choi S, Do S, Yoon S, Kim YK, Kim WY. Oncogenic Impact of TONSL, a Homologous Recombination Repair Protein at the Replication Fork, in Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24119530. [PMID: 37298484 DOI: 10.3390/ijms24119530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
We investigated the role of TONSL, a mediator of homologous recombination repair (HRR), in stalled replication fork double-strand breaks (DSBs) in cancer. Publicly available clinical data (tumors from the ovary, breast, stomach and lung) were analyzed through KM Plotter, cBioPortal and Qomics. Cancer stem cell (CSC)-enriched cultures and bulk/general mixed cell cultures (BCCs) with RNAi were employed to determine the effect of TONSL loss in cancer cell lines from the ovary, breast, stomach, lung, colon and brain. Limited dilution assays and ALDH assays were used to quantify the loss of CSCs. Western blotting and cell-based homologous recombination assays were used to identify DNA damage derived from TONSL loss. TONSL was expressed at higher levels in cancer tissues than in normal tissues, and higher expression was an unfavorable prognostic marker for lung, stomach, breast and ovarian cancers. Higher expression of TONSL is partly associated with the coamplification of TONSL and MYC, suggesting its oncogenic role. The suppression of TONSL using RNAi revealed that it is required in the survival of CSCs in cancer cells, while BCCs could frequently survive without TONSL. TONSL dependency occurs through accumulated DNA damage-induced senescence and apoptosis in TONSL-suppressed CSCs. The expression of several other major mediators of HRR was also associated with worse prognosis, whereas the expression of error-prone nonhomologous end joining molecules was associated with better survival in lung adenocarcinoma. Collectively, these results suggest that TONSL-mediated HRR at the replication fork is critical for CSC survival; targeting TONSL may lead to the effective eradication of CSCs.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Soomin Do
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
108
|
Chae K, Overcash JM, Dawson C, Valentin C, Tsujimoto H, Myles KM, Adelman ZN. CRISPR-based gene editing of non-homologous end joining factors biases DNA repair pathway choice toward single-strand annealing in Aedes aegypti. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100133. [PMID: 37475832 PMCID: PMC10357993 DOI: 10.1016/j.crbiot.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
To maintain genome stability, eukaryotic cells orchestrate DNA repair pathways to process DNA double-strand breaks (DSBs) that result from diverse developmental or environmental stimuli. Bias in the selection of DSB repair pathways, either non-homologous end joining (NHEJ) or homology-directed repair (HDR), is also critical for efficient gene editing and for homing-based gene drive approaches developed for the control of disease-transmitting vector mosquitoes. However, little is understood about DNA repair homeostasis in the mosquito genome. Here, we utilized CRISPR/Cas9 to generate indel mutant strains for core NHEJ factors ku80, DNA ligase IV (lig4), and DNA-PKcs in the mosquito Aedes aegypti and evaluated the corresponding effects on DNA repair. In a plasmid-based assay, disruption of ku80 or lig4, but not DNA-PKcs, reduced both NHEJ and SSA. However, a transgenic reporter strain-based test revealed that those mutations significantly biased DNA repair events toward SSA. Interestingly, ku80 mutation also significantly increased the end joining rate by a yet-characterized mechanism in males. Our study provides evidence that the core NHEJ factors have an antagonistic effect on SSA-based DSB repair of the Ae. aegypti genome. Down-modulating the NHEJ pathway can enhance the efficiency of nuclease-based genetic control approaches, as most of those operate by homology-based repair processes along with extensive DNA end resection that is antagonized by NHEJ.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Justin M. Overcash
- U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS), Biotechnology Regulatory Services, Riverdale, MD 20737, United States
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Hitoshi Tsujimoto
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Kevin M. Myles
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
109
|
Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, Wang F, Xu J, Pei H, Huang J, Chen X. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci U S A 2023; 120:e2303479120. [PMID: 37155876 PMCID: PMC10193940 DOI: 10.1073/pnas.2303479120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.
Collapse
Affiliation(s)
- Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Donghao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Fangwei Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Jun Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
110
|
Merchant N, Alam A, Bhaskar L. The correlation between hepatocellular carcinoma susceptibility and XRCC1 polymorphisms Arg194Trp, Arg280His, and Arg399Gln – A meta-analysis. HUMAN GENE 2023; 36:201165. [DOI: 10.1016/j.humgen.2023.201165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
111
|
Li M, Chen W, Cui J, Lin Q, Liu Y, Zeng H, Hua Q, Ling Y, Qin X, Zhang Y, Li X, Lin T, Huang L, Jiang Y. circCIMT Silencing Promotes Cadmium-Induced Malignant Transformation of Lung Epithelial Cells Through the DNA Base Excision Repair Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206896. [PMID: 36814305 DOI: 10.1002/advs.202206896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Changes in gene expression in lung epithelial cells are detected in cancer tissues during exposure to pollutants, highlighting the importance of gene-environmental interactions in disease. Here, a Cd-induced malignant transformation model in mouse lungs and bronchial epithelial cell lines is constructed, and differences in the expression of non-coding circRNAs are analyzed. The migratory and invasive abilities of Cd-transformed cells are suppressed by circCIMT. A significant DNA damage response is observed after exposure to Cd, which increased further following circCIMT-interference. It is found that APEX1 is significantly down-regulated following Cd exposure. Furthermore, it is demonstrated that circCIMT bound to APEX1 during Cd exposure to mediate the DNA base excision repair (BER) pathway, thereby reducing DNA damage. In addition, simultaneous knockdown of both circCIMT and APEX1 promotes the expression of cancer-related genes and malignant transformation after long-term Cd exposure. Overall, these findings emphasis the importance of genetic-epigenetic interactions in chemical-induced cancer transformation.
Collapse
Affiliation(s)
- Meizhen Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Qiuyi Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiaodi Qin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yindai Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xueqi Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Tianshu Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
112
|
Zhao L, Zhang G, Tang A, Huang B, Mi D. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:25-38. [PMID: 37087176 DOI: 10.1016/j.lssr.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| |
Collapse
|
113
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
114
|
Ji JH, Ha SY, Lee D, Sankar K, Koltsova EK, Abou-Alfa GK, Yang JD. Predictive Biomarkers for Immune-Checkpoint Inhibitor Treatment Response in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:7640. [PMID: 37108802 PMCID: PMC10144688 DOI: 10.3390/ijms24087640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has one of the highest mortality rates among solid cancers. Late diagnosis and a lack of efficacious treatment options contribute to the dismal prognosis of HCC. Immune checkpoint inhibitor (ICI)-based immunotherapy has presented a new milestone in the treatment of cancer. Immunotherapy has yielded remarkable treatment responses in a range of cancer types including HCC. Based on the therapeutic effect of ICI alone (programmed cell death (PD)-1/programmed death-ligand1 (PD-L)1 antibody), investigators have developed combined ICI therapies including ICI + ICI, ICI + tyrosine kinase inhibitor (TKI), and ICI + locoregional treatment or novel immunotherapy. Although these regimens have demonstrated increasing treatment efficacy with the addition of novel drugs, the development of biomarkers to predict toxicity and treatment response in patients receiving ICI is in urgent need. PD-L1 expression in tumor cells received the most attention in early studies among various predictive biomarkers. However, PD-L1 expression alone has limited utility as a predictive biomarker in HCC. Accordingly, subsequent studies have evaluated the utility of tumor mutational burden (TMB), gene signatures, and multiplex immunohistochemistry (IHC) as predictive biomarkers. In this review, we aim to discuss the current state of immunotherapy for HCC, the results of the predictive biomarker studies, and future direction.
Collapse
Affiliation(s)
- Jun Ho Ji
- Division of Hematology and Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sang Yun Ha
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Danbi Lee
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kamya Sankar
- Division of Medical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina K. Koltsova
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weil Cornell Medicine, Cornell University, New York, NY 14853, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
115
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
116
|
Zhang W, Wang M, Song Z, Fu Q, Chen J, Zhang W, Gao S, Sun X, Yang G, Zhang Q, Yang J, Tang H, Wang H, Kou X, Wang H, Mao Z, Xu X, Gao S, Jiang Y. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer. Nat Commun 2023; 14:1838. [PMID: 37012254 PMCID: PMC10070447 DOI: 10.1038/s41467-023-37576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Farrerol, a natural flavanone, promotes homologous recombination (HR) repair to improve genome-editing efficiency, but the specific protein that farrerol directly targets to regulate HR repair and the underlying molecular mechanisms have not been determined. Here, we find that the deubiquitinase UCHL3 is the direct target of farrerol. Mechanistically, farrerol enhanced the deubiquitinase activity of UCHL3 to promote RAD51 deubiquitination, thereby improving HR repair. Importantly, we find that embryos of somatic cell nuclear transfer (SCNT) exhibited defective HR repair, increased genomic instability and aneuploidy, and that the farrerol treatment post nuclear transfer enhances HR repair, restores transcriptional and epigenetic network, and promotes SCNT embryo development. Ablating UCHL3 significantly attenuates farrerol-mediated stimulation in HR and SCNT embryo development. In summary, we identify farrerol as an activator of the deubiquitinase UCHL3, highlighted the importance of HR and epigenetic changes in SCNT reprogramming and provide a feasible method to promote SCNT efficiency.
Collapse
Affiliation(s)
- Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Tsingtao Advanced Research Institute, Tongji University, 266071, Qingdao, China
| | - Mingzhu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Jiaxing University Affiliated Women and Children Hospital, 314000, Jiaxing, China
| | - Zhiwei Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Qianzheng Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Jiayu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Jiaqing Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, 266071, Qingdao, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
117
|
Das AP, Saini S, Tyagi S, Chaudhary N, Agarwal SM. Elucidation of Increased Cervical Cancer Risk Due to Polymorphisms in XRCC1 (R399Q and R194W), ERCC5 (D1104H), and NQO1 (P187S). Reprod Sci 2023; 30:1118-1132. [PMID: 36195778 DOI: 10.1007/s43032-022-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 10/10/2022]
Abstract
Genetic variations like single nucleotide polymorphisms (SNPs) are associated with cervical carcinogenesis. In this study, SNPs have been identified that contribute toward changes in the function and stability of the proteins and show association with cervical cancer. Initially, literature mining identified 114 protein-coding polymorphisms with population-based evidence in cervical cancer. Subsequently, the functional assessment was performed using sequence-dependent tools, and thereafter, protein stability was analyzed using sequence and structural data. Twenty-three non-synonymous SNPs (nsSNPs) found to be damaging and destabilizing were then analyzed to check their risk association at the population level. The meta-analysis indicated that polymorphisms in DNA damage repair genes XRCC1 (rs25487 and rs1799782), ERCC5 (rs17655), and oxidative stress-related gene NQO1 (rs1800566) are significantly associated with increased cervical cancer risk. The XRCC1 rs25487 and rs1799782 polymorphisms showed the highest risk of cervical cancer in the homozygous model having odds ratio (OR) = 1.85, 95% confidence interval (CI) = 1.17-2.92, p = 0.01, and recessive model with OR = 1.81, 95% CI = 1.01-3.24, and p = 0.04 respectively. Similarly, rs17655 polymorphism of ERCC5 and rs1800566 polymorphism of NQO1 showed the highest pooled OR in the homozygous (OR = 1.70, 95% CI = 1.32-2.19, p = 0.00004) and heterozygous model (OR = 1.3, 95% CI = 1.06-1.58, p = 0.01) respectively. Thus, in this study, a comprehensive collection of nsSNPs was collated and assessed, leading to the identification of polymorphisms in DNA damage repair and oxidative stress-related genes, that destabilize the protein and shows increased risk associated with cervical cancer.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India
| | - Sandeep Saini
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India
| | - Shrishty Tyagi
- Multanimal Modi College, CCS University, Modinagar, 201204, India
| | - Nisha Chaudhary
- Multanimal Modi College, CCS University, Modinagar, 201204, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, Uttar Pradesh, India.
| |
Collapse
|
118
|
Bi C, Wang Z, Xiao Y, Zhao Y, Guo R, Xiong L, Ji Z, Li Y, Li Q, Qin C. I kappa B kinase interacting protein as a promising biomarker in pan-cancer: A multi-omics analysis. Front Genet 2023; 14:1138137. [PMID: 36999060 PMCID: PMC10047260 DOI: 10.3389/fgene.2023.1138137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Human chromosome 12 contains I kappa B kinase interacting protein (IKBIP) is also commonly known as IKIP. The involvement of IKBIP in the growth of tumors has only been discussed in a small number of publications.Purpose: To explore the role that IKBIP plays in the development of a wide variety of neoplasms, as well as the tumor immunological microenvironment.Methods: UALCAN, HPA, Genotype Tissue Expression, Cancer Genome Maps, and other datasets were used to analyze IKBIP expression. We thoroughly investigated the predictive importance of IKBIP in pan-cancer, clinical traits, and genetic anomalies. We studied whether there is a link between IKBIP and immune-related genes, microsatellite instability (MSI), and the incidence of tumor mutational burden (TMB). The link between immune cell infiltration and IKBIP expression was examined using data on immune cell infiltration from ImmuCellAI, TIMER2, and earlier studies. Finally, gene set enrichment analysis (GSEA) was performed to determine the signaling pathways associated with IKBIP.Results: IKBIP is highly expressed in most cancers and is negatively associated with the prognosis of several major cancer types. Furthermore, IKBIP expression was linked to TMB in 13 cancers and MSI in seven cancers. Additionally, IKBIP is associated with numerous immunological and cancer-promoting pathways. Simultaneously, various cancer types have unique tumor-infiltrating immune cell profiles.Conclusion: IKBIP has the potential to act as a pan-cancer oncogene and is crucial for both carcinogenesis and cancer immunity. Elevated IKBIP expression implies an immunosuppressive environment and may be used as a prognostic biomarker and therapeutic target.
Collapse
|
119
|
Chen Z, Yu F, Zhu B, Li Q, Yu Y, Zong F, Liu W, Zhang M, Wu S. Integrated analysis of competitive endogenous RNA networks in elder patients with non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e33192. [PMID: 36897674 PMCID: PMC9997791 DOI: 10.1097/md.0000000000033192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most prevalent cancers and the leading cause of cancer-related deaths worldwide; non-small cell lung cancer (NSCLC) comprises approximately 80% of all lung cancer cases. This study aimed to construct a competing endogenous RNA (ceRNA) network and identify prognostic signatures in elderly patients with NSCLC. METHODS We extracted data from elderly patients with NSCLC from The Cancer Genome Atlas and identified differentially expressed (DE) messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate the functions of DEmRNAs. The interactions between RNAs were predicted using starBase, TargetScan, miRTarBase, and miRanda. Cytoscape version 3.0 was used to construct and visualize the lncRNA-miRNA-mRNA ceRNA network. The association between the expression levels of DERNAs in the constructed ceRNA network and overall survival was determined using the survival package in R software. Furthermore, another Gene Expression Omnibus cohort was studied to externally validate the ceRNA network. RESULTS In total, 2865 DEmRNAs, 62 DEmiRNAs, and 131 DElncRNAs were identified. Dysregulated mRNAs are enriched in cancer-related processes and pathways. A ceRNA network was constructed using 38 miRNAs, 61 lncRNAs, and 164 mRNAs. Of these, 3 lncRNAs, 3 miRNAs, and 16 mRNAs were closely related to overall survival. The MIR99AHG-hsa-miR-31-5p-PRKCE axis has been identified as a potential ceRNA network involved in the development of NSCLC in elderly individuals. External validation of the MIR99AHG-hsa-miR-31-5p-PRKCE axis in the GSE19804 cohort showed that PRKCE was downregulated and that MIR99AHG was upregulated in the tumor tissues of elderly patients with NSCLC compared with normal lung tissues. CONCLUSIONS This study provides novel insights into the lncRNA-miRNA-mRNA ceRNA network and reveals potential biomarkers for the diagnosis and prognosis of elderly patients with NSCLC.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bei Zhu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Li
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Yue Yu
- Departments of Thoracic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen Liu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingjiong Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
120
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
121
|
Wu M, Ma G, Lin Y, Oger P, Cao P, Zhang L. Biochemical Characterization and Mutational Studies of Endonuclease Q from the Hyperthermophilic Euryarchaeon Thermococcus gammatolerans. DNA Repair (Amst) 2023; 126:103490. [PMID: 37028219 DOI: 10.1016/j.dnarep.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Endonuclease Q (EndoQ) can effectively cleave DNA containing deaminated base(s), thus providing a potential pathway for repair of deaminated DNA. EndoQ is ubiquitous in some Archaea, especially in Thermococcales, and in a small group of bacteria. Herein, we report biochemical characteristics of EndoQ from the hyperthermophilic euryarchaeon Thermococcus gammatolerans (Tga-EndoQ) and the roles of its six conserved residues in DNA cleavage. The enzyme can cleave uracil-, hypoxanthine-, and AP (apurinic/apyrimidinic) site-containing DNA with varied efficiencies at high temperature, among which uracil-containing DNA is its most preferable substrate. Additionally, the enzyme displays maximum cleavage efficiency at above 70 oC and pH 7.0 ∼ 8.0. Furthermore, Tga-EndoQ still retains 85% activity after heated at 100 oC for 2 hrs, suggesting that the enzyme is extremely thermostable. Moreover, the Tga-EndoQ activity is independent of a divalent ion and NaCl. Mutational data demonstrate that residues E167 and H195 in Tga-EndoQ are essential for catalysis since the E167A and H195A mutants completely abolish the cleavage activity. Besides, residues S18 and R204 in Tga-EndoQ are involved in catalysis due to the reduced activities observed for the S18A and R204A mutants. Overall, our work has augmented biochemical function of archaeal EndoQ and provided insight into its catalytic mechanism.
Collapse
Affiliation(s)
- Mai Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Guangyu Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Yushan Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR, 5240 Lyon, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
122
|
Wu T, Cao DH, Liu Y, Yu H, Fu DY, Ye H, Xu J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm ( Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. INSECTS 2023; 14:209. [PMID: 36835778 PMCID: PMC9964209 DOI: 10.3390/insects14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The intermediate process between mating and postmating behavioral changes in insects is still poorly known. Here, we studied mating-induced common and sex-specific behavioral and transcriptional changes in both sexes of Spodoptera frugiperda and tested whether the transcriptional changes are linked to postmating behavioral changes in each sex. A behavioral study showed that mating caused a temporary suppression of female calling and male courting behavior, and females did not lay eggs until the next day after the first mating. The significant differences on daily fecundity under the presence of males or not, and the same or novel males, suggest that females may intentionally retain eggs to be fertilized by novel males or to be fertilized competitively by different males. RNA sequencing in females revealed that there are more reproduction related GO (gene ontology) terms and KEGG (Kyoto encyclopedia of genes and genomes) pathways (mainly related to egg and zygote development) enriched to upregulated DEGs (differentially expressed genes) than to downregulated DEGs at 0 and 24 h postmating. In males, however, mating induced DEGs did not enrich any reproduction related terms/pathways, which may be because male reproductive bioinformatics is relatively limited in moths. Mating also induced upregulation on soma maintenance (such as immune activity and stress reaction) related processes in females at 0, 6 and 24 h postmating. In males, mating also induced upregulation on soma maintenance related processes at 0 h postmating, but induced downregulation on these processes at 6 and 24 h postmating. In conclusion, this study demonstrated that mating induced sex-specific postmating behavioral and transcriptional changes in both sexes of S. frugiperda and suggested that the transcriptional changes are correlated with postmating physiological and behavioral changes in each sex.
Collapse
Affiliation(s)
- Ting Wu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Da-Hu Cao
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yu Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- School of Life Science, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
123
|
Someya Y, Kobayashi S, Toriumi K, Takeda S, Adachi N, Kurosawa A. A Cell System-Assisted Strategy for Evaluating the Natural Antioxidant-Induced Double-Stranded DNA Break (DSB) Style. Genes (Basel) 2023; 14:420. [PMID: 36833347 PMCID: PMC9957360 DOI: 10.3390/genes14020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Natural antioxidants derived from plants exert various physiological effects, including antitumor effects. However, the molecular mechanisms of each natural antioxidant have not yet been fully elucidated. Identifying the targets of natural antioxidants with antitumor properties in vitro is costly and time-consuming, and the results thus obtained may not reliably reflect in vivo conditions. Therefore, to enhance understanding regarding the antitumor effects of natural antioxidants, we focused on DNA, one of the targets of anticancer drugs, and evaluated whether antioxidants, e.g., sulforaphane, resveratrol, quercetin, kaempferol, and genistein, which exert antitumor effects, induce DNA damage using gene-knockout cell lines derived from human Nalm-6 and HeLa cells pretreated with the DNA-dependent protein kinase inhibitor NU7026. Our results suggested that sulforaphane induces single-strand breaks or DNA strand crosslinks and that quercetin induces double-strand breaks. In contrast, resveratrol showed the ability to exert cytotoxic effects other than DNA damage. Our results also suggested that kaempferol and genistein induce DNA damage via unknown mechanisms. Taken together, the use of this evaluation system facilitates the analysis of the cytotoxic mechanisms of natural antioxidants.
Collapse
Affiliation(s)
- Yuduki Someya
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Sakine Kobayashi
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kazuya Toriumi
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Aya Kurosawa
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
- Gunma University Center for Food and Science and Wellness, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
124
|
Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int J Mol Sci 2023; 24:ijms24032895. [PMID: 36769214 PMCID: PMC9917787 DOI: 10.3390/ijms24032895] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death worldwide. Helicobacter pylori (H. pylori) is one of the main risk factors for this type of neoplasia. Carcinogenetic mechanisms associated with H. pylori are based, on the one hand, on the onset of chronic inflammation and, on the other hand, on bacterial-specific virulence factors that can damage the DNA of gastric epithelial cells and promote genomic instability. Here, we review and discuss the major pathogenetic mechanisms by which H. pylori infection contributes to the onset and development of gastric cancer.
Collapse
|
125
|
Liu J, Zhang H, Xia P, Zhu Y, Xu K, Liu Z, Yuan Y. Genome stability‑related lncRNA ZFPM2‑AS1 promotes tumor progression via miR‑3065‑5p/XRCC4 in hepatocellular carcinoma. Int J Oncol 2023; 62:19. [PMID: 36524359 PMCID: PMC9812252 DOI: 10.3892/ijo.2022.5467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have a certain link to genomic stability (GS). However, the regulatory relationship of lncRNAs and GS has not been thoroughly investigated in hepatocellular carcinoma (HCC). In the present study, samples were retrieved from The Cancer Genome Atlas with somatic mutations and lncRNA expression data. Cox regression analysis was used to identify independent prognostic factors. The RNA levels were determined by reverse transcription‑quantitative PCR and protein levels were detected by western blot analysis. Cell Counting Kit‑8 and colony‑formation assays were used to assess cell viability. Cell migration was measured by wound‑healing and Transwell assays. Cell apoptosis and cell‑cycle progression were evaluated by flow cytometry. GS was detected by alkaline comet and chromosomal aberration assays. A xenograft model and lung metastasis model were used to assess the role of zinc finger protein, FOG family member 2 antisense 1 (ZFPM2‑AS1) in tumor growth in vivo. The molecular mechanisms underlying the biological functions of ZFPM2‑AS1 were investigated through bioinformatics prediction, RNA pull‑down and luciferase reporter assays. A total of 85 genomic instability‑related lncRNAs were identified and a prognostic model was developed. The prognostic model exhibited good predictive power (area under the receiver operating characteristic curve, 0.786). ZFPM2‑AS1 was significantly upregulated in tumor tissues (P<0.001) and it promoted DNA damage repair (P<0.01) and tumor progression in vitro and in vivo. Luciferase reporter assays demonstrated that miR‑3065‑5p was able to bind directly with ZFPM2‑AS1 and X‑ray repair cross complementing 4 (XRCC4). ZFPM2‑AS1 upregulated XRCC4 expression by acting as a sponge (P<0.001). In the present study, a prognostic model for HCC was developed and validated, and one lncRNA of its components was experimentally investigated. ZFPM2‑AS1 regulates XRCC4 by sponging miR‑3065‑5p to promote GS and HCC progression.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yimin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
126
|
Dai L, Guo X, Xing Z, Tao Y, Liang W, Shi Z, Hu W, Zhou S, Wang X. Multi-omics analyses of CD276 in pan-cancer reveals its clinical prognostic value in glioblastoma and other major cancer types. BMC Cancer 2023; 23:102. [PMID: 36717836 PMCID: PMC9885708 DOI: 10.1186/s12885-023-10575-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND CD276 (also known as B7-H3) is one of the most important immune checkpoints of the CD28 and B7 superfamily, and its abnormal expression is closely associated with various types of cancer. It has been shown that CD276 is able to inhibit the function of T cells, and that this gene may potentially be a promising immunotherapy target for different types of cancer. METHODS Since few systematic studies have been published on the role of CD276 in cancer to date, the present study has employed single-cell sequencing and bioinformatics methods to analyze the expression patterns, clinical significance, prognostic value, epigenetic alterations, DNA methylation level, tumor immune cell infiltration and immune functions of CD276 in different types of cancer. In order to analyze the potential underlying mechanism of CD276 in glioblastoma (GBM) to assess its prognostic value, the LinkedOmics database was used to explore the biological function and co-expression pattern of CD276 in GBM, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In addition, a simple validation of the above analyses was performed using reverse transcription-quantitative (RT-q)PCR assay. RESULTS The results revealed that CD276 was highly expressed, and was often associated with poorer survival and prognosis, in the majority of different types of cancer. In addition, CD276 expression was found to be closely associated with T cell infiltration, immune checkpoint genes and immunoregulatory interactions between lymphoid and a non-lymphoid cell. It was also shown that the CD276 expression network exerts a wide influence on the immune activation of GBM. The expression of CD276 was found to be positively correlated with neutrophil-mediated immunity, although it was negatively correlated with the level of neurotransmitters, neurotransmitter transport and the regulation of neuropeptide signaling pathways in GBM. It is noteworthy that CD276 expression was found to be significantly higher in GBM compared with normal controls according to the RT-qPCR analysis, and the co-expression network, biological function and chemotherapeutic drug sensitivity of CD276 in GBM were further explored. In conclusion, the findings of the present study have revealed that CD276 is strongly expressed and associated with poor prognosis in most types of cancer, including GBM, and its expression is strongly associated with T-cell infiltration, immune checkpoint genes, and immunomodulatory interactions between lymphocytes and non-lymphoid cells. CONCLUSIONS Taken together, based on our systematic analysis, our findings have revealed important roles for CD276 in different types of cancers, especially GBM, and CD276 may potentially serve as a biomarker for cancer.
Collapse
Affiliation(s)
- Lirui Dai
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Xuyang Guo
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Zhe Xing
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Yiran Tao
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Wulong Liang
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Zimin Shi
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Weihua Hu
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Shaolong Zhou
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| | - Xinjun Wang
- grid.460069.dDepartment of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 China ,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan China
| |
Collapse
|
127
|
Esai Selvan M, Onel K, Gnjatic S, Klein RJ, Gümüş ZH. Germline rare deleterious variant load alters cancer risk, age of onset and tumor characteristics. NPJ Precis Oncol 2023; 7:13. [PMID: 36707626 PMCID: PMC9883433 DOI: 10.1038/s41698-023-00354-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA repair (OR = 1.50; p-value = 8.30e-07; 95% CI: 1.28-1.77), cancer predisposition (OR = 1.51; p-value = 4.58e-08; 95% CI: 1.30-1.75), and somatic cancer drivers (OR = 1.46; p-value = 4.04e-06; 95% CI: 1.24-1.72). Furthermore, personal RDV load in these gene-sets associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.
Collapse
Affiliation(s)
- Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
128
|
Yuan H, Qing T, Zhu S, Yang X, Wu W, Xu K, Chen H, Jiang Y, Zhu C, Yuan Z, Zhang T, Jin L, Suo C, Lu M, Chen X, Ye W. The effects of altered DNA damage repair genes on mutational processes and immune cell infiltration in esophageal squamous cell carcinoma. Cancer Med 2023; 12:10077-10090. [PMID: 36708047 PMCID: PMC10166979 DOI: 10.1002/cam4.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Defects in DNA damage repair (DDR) pathways lead to genomic instability and oncogenesis. DDR deficiency is prevalent in esophageal squamous cell carcinoma (ESCC), but the effects of DDR alterations on mutational processes and tumor immune microenvironment in ECSS remain unclear. METHODS Whole-exome and transcriptome sequencing data of 45 ESCC samples from Taizhou, China, were used to identify genomic variations, gene expression modulation in DDR pathways, and the abundance of tumor-infiltrating immune cells. Ninety-six ESCC cases from The Cancer Genome Atlas (TCGA) project were used for validation. RESULTS A total of 57.8% (26/45) of the cases in the Taizhou data and 70.8% (68/96) of the cases in the TCGA data carried at least one functional impact DDR mutation. Mutations in the DDR pathways were associated with a high tumor mutation burden. Several DDR deficiency-related mutational signatures were discovered and were associated with immune cell infiltration, including T cells, monocytes, dendritic cells, and mast cells. The expression levels of two DDR genes, HFM1 and NEIL1, were downregulated in ESCC tumor tissues and had an independent effect on the infiltration of mast cells. In the Taizhou data, increased expression of HFM1 was associated with a poor prognosis, and the increased expression of NEIL1 was associated with a good outcome, but no reproducible correlation was observed in the TCGA data. CONCLUSION This research demonstrated that DDR alterations could impact mutational processes and immune cell infiltration in ESCC. The suppression of HFM1 and NEIL1 could play a crucial role in ESCC progression and may also serve as prognostic markers.
Collapse
Affiliation(s)
- Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Breast Medical Oncology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, China
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
129
|
Veerabhadrappa B, Sj S, Rao NN, Dyavaiah M. Loss of tRNA methyltransferase 9 and DNA damage response genes in yeast confers sensitivity to aminoglycosides. FEBS Lett 2023; 597:1149-1163. [PMID: 36708127 DOI: 10.1002/1873-3468.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
tRNA methyltransferase 9 (Trm9)-catalysed tRNA modifications have been shown to translationally enhance the DNA damage response (DDR). Here, we show that Saccharomyces cerevisiae trm9Δ, distinct DNA repair and spindle assembly checkpoint (SAC) mutants are differentially sensitive to the aminoglycosides tobramycin, gentamicin and amikacin, indicating DDR and SAC activation might rely on translation fidelity, under aminoglycoside stress. Further, we report that the DNA damage induced by aminoglycosides in the base excision repair mutants ogg1Δ and apn1Δ is mediated by reactive oxygen species, which induce the DNA adduct 8-hydroxy deoxyguanosine. Finally, the synergistic effect of tobramycin and the DNA-damaging agent bleomycin to sensitize trm9Δ and the DDR mutants mlh1Δ, rad51Δ, mre11Δ and sgs1Δ at significantly lower concentrations compared with wild-type suggests that cells with tRNA modification dysregulation and DNA repair gene defects can be selectively sensitized using a combination of translation inhibitors and DNA-damaging agents.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Department of Biotechnology, R V College of Engineering - Visvesvaraya Technological University, Bengaluru, Karnataka, India.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Sudharshan Sj
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Nagashree N Rao
- Department of Biotechnology, R V College of Engineering - Visvesvaraya Technological University, Bengaluru, Karnataka, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
130
|
Tu JL, Wu BH, Wu HB, Wang JE, Zhang ZL, Gao KY, Zhang LX, Chen QR, Zhou YC, Tan JH, Huang ZS, Chen SB. Design, synthesis and evaluation of N3-substituted quinazolinone derivatives as potential Bloom's Syndrome protein (BLM) helicase inhibitor for sensitization treatment of colorectal cancer. Eur J Med Chem 2023; 246:114944. [PMID: 36459756 DOI: 10.1016/j.ejmech.2022.114944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The homologous recombination repair (HRR) pathway is critical for repairing double-strand breaks (DSB). Inhibition of the HRR pathway is usually considered a promising strategy for anticancer therapy. The Bloom's Syndrome Protein (BLM), a DNA helicase, is essential for promoting the HRR pathway. Previously, we discovered quinazolinone derivative 9h as a potential BLM inhibitor, which suppressed the proliferation of colorectal cancer (CRC) cell HCT116. Herein, a new series of quinazolinone derivatives with N3-substitution was designed and synthesized to improve the anticancer activity and explore the structure-activity relationship (SAR). After evaluating their BLM inhibitory activity, the SAR was discussed, leading to identifying compound 21 as a promising BLM inhibitor. 21 exhibited the potent BLM-dependent cytotoxicity against the CRC cells but weak against normal cells. Further evaluation revealed that 21 could disrupt the HRR level while inhibiting BLM located on the DSB site and trigger DNA damage in the CRC cells. This compound effectively suppressed the proliferation and invasion of CRC cells, along with cell cycle arrest and apoptosis. Consequently, 21 might be a promising candidate for treating CRC, and the BLM might be a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jia-Li Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Heng-Bo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kun-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu-Xuan Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qin-Rui Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
131
|
Wang T, Meng Y, Tu Y, Zhang G, Wang K, Gong S, Zhang Y, Wang T, Li A, Christiani DC, Au W, Xia ZL. Associations between DNA methylation and genotoxicity among lead-exposed workers in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120528. [PMID: 36341824 DOI: 10.1016/j.envpol.2022.120528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Studies have shown that lead (Pb) exposure caused genotoxicity, however, the underlying mechanisms remain unclear. A mechanism may be via DNA methylation which is one of the most widely studied epigenetic regulations for cellular activities. Whether this is involved in Pb-induced genotoxicity has rarely been studied. Our study aimed to examine whether DNA methylation was associated with Pb exposure and genotoxicity, and to explore its potential mediating roles. A total of 250 Pb-exposed workers were enrolled. Blood lead levels (BLLs) and genotoxic biomarkers (Micronuclei and Comet) were analyzed. Methylation levels at CpG sites of LINE1 and Alu and promoter region of P53, BRCA1, TRIM36 and OGG1 were measured by pyrosequencing. Generalized linear model (GLM) combined with restricted cubic splines (RCS) were used to analyze relationships between Pb exposure, DNA methylation and genotoxicity. Mediation effect was used to explore mediating roles of DNA methylation. The distribution of BLLs was right-skewed and showed wide ranges from 23.7 to 636.2 μg/L with median (P25, P75) being 218.4 (106.1, 313.9) μg/L among all workers. Micronuclei frequencies showed Poisson distribution [1.94 ± 1.88‰] and Comet tail intensity showed normal distribution [1.69 ± 0.93%]. GLM combined with RCS showed that Alu methylation was negatively associated with BLLs, while P53 and OGG1 methylation were positively associated with BLLs. Micronuclei were negatively associated with Alu and TRIM36 methylation but positively with P53 methylation. Comet was positively associated with P53 and BRCA1 methylation. Mediation effect showed that Alu methylation mediated 7% effects on association between Pb exposure and micronuclei, whereas, P53 methylation mediated 14% and BRCA1 mediated 9% effects on association between Pb exposure and Comet. Our data show that Pb exposure induced changes of global and gene-specific DNA methylation which mediated Pb-induced genotoxicity.
Collapse
Affiliation(s)
- Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China; Department of Environmental Health, School of Public Health, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Kan Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anqi Li
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard University TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and University of Texas Medical Branch, Galveston, TX, USA
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China; School of Public Health, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
132
|
Pettitt SJ, Ryan CJ, Lord CJ. Exploiting Cancer Synthetic Lethality in Cancer-Lessons Learnt from PARP Inhibitors. Cancer Treat Res 2023; 186:13-23. [PMID: 37978128 DOI: 10.1007/978-3-031-30065-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PARP inhibitors now have proven utility in the treatment of homologous recombination (HR) defective cancers. These drugs, and the synthetic lethality effect they exploit, have not only taught us how to approach the treatment of HR defective cancers but have also illuminated how resistance to a synthetic lethal approach can occur, how cancer-associated synthetic lethal effects are perhaps more complex than we imagine, how the better use of biomarkers could improve the success of treatment and even how drug resistance might be targeted. Here, we discuss some of the lessons learnt from the study of PARP inhibitor synthetic lethality and how these lessons might have wider application. Specifically, we discuss the concept of synthetic lethal penetrance, phenocopy effects in cancer such as BRCAness, synthetic lethal resistance, the polygenic and complex nature of synthetic lethal interactions, how evolutionary double binds could be exploited in treatment as well as future horizons for the field.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
133
|
Nassar A, Zekri ARN, Kamel MM, Elberry MH, Lotfy MM, Seadawy MG, Hassan ZK, Soliman HK, Lymona AM, Youssef ASED. Frequency of Pathogenic Germline Mutations in Early and Late Onset Familial Breast Cancer Patients Using Multi-Gene Panel Sequencing: An Egyptian Study. Genes (Basel) 2022; 14:106. [PMID: 36672847 PMCID: PMC9858960 DOI: 10.3390/genes14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Precision oncology has been increasingly used in clinical practice and rapidly evolving in the oncology field. Thus, this study was performed to assess the frequency of germline mutations in early and late onset familial breast cancer (BC) Egyptian patients using multi-gene panel sequencing to better understand the contribution of the inherited germline mutations in BC predisposition. Moreover, to determine the actionable deleterious mutations associated with familial BC that might be used as biomarker for early cancer detection. METHODS Whole blood samples were collected from 101 Egyptian patients selected for BC family history, in addition to 50 age-matched healthy controls. A QIAseq targeted DNA panel (human BC panel) was used to assess the frequency of germline mutations. RESULTS A total of 58 patients (57.4%) out of 101 were found to have 27 deleterious germline mutations in 11 cancer susceptibility genes. Of them, 32 (31.6%) patients carried more than one pathogenic mutation and each one carried at least one pathogenic mutation. The major genes harboring the pathogenic mutations were: ATM, BRCA2, BRCA1, VHL, MSH6, APC, CHEK2, MSH2, MEN1, PALB2, and MUTYH. Thirty-one patients (30.6%) had BRCA2 mutations and twenty (19.8%) had BRCA1 mutations. Our results showed that exon 10 and exon 11 harbored 3 and 5 mutations, respectively, in BRCA1 and BRCA2 genes. Our analysis also revealed that the VHL gene significantly co-occurred with each of the BRCA2 gene (p = 0.003, event ratio 11/21), the MSH2 gene (p = 0.01, 4/10), the CHEK2 gene (p = 0.02, 4/11), and the MSH6 gene (p = 0.04, 4/12). In addition, the APC gene significantly co-occurred with the MSH2 gene (p = 0.01, 3/7). Furthermore, there was a significant mutually exclusive event between the APC gene and the ATM gene (p = 0.04, 1/36). Interestingly, we identified population specific germline mutations in genes showing potentials for targeted therapy to meet the need for incorporating precision oncology into clinical practice. For example, the mutations identified in the ATM, APC, and MSH2 genes. CONCLUSIONS Multi-gene panel sequencing was used to detect the deleterious mutations associated with familial BC, which in turns mitigate the essential need for implementing next generation sequencing technologies in precision oncology to identify cancer predisposing genes. Moreover, identifying DNA repair gene mutations, with focus on non-BRCA genes, might serve as candidates for targeted therapy and will be increasingly used in precision oncology.
Collapse
Affiliation(s)
- Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Abdel-Rahman N. Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mahmoud M. Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza 3546211, Egypt
| | - Mostafa H. Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mai M. Lotfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mohamed G. Seadawy
- Biological Prevention Department, Chemical Warfare, 4.5 km Suez-Cairo Rd, Almaza, Cairo 11351, Egypt
| | - Zeinab K. Hassan
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Hany K. Soliman
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Ahmed M. Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Amira Salah El-Din Youssef
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
134
|
Wu J, Wang W, Shao X, Lin G, Wang X. Facing the CDK4/6i resistance dilemma in patients with breast cancer, exploration of the resistance mechanism and possible reverse strategy: A narrative review. Medicine (Baltimore) 2022; 101:e32238. [PMID: 36595763 PMCID: PMC9794308 DOI: 10.1097/md.0000000000032238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is one of the highest rates of malignancy of women, approximate 70% metastatic breast cancer are hormone receptor positive (HR+) and human epidermal growth factor receptor 2 negative (HER2-). Hormone therapy is the primary strategy of HR+/HER2- metastatic breast cancer. With the permission of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), progress free survival and overall survival were significantly licensed. However, inevitable outcome of CDK4/6i resistance has become the main reason that restricts the clinical benefit of patients. In recent years, the research on dealing with drug resistance has become a hot topic, a large number of molecular mechanisms have been focused, and a lot of experiments have been carried out at the preclinical level. This review summarizes the current knowledge of CDK4/6i resistance mechanism, systematically expounds the signaling pathways and targets leading to CDK4/6i resistance, analyzes different ways and mechanisms, and provides theoretical guidance for the clinical reversal of endocrine therapy resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Wang
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiying Shao
- Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Xiaojia Wang, Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China (e-mail: ) and Xiying Shao, Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China (e-mail: )
| | - Guang Lin
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaojia Wang
- Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Xiaojia Wang, Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China (e-mail: ) and Xiying Shao, Department of Breast Medicine, Zhejiang Cancer Hospital, Hangzhou, China (e-mail: )
| |
Collapse
|
135
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
136
|
Jin Z, Song M, Wang J, Zhu W, Sun D, Liu H, Shi G. Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma. Front Genet 2022; 13:944681. [PMID: 36437949 PMCID: PMC9686406 DOI: 10.3389/fgene.2022.944681] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Background: The pseudouridine synthases (PUSs) have been reported to be associated with cancers. However, their involvement in hepatocellular carcinoma (HCC) has not been well documented. Here, we assess the roles of PUSs in HCC. Methods: RNA sequencing data of TCGA-LIHC and LIRI-JP were downloaded from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), respectively. GSE36376 gene expression microarray was downloaded from the Gene Expression Omnibus (GEO). Proteomics data for an HBV-related HCC cohort was obtained from the CPTAC Data Portal. The RT-qPCR assay was performed to measure the relative mRNA expression of genes in clinical tissues and cell lines. Diagnostic efficiency was evaluated by the ROC curve. Prognostic value was assessed using the Kaplan-Meier curve, Cox regression model, and time-dependent ROC curve. Copy number variation (CNV) was analyzed using the GSCA database. Functional analysis was carried out with GSEA, GSVA, and clusterProfiler package. The tumor microenvironment (TME) related analysis was performed using ssGSEA and the ESTIMATE algorithm. Results: We identified 7 PUSs that were significantly upregulated in HCC, and 5 of them (DKC1, PUS1, PUS7, PUSL1, and RPUSD3) were independent risk factors for patients' OS. Meanwhile, the protein expression of DKC1, PUS1, and PUS7 was also upregulated and related to poor survival. Both mRNA and protein of these PUSs were highly diagnostic of HCC. Moreover, the CNV of PUS1, PUS7, PUS7L, and RPUSD2 was also associated with prognosis. Further functional analysis revealed that PUSs were mainly involved in pathways such as genetic information processing, substance metabolism, cell cycle, and immune regulation. Conclusion: PUSs may play crucial roles in HCC and could be used as potential biomarkers for the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
- Zhipeng Jin
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Mengying Song
- Department of Operation Room, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jianping Wang
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Dongxu Sun
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
137
|
Li L, Zou BJ, Zhao JZ, Liang JB, She ZY, Zhou WY, Lin SX, Tian L, Luo WJ, He FZ. A novel DNA damage repair-related signature for predicting prognositc and treatment response in non-small lung cancer. Front Oncol 2022; 12:961274. [PMID: 36408135 PMCID: PMC9673481 DOI: 10.3389/fonc.2022.961274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/14/2022] [Indexed: 10/06/2023] Open
Abstract
DNA damage repair (DDR) is essential for maintaining genome integrity and modulating cancer risk, progression, and therapeutic response. DDR defects are common among non-small lung cancer (NSCLC), resulting in new challenge and promise for NSCLC treatment. Thus, a thorough understanding of the molecular characteristics of DDR in NSCLC is helpful for NSCLC treatment and management. Here, we systematically analyzed the relationship between DDR alterations and NSCLC prognosis, and successfully established and validated a six-DDR gene prognostic model via LASSO Cox regression analysis based on the expression of prognostic related DDR genes, CDC25C, NEIL3, H2AFX, NBN, XRCC5, RAD1. According to this model, NSCLC patients were classified into high-risk subtype and low-risk subtype, each of which has significant differences between the two subtypes in clinical features, molecular features, immune cell components, gene mutations, DDR pathway activation status and clinical outcomes. The high-risk patients was characterized with worse prognosis, lower proportion and number of DDR mutations, unique immune profile and responsive to immunetherapy. And the low-risk patients tend to have superior survival, while being less responsive to immunotherapy and more sensitive to treatment with DNA-damaging chemotherapy drugs. Overall, this molecular classification based on DDR expression profile enables hierarchical management of patients and personalized clinical treatment, and provides potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Bao-jia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juan-zhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jia-bi Liang
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zi-yue She
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ying Zhou
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Si-xiao Lin
- Department of Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lin Tian
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-ji Luo
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fa-zhong He
- Department of Quality Control, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
138
|
López‐Cánovas JL, Hermán‐Sánchez N, Moreno‐Montilla MT, del Rio‐Moreno M, Alors‐Perez E, Sánchez‐Frias ME, Amado V, Ciria R, Briceño J, de la Mata M, Castaño JP, Rodriguez‐Perálvarez M, Luque RM, Gahete MD. Spliceosomal profiling identifies EIF4A3 as a novel oncogene in hepatocellular carcinoma acting through the modulation of FGFR4 splicing. Clin Transl Med 2022; 12:e1102. [PMID: 36419260 PMCID: PMC9684617 DOI: 10.1002/ctm2.1102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Altered splicing landscape is an emerging cancer hallmark; however, the dysregulation and implication of the cellular machinery controlling this process (spliceosome components and splicing factors) in hepatocellular carcinoma (HCC) is poorly known. This study aimed to comprehensively characterize the spliceosomal profile and explore its role in HCC. METHODS Expression levels of 70 selected spliceosome components and splicing factors and clinical implications were evaluated in two retrospective and six in silico HCC cohorts. Functional, molecular and mechanistic studies were implemented in three cell lines (HepG2, Hep3B and SNU-387) and preclinical Hep3B-induced xenograft tumours. RESULTS Spliceosomal dysregulations were consistently found in retrospective and in silico cohorts. EIF4A3, RBM3, ESRP2 and SRPK1 were the most dysregulated spliceosome elements in HCC. EIF4A3 expression was associated with decreased survival and greater recurrence. Plasma EIF4A3 levels were significantly elevated in HCC patients. In vitro EIF4A3-silencing (or pharmacological inhibition) resulted in reduced aggressiveness, and hindered xenograft-tumours growth in vivo, whereas EIF4A3 overexpression increased tumour aggressiveness. EIF4A3-silencing altered the expression and splicing of key HCC-related genes, specially FGFR4. EIF4A3-silencing blocked the cellular response to the natural ligand of FGFR4, FGF19. Functional consequences of EIF4A3-silencing were mediated by FGFR4 splicing as the restoration of non-spliced FGFR4 full-length version blunted these effects, and FGFR4 inhibition did not exert further effects in EIF4A3-silenced cells. CONCLUSIONS Splicing machinery is strongly dysregulated in HCC, providing a source of new diagnostic, prognostic and therapeutic options in HCC. EIF4A3 is consistently elevated in HCC patients and associated with tumour aggressiveness and mortality, through the modulation of FGFR4 splicing.
Collapse
|
139
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
140
|
Cavalca AMB, Aquino AM, Mosele FC, Justulin LA, Delella FK, Flaws JA, Scarano WR. Effects of a phthalate metabolite mixture on both normal and tumoral human prostate cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2566-2578. [PMID: 35861251 DOI: 10.1002/tox.23619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates represent a group of substances used in industry that have antiandrogenic activity and are found in different concentrations in human urine and plasma. More than 8 million tons of phthalates are used each year, predominantly as plasticizers in polyvinyl chloride (PVC) products. Phthalates are widely used in everyday consumer products and improperly discarded into the environment. Furthermore, in vivo studies carried out in our laboratory showed that a mixture of phthalates, equivalent to the mixture used in this study, deregulated the expression of genes and miRNAs associated with prostatic carcinogenic pathways. Thus, this study was designed to establish an in vitro model to assess pathways related to cell survival, proliferation, apoptosis, and biosynthesis of miRNAs, using both normal and tumoral prostatic epithelial cells exposed to an environmentally relevant mixture of phthalate metabolites. Tumor (LNCaP) and normal (PNT-2) prostatic epithelial cell lines were exposed for 24 and 72 h to vehicle control or the phthalate mixture. The selected metabolite mixture (1000 μmol/L) consisted of 36.7% monoethyl phthalate (MEP), 19.4% mono(2-ethylhexyl) phthalate (MEHP), 15.3% monobutyl phthalate (MBP), 10.2% monoisobutyl phthalate (MiBP), 10.2% monoisononyl phthalate (MiNP), and 8.2% monobenzyl phthalate (MBzP). Gene expression was performed by qRT-PCR and cell migratory potential was measured using cell migration assays. Our results showed that the mixture of phthalates increased cell turnover, oxidative stress, biosynthesis, and expression of miRNAs in LNCaP cells; thus, increasing their cellular expansive and migratory potential and modulating tumor behavior, making them possibly more aggressive. However, these effects were less pronounced in benign cells, demonstrating that, in the short term, benign cells are able to develop effective mechanisms or more resistance against the insult.
Collapse
Affiliation(s)
- Alexandre M B Cavalca
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ariana M Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Francielle C Mosele
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Flávia K Delella
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wellerson R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
141
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
142
|
Targeting JWA for Cancer Therapy: Functions, Mechanisms and Drug Discovery. Cancers (Basel) 2022; 14:cancers14194655. [PMID: 36230577 PMCID: PMC9564207 DOI: 10.3390/cancers14194655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary JWA has been identified as a potential therapeutic target for several cancers. In this review, we summarize the tumor suppressive functions of the JWA gene and its role in anti-cancer drug development. The focus is on elucidating the key regulatory proteins up and downstream of JWA and their signaling networks. We also discuss current strategies for targeting JWA (JWA peptides, small molecule agonists, and JWA-targeted Pt (IV) prodrugs). Abstract Tumor heterogeneity limits the precision treatment of targeted drugs. It is important to find new tumor targets. JWA, also known as ADP ribosylation factor-like GTPase 6 interacting protein 5 (ARL6IP5, GenBank: AF070523, 1998), is a microtubule-associated protein and an environmental response gene. Substantial evidence shows that JWA is low expressed in a variety of malignancies and is correlated with overall survival. As a tumor suppressor, JWA inhibits tumor progression by suppressing multiple oncogenes or activating tumor suppressor genes. Low levels of JWA expression in tumors have been reported to be associated with multiple aspects of cancer progression, including angiogenesis, proliferation, apoptosis, metastasis, and chemotherapy resistance. In this review, we will discuss the structure and biological functions of JWA in tumors, examine the potential therapeutic strategies for targeting JWA and explore the directions for future investigation.
Collapse
|
143
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
144
|
Molecular markers related to patient outcome in patients with IDH-mutant astrocytomas grade 2 to 4: A systematic review. Eur J Cancer 2022; 175:214-223. [PMID: 36152406 DOI: 10.1016/j.ejca.2022.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Grading and classification of IDH-mutant astrocytomas has shifted from solely histology towards histology combined with molecular diagnostics. In this systematic review, we give an overview of all currently known clinically relevant molecular markers within IDH-mutant astrocytomas grade 2 to 4. METHODS A literature search was performed in five electronic databases for English original papers on patient outcome with respect to a molecular marker as determined by DNA/RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53. RESULTS The literature search identified 4508 unique articles, published between August 2012 and December 2021, of which ultimately 44 articles were included. Numerous molecular markers from these papers were significantly correlated to patient outcome. The associations between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q, the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation burden were confirmed in multiple studies. CONCLUSIONS Multiple genetic and epigenetic markers are associated with survival in IDH-mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.
Collapse
|
145
|
de Luna LAV, Loret T, Fordham A, Arshad A, Drummond M, Dodd A, Lozano N, Kostarelos K, Bussy C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part Fibre Toxicol 2022; 19:62. [PMID: 36131347 PMCID: PMC9490925 DOI: 10.1186/s12989-022-00502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Thomas Loret
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Fordham
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Atta Arshad
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Drummond
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Abbie Dodd
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK. .,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK. .,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
146
|
Pizzul P, Casari E, Gnugnoli M, Rinaldi C, Corallo F, Longhese MP. The DNA damage checkpoint: A tale from budding yeast. Front Genet 2022; 13:995163. [PMID: 36186482 PMCID: PMC9520983 DOI: 10.3389/fgene.2022.995163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in Saccharomyces cerevisiae to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.
Collapse
|
147
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
148
|
Olmedo DWV, Martins KB, Paz MM, Fernandes CLF, da Silva FMR, Ramos DF. Mutagenic damage among bronchiectasis patients attending in the pulmonology sector of a hospital in southern Brazil. Rev Assoc Med Bras (1992) 2022; 68:1191-1198. [PMID: 36228250 PMCID: PMC9575028 DOI: 10.1590/1806-9282.20220178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE: Bronchiectasis is a chronic respiratory disease characterized by inflammation, irreversible dilation of the bronchi, and recurrent pulmonary infections, with a high morbidity and mortality rate, but is less studied from the point of view of its prevalence and associated factors not directly related to respiratory prognosis. As it is a disease related to the exacerbation of the inflammatory process and oxidative stress, this study searched to investigate the micronucleus frequency in patients with and without bronchiectasis treated at a specialized pulmonology service in a hospital in the extreme south of Brazil. METHODS: Patients with a confirmed tomographic diagnosis of bronchiectasis were defined as cases. Mutagenicity was evaluated by the micronucleus test in patients’ oral mucosa cells. Data collection was performed through a questionnaire containing socioeconomic, demographic, lifestyle, and health condition information. RESULTS: Of the 95 patients involved in this study, 21 (22.1%) were diagnosed with bronchiectasis aged between 12 and 89 years. There was no significant difference in the frequency of micronucleus between patients with and without bronchiectasis. There was a significant positive association between age and frequency of micronucleus among patients with bronchiectasis, but this association does not occur among patients without the disease. CONCLUSION: This is the first study to investigate data on the prevalence and clinical and epidemiological aspects of this chronic disease in Brazil, especially those related to the genotoxicity outcome.
Collapse
Affiliation(s)
- Daniel Wenceslau Votto Olmedo
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Faculty of Medicine, New Drug Development Center – Rio Grande (RS), Brazil
| | - Katheryne Benini Martins
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Faculty of Medicine, New Drug Development Center – Rio Grande (RS), Brazil
| | - Milene Machado Paz
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Faculty of Medicine, New Drug Development Center – Rio Grande (RS), Brazil
| | - Caroline Lopes Feijo Fernandes
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Institute of Biological Sciences, Laboratory of Pharmacological and Toxicological Tests – Rio Grande (RS), Brazil
| | - Flavio Manoel Rodrigues da Silva
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Institute of Biological Sciences, Laboratory of Pharmacological and Toxicological Tests – Rio Grande (RS), Brazil
| | - Daniela Fernandes Ramos
- Universidade Federal do Rio Grande, Faculty of Medicine, Postgraduate Program in Health Sciences – Rio Grande (RS), Brazil.,Universidade Federal do Rio Grande, Faculty of Medicine, New Drug Development Center – Rio Grande (RS), Brazil.,Corresponding author:
| |
Collapse
|
149
|
Liao Z, Yi M, Li J, Zhang Y. DNA repair in lung cancer: a large-scale quantitative analysis for polymorphisms in DNA repairing pathway genes and lung cancer susceptibility. Expert Rev Respir Med 2022; 16:997-1010. [PMID: 35984915 DOI: 10.1080/17476348.2022.2115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The results of associations between single nucleotide polymorphisms (SNPs) of genes in DNA repairing pathway and lung cancer (LC) risk are inconsistent. METHODS We applied allele, dominant and recessive models to explore the risk of researched variants to LC in total LC and subgroups by ethnicity or LC subtypes with a cutoff point of p < 0.05. RESULTS A total of 76,935 cases and 88,649 controls from 192 articles were included. Among the analyzed 40 variants from 20 genes, we found 9 statistically significant variants in overall populations by allele model, including five SNPs (rs1760944, rs9344, rs13181, rs1001581, and rs915927) increasing LC risk (odd ratios [ORs] = 1.10-1.71) and four SNPs (rs1042522, rs3213245, rs11615, and rs238406) decreasing the risk (ORs = 0.75-0.94). We identified rs1042522 and rs13181 as significant variants for LC in three models. Additionally, we identified differential significant SNPs in ethnic and subtype's analysis with comparison to total population. CONCLUSIONS There are five SNPs in DNA repairing pathway associated with increased LC risk and four others decreased LC risk. Besides, the risky SNPs in different ethnicities and various LC subtypes were partly different, and the contribution of different genotypes to risk alleles were various as well.
Collapse
Affiliation(s)
- Zexi Liao
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China.,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
150
|
Ding K, He Y, Wei J, Fu S, Wang J, Chen Z, Zhang H, Qu Y, Liang K, Gong X, Qiu L, Chen D, Xiao B, Du H. A score of DNA damage repair pathway with the predictive ability for chemotherapy and immunotherapy is strongly associated with immune signaling pathway in pan-cancer. Front Immunol 2022; 13:943090. [PMID: 36081518 PMCID: PMC9445361 DOI: 10.3389/fimmu.2022.943090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
DNA damage repair (DDR) is critical in maintaining normal cellular function and genome integrity and is associated with cancer risk, progression, and therapeutic response. However, there is still a lack of a thorough understanding of the effects of DDR genes’ expression level in cancer progression and therapeutic resistance. Therefore, we defined a tumor-related DDR score (TR-DDR score), utilizing the expression levels of 20 genes, to quantify the tumor signature of DNA damage repair pathways in tumors and explore the possible function and mechanism for the score among different cancers. The TR-DDR score has remarkably predictive power for tumor tissues. It is a more accurate indicator for the response of chemotherapy or immunotherapy combined with the tumor-infiltrating lymphocyte (TIL) and G2M checkpoint score than the pre-existing predictors (CD8 or PD-L1). This study points out that the TR-DDR score generally has positive correlations with patients of advanced-stage, genome-instability, and cell proliferation signature, while negative correlations with inflammatory response, apoptosis, and p53 pathway signature. In the context of tumor immune response, the TR-DDR score strongly positively correlates with the number of T cells (CD4+ activated memory cells, CD8+ cells, T regs, Tfh) and macrophages M1 polarization. In addition, by difference analysis and correlation analysis, COL2A1, MAGEA4, FCRL4, and ZIC1 are screened out as the potential modulating factors for the TR-DDR score. In summary, we light on a new biomarker for DNA damage repair pathways and explore its possible mechanism to guide therapeutic strategies and drug response prediction.
Collapse
Affiliation(s)
- Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Youhua He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Jiajian Wang
- Clinical Laboratory Department of Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haibo Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yimo Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou, China
| | - Botao Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Botao Xiao, ; Hongli Du,
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Botao Xiao, ; Hongli Du,
| |
Collapse
|