101
|
Cell Lines Expressing Recombinant Transmembrane Domain–Activated Receptor Kinases as Tools for Drug Discovery. ACTA ACUST UNITED AC 2014; 19:1350-61. [DOI: 10.1177/1087057114552414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many receptor tyrosine kinases (RTKs) represent bona fide drug targets in oncology. Effective compounds are available, but treatment invariably leads to resistance, often due to RTK mutations. The discovery of second-generation inhibitors requires cellular models of resistant RTKs. An approach using artificial transmembrane domains (TMDs) to activate RTKs was explored for the rapid generation of simple, ligand-independent cellular RTK assays, including resistance mutants. The RTKs epidermal growth factor receptor (EGFR), MET, and KIT were chosen in a proof-of-concept study. Their intracellular domains were inserted into a series of expression vectors encoding artificial TMDs, and they were tested for autophosphorylation activity in transient transfection assays. Active constructs could be identified for MET and EGFR, but not for KIT. Rat1 cell pools were generated expressing the MET or EGFR constructs, and their sensitivity to reference tool compounds was compared to that of MKN-45 or A431 cells. A good correlation between natural and recombinant cells led us to build a panel of clinically relevant MET mutant cell pools, based on the wild-type construct, which were then profiled via MET autophosphorylation and soft agar assays. In summary, a platform was established that allows for the rapid generation of cellular models for RTKs and their resistance mutants.
Collapse
|
102
|
Guo J, Cahill MR, McKenna SL, O'Driscoll CM. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol Adv 2014; 32:1396-409. [PMID: 25218571 DOI: 10.1016/j.biotechadv.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 12/13/2022]
Abstract
Leukaemia is a bone marrow cancer occurring in acute and chronic subtypes. Acute leukaemia is a rapidly fatal cancer potentially causing death within a few weeks, if untreated. Leukaemia arises as a result of disruption to haematopoietic precursors, caused either by acquired gene fusions, gene mutations or inappropriate expression of the relevant oncogenes. Current treatment options have made significant progress, but the 5 year survival for acute leukaemia remains under 10% in elderly patients, and less than 50% for some types of acute leukaemia in younger adults. For chronic leukaemias longer survival is generally expected and for chronic myeloid leukaemia patients on tyrosine kinase inhibitors the median survival is not yet reached and is expected to exceed 10 years. Chemotherapy and haematopoietic stem cell transplantation (HSCT) for acute leukaemia provide the mainstay of therapy for patients under 65 and both carry significant morbidity and mortality. Alternative and superior therapeutic strategies for acute leukaemias are urgently required. Recent molecular-based knowledge of recurring chromosome rearrangements, in particular translocations and inversions, has resulted in significant advances in understanding the molecular pathogenesis of leukaemia. Identification of a number of unique fusion genes has facilitated the development of highly specific small interfering RNAs (siRNA). Although delivery of siRNA using multifunctional nanoparticles has been investigated to treat solid cancers, the application of this approach to blood cancers is at an early stage. This review describes current treatments for leukaemia and highlights the potential of leukaemic fusion genes as therapeutic targets for RNA interference (RNAi). In addition, the design of biomimetic nanoparticles which are capable of responding to the physiological environment of leukaemia and their potential to advance RNAi therapeutics to the clinic will be critically evaluated.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Ireland
| | | | | |
Collapse
|
103
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|
104
|
Gabrielli L, Calloni I, Donvito G, Costa B, Arrighetti N, Perego P, Colombo D, Ronchetti F, Nicotra F, Cipolla L. Phosphatidylinositol 3-Phosphate Mimics Based on a Sulfoquinovose Scaffold: Synthesis and Evaluation as Protein Kinase B Inhibitors. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
105
|
Nihira K, Miki Y, Iida S, Narumi S, Ono K, Iwabuchi E, Ise K, Mori K, Saito M, Ebina M, Sato I, Maemondo M, Yamada-Okabe H, Kondo T, Sasano H. An activation of LC3A-mediated autophagy contributes to de novo and acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. J Pathol 2014; 234:277-88. [PMID: 24687913 DOI: 10.1002/path.4354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/04/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022]
Abstract
The development of therapeutic resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs, ie erlotinib or gefitinib) has been the major clinical problem when treating lung adenocarcinoma patients with these agents. However, its mechanisms have not necessarily been well studied to this date. Autophagy has been recently considered to play pivotal roles in escaping from the effects of anti-neoplastic agents. Therefore, in this study, we examined its roles in the development of resistance to EGFR-TKIs in lung adenocarcinoma. We first established erlotinib-resistant cell lines (PC9/ER) from parental PC9 cells by exposing the cells to erlotinib. In PC9/ER, autophagy-related LC3A expression came to be up-regulated and constitutive activation of LC3A-mediated autophagy became more pronounced through the process of acquiring therapeutic resistance. In addition, inhibition of LC3A or autophagy restores sensitivity to EGFR-TKIs in PC9/ER. LC3A was also activated at the transcriptional level in de novo resistant cells via demethylation of the MAP1LC3A gene. We then evaluated the status of LC3A in 169 lung adenocarcinoma patients using immunohistochemistry. LC3A immunoreactivity was only detected in carcinoma cells (89/169 patients), not in non-tumoural cells. In addition, LC3A immunoreactivity was significantly correlated with progression-free survival (p = 0.0039) and overall survival (p = 0.0040) of 35 patients treated with EGFR-TKIs. The results of our present study demonstrated that LC3A-mediated autophagy in carcinoma cells was involved in the development of resistance to EGFR-TKIs, and that LC3A could serve as a promising therapeutic target for overcoming resistance to EGFR-TKIs and a novel predictor of response to EGFR-TKIs in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Kaito Nihira
- Department of Pathology, School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Unzue A, Dong J, Lafleur K, Zhao H, Frugier E, Caflisch A, Nevado C. Pyrrolo[3,2-b]quinoxaline Derivatives as Types I1/2 and II Eph Tyrosine Kinase Inhibitors: Structure-Based Design, Synthesis, and in Vivo Validation. J Med Chem 2014; 57:6834-44. [DOI: 10.1021/jm5009242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Unzue
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jing Dong
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Karine Lafleur
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Hongtao Zhao
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Emilie Frugier
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
107
|
Horbert R, Pinchuk B, Johannes E, Schlosser J, Schmidt D, Cappel D, Totzke F, Schächtele C, Peifer C. Optimization of potent DFG-in inhibitors of platelet derived growth factor receptorβ (PDGF-Rβ) guided by water thermodynamics. J Med Chem 2014; 58:170-82. [PMID: 25007344 DOI: 10.1021/jm500373x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study we report on the hit optimization of substituted 3,5-diaryl-pyrazin-2(1H)-ones toward potent and effective platelet-derived growth factor receptor (PDGF-R) β-inhibitors. Originally, the 3,5-diaryl-pyrazin-2-one core was derived from the marine sponge alkaloid family of hamacanthins. In our first series compound 2 was discovered as a promising hit showing strong activity against PDGF-Rβ in the kinase assay (IC50 = 0.5 μM). Furthermore, 2 was shown to be selective for PDGF-Rβ in a panel of 24 therapeutically relevant protein kinases. Molecular modeling studies on a PDGF-Rβ homology model using prediction of water thermodynamics suggested an optimization strategy for the 3,5-diaryl-pyrazin-2-ones as DFG-in binders by using a phenolic OH function to replace a structural water molecule in the ATP binding site. Indeed, we identified compound 38 as a highly potent inhibitor with an IC50 value of 0.02 μM in a PDGF-Rβ enzymatic assay also showing activity against PDGF-R dependent cancer cells.
Collapse
Affiliation(s)
- Rebecca Horbert
- Institute of Pharmacy, Christian-Albrechts-University of Kiel , Gutenbergstraße 76, D-24116 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, Schinzel AC, Sood S, Rosenbluh J, Kim JW, Zwang Y, Roberts TM, Root DE, Jacks T, Hahn WC. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 2014; 158:171-84. [PMID: 24954536 PMCID: PMC4110062 DOI: 10.1016/j.cell.2014.06.004] [Citation(s) in RCA: 614] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
Abstract
Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.
Collapse
Affiliation(s)
- Diane D Shao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Wen Xue
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Elsa B Krall
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | | | - Xiaoxing Wang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Anna C Schinzel
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sabina Sood
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Joseph Rosenbluh
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jong W Kim
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yaara Zwang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas M Roberts
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tyler Jacks
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - William C Hahn
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
109
|
Marek LA, Hinz TK, von Mässenhausen A, Olszewski KA, Kleczko EK, Boehm D, Weiser-Evans MC, Nemenoff RA, Hoffmann H, Warth A, Gozgit JM, Perner S, Heasley LE. Nonamplified FGFR1 is a growth driver in malignant pleural mesothelioma. Mol Cancer Res 2014; 12:1460-9. [PMID: 24966347 DOI: 10.1158/1541-7786.mcr-14-0038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. IMPLICATIONS FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels.
Collapse
Affiliation(s)
- Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anne von Mässenhausen
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Kyle A Olszewski
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diana Boehm
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Mary C Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Arne Warth
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
110
|
Echalier A, Hole AJ, Lolli G, Endicott JA, Noble MEM. An inhibitor's-eye view of the ATP-binding site of CDKs in different regulatory states. ACS Chem Biol 2014; 9:1251-6. [PMID: 24669831 PMCID: PMC4068217 DOI: 10.1021/cb500135f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
We have used a chemically diverse
panel of kinase inhibitors to
assess the chemical similarity of the ATP-binding sites of cyclin-dependent
kinase (CDK) subfamily members in a range of activation states. Using
this approach, we find that different activation states of a particular
CDK may differ from each other as much as different CDKs in the same
activation state. We also find that inhibitors discriminate more effectively
among CDK family members in their monomeric state than in their cyclin-bound
state, providing direct evidence for the belief that selective binding
to inactive kinase states might be more readily achieved than selective
binding to active states.
Collapse
Affiliation(s)
- Aude Echalier
- Laboratory
of Molecular Biophysics, Department of Biochemistry, Oxford University, South
Parks Road, Oxford OX1
3QU, United Kingdom
| | - Alison J. Hole
- Laboratory
of Molecular Biophysics, Department of Biochemistry, Oxford University, South
Parks Road, Oxford OX1
3QU, United Kingdom
| | - Graziano Lolli
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
| | - Jane A. Endicott
- Laboratory
of Molecular Biophysics, Department of Biochemistry, Oxford University, South
Parks Road, Oxford OX1
3QU, United Kingdom
| | - Martin E. M. Noble
- Laboratory
of Molecular Biophysics, Department of Biochemistry, Oxford University, South
Parks Road, Oxford OX1
3QU, United Kingdom
| |
Collapse
|
111
|
Hong L, Sklar LA. Targeting GTPases in Parkinson's disease: comparison to the historic path of kinase drug discovery and perspectives. Front Mol Neurosci 2014; 7:52. [PMID: 24926233 PMCID: PMC4046578 DOI: 10.3389/fnmol.2014.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022] Open
Abstract
Neurological diseases have placed heavy social and financial burdens on modern society. As the life expectancy of humans is extended, neurological diseases, such as Parkinson’s disease, have become increasingly common among senior populations. Although the enigmas of Parkinson’s diseases await resolution, more vivid pictures on the cause, progression, and control of the illness are emerging after years of research. On the molecular level, GTPases are implicated in the etiology of Parkinson’s disease and are rational pharmaceutical targets for their control. However, targeting individual GTPases, which belong to a superfamily of proteins containing multiple members with a conserved guanine nucleotide binding domain, has proven to be challenging. In contrast, pharmaceutical pursuit of inhibition of kinases, which constitute another superfamily of proteins with more than 500 members, has been fairly successful. We reviewed the breakthroughs in the history of kinase drug discovery to provide guidance for the GTPase field. We summarize recent progress made in the regulation of GTPase activity. We also present an efficient and cost effective approach to drug screening, which uses multiplex flow cytometry and mixture-based positional scanning libraries. These methods allow simultaneous measurements of both the activity and the selectivity of the screened library. Several GTPase activator clusters were identified which showed selectivity against different GTPase subfamilies. While the clusters need to be further deconvoluted to identify individual active compounds, the method described here and the structure information gathered create a foundation for further developments to build upon.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, The University of New Mexico Albuquerque, NM, USA ; Center for Molecular Discovery, The University of New Mexico Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, The University of New Mexico Albuquerque, NM, USA ; Center for Molecular Discovery, The University of New Mexico Albuquerque, NM, USA ; Cancer Center, The University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
112
|
Stanford SM, Ahmed V, Barrios AM, Bottini N. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Antioxid Redox Signal 2014; 20:2160-78. [PMID: 24294920 PMCID: PMC3995294 DOI: 10.1089/ars.2013.5731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The protein tyrosine phosphatases (PTPs) are a family of proteins that play critical roles in cellular signaling and influence many aspects of human health and disease. Although a wealth of information has been collected about PTPs since their discovery, many questions regarding their regulation and function still remain. CRITICAL ISSUES Of particular importance are the elucidation of the biological substrates of individual PTPs and understanding of the chemical and biological basis for temporal and spatial resolution of PTP activity within a cell. RECENT ADVANCES Drawing from recent advances in both biology and chemistry, innovative approaches have been developed to study the intracellular biochemistry and physiology of PTPs. We provide a summary of PTP-tailored techniques and approaches, emphasizing methodologies to study PTP activity within a cellular context. We first provide a discussion of methods for identifying PTP substrates, including substrate-trapping mutants and synthetic peptide libraries for substrate selectivity profiling. We next provide an overview of approaches for monitoring intracellular PTP activity, including a discussion of mechanistic-based probes, gel-based assays, substrates that can be used intracellularly, and assays tied to cell growth. Finally, we review approaches used for monitoring PTP oxidation, a key regulatory pathway for these enzymes, discussing the biotin switch method and variants of this approach, along with affinity trapping techniques and probes designed to detect PTP oxidation. FUTURE DIRECTIONS Further development of approaches to investigate the intracellular PTP activity and functions will provide specific insight into their mechanisms of action and control of diverse signaling pathways.
Collapse
Affiliation(s)
- Stephanie M Stanford
- 1 Division of Cellular Biology, La Jolla Institute for Allergy and Immunology , La Jolla, California
| | | | | | | |
Collapse
|
113
|
Wang WL, Huang C, Gao LX, Tang CL, Wang JQ, Wu MC, Sheng L, Chen HJ, Nan FJ, Li JY, Li J, Feng B. Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors. Bioorg Med Chem Lett 2014; 24:1889-94. [DOI: 10.1016/j.bmcl.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/30/2022]
|
114
|
von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops. ACTA ACUST UNITED AC 2014; 8:193-202. [PMID: 25045345 PMCID: PMC4095943 DOI: 10.2174/1574362409666140206221931] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 01/05/2023]
Abstract
The emergence of low molecular weight kinase inhibitors as “targeted” drugs has led to remarkable advances in the treatment of cancer patients. The clinical benefits of these tumor therapies, however, vary widely in patient populations and with duration of treatment. Intrinsic and acquired resistance against such drugs limits their efficacy. In addition to the well studied mechanisms of resistance based upon drug transport and metabolism, genetic alterations in drug target structures and the activation of compensatory cell signaling have received recent attention. Adaptive responses can be triggered which counteract the initial dependence of tumor cells upon a particular signaling molecule and allow only a transient inhibition of tumor cell growth. These compensating signaling mechanisms are often based upon the relief of repression of regulatory feedback loops. They might involve cell autonomous, intracellular events or they can be mediated via the secretion of growth factor receptor ligands into the tumor microenvironment and signal induction in an auto- or paracrine fashion. The transcription factors Stat3 and Stat5 mediate the biological functions of cytokines, interleukins and growth factors and can be considered as endpoints of multiple signaling pathways. In normal cells this activation is transient and the Stat molecules return to their non-phosphorylated state within a short time period. In tumor cells the balance between activating and de-activating signals is disturbed resulting in the persistent activation of Stat3 or Stat5. The constant activation of Stat3 induces the expression of target genes, which cause the proliferation and survival of cancer cells, as well as their migration and invasive behavior. Activating components of the Jak-Stat pathway have been recognized as potentially valuable drug targets and important principles of compensatory signaling circuit induction during targeted drug treatment have been discovered in the context of kinase inhibition studies in HNSCC cells [1]. The treatment of HNSCC with a specific inhibitor of c-Src, initially resulted in reduced Stat3 and Stat5 activation and subsequently an arrest of cell proliferation and increased apoptosis. However, the inhibition of c-Src only caused a persistent inhibition of Stat5, whereas the inhibition of Stat3 was only transient. The activation of Stat3 was restored within a short time period in the presence of the c-Src inhibitor. This process is mediated through the suppression of P-Stat5 activity and the decrease in the expression of the Stat5 dependent target gene SOCS2, a negative regulator of Jak2. Jak2 activity is enhanced upon SOCS2 downregulation and causes the reactivation of Stat3. A similar observation has been made upon inhibition of Bmx, bone marrow kinase x-linked, activated in the murine glioma cell lines Tu-2449 and Tu-9648. Its inhibition resulted in a transient decrease of P-Stat3 and the induction of a compensatory Stat3 activation mechanism, possibly through the relief of negative feedback inhibition and Jak2 activation. These observations indicate that the inhibition of a single tyrosine kinase might not be sufficient to induce lasting therapeutic effects in cancer patients. Compensatory kinases and pathways might become activated and maintain the growth and survival of tumor cells. The definition of these escape pathways and their preemptive inhibition will suggest effective new combination therapies for cancer.
Collapse
Affiliation(s)
| | - Chul Min Yang
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Diane Richter
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Natalia Delis
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| |
Collapse
|
115
|
Sanderson L, Yardley V, Croft SL. Activity of anti-cancer protein kinase inhibitors against Leishmania spp. J Antimicrob Chemother 2014; 69:1888-91. [PMID: 24668412 DOI: 10.1093/jac/dku069] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES There is an urgent need to develop new and effective treatments for poverty-related neglected diseases. In light of the time required to bring a new drug to market and the cost involved (10-15 years, >1 billion US$), one approach to identifying new treatments for diseases like leishmaniasis is to evaluate drugs that are already registered for the treatment of other diseases. This paper describes the anti-leishmanial activities of 10 FDA-approved protein kinase inhibitors already available for the treatment of human cancers. METHODS In vitro and in vivo models of Leishmania infection were used to evaluate the potency of selected protein kinase inhibitors. RESULTS Sunitinib, sorafenib and lapatinib were identified as active against Leishmania donovani amastigotes in cultured murine macrophages with IC(50) values of 1.1, 3.7 and 2.5 μM, respectively, a level of potency similar to that of miltefosine (IC(50) = 1.0 μM), and were not toxic to mammalian cells. In addition, some of the protein kinase inhibitors were active against L. donovani in the BALB/c mouse model of infection; dosing on days 7-11 with a 50 mg/kg oral dose of sunitinib, lapatinib or sorafenib reduced liver amastigote burdens by 41%, 36% and 30%, respectively, compared with untreated control mice. Although less efficacious, sorafenib was also active in vitro against intracellular amastigotes of the cutaneous disease-causing species Leishmania amazonensis, Leishmania major and Leishmania mexicana. CONCLUSIONS This study demonstrates in vivo anti-leishmanial activity of clinically used protein kinase inhibitors and provides further evidence of the potential of drug repurposing.
Collapse
Affiliation(s)
- Lisa Sanderson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
116
|
Kim B, Wang S, Lee JM, Jeong Y, Ahn T, Son DS, Park HW, Yoo HS, Song YJ, Lee E, Oh YM, Lee SB, Choi J, Murray JC, Zhou Y, Song PH, Kim KA, Weiner LM. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 2014; 34:1083-93. [PMID: 24662823 DOI: 10.1038/onc.2014.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
Abstract
Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as epidermal growth factor receptor inhibitors in lung cancers, and has been prioritized as a key molecular target for cancer therapy. However, the underlying mechanism of resistance to Met-targeting drugs is poorly understood. Here, we describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by using a small interfering RNA-based synthetic lethal screening method. We found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the antitumor activity of SAIT301. Pathway analysis of these 69 genes implicated fibroblast growth factor receptor (FGFR) as a key regulator for antiproliferative effects of Met-targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met-targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restored SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression analysis using CCLE database shows that cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR and integrin β3 could be used as predictive markers for Met-targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met-targeting drugs.
Collapse
Affiliation(s)
- B Kim
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - S Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - J M Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y Jeong
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - T Ahn
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - D-S Son
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - H W Park
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - H-s Yoo
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y-J Song
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - E Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Y M Oh
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - S B Lee
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - J Choi
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - J C Murray
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Y Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - P H Song
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - K-A Kim
- BioTherapeutics Lab, Samsung Advanced Institute of Technology (SAIT), Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - L M Weiner
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
117
|
Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 2014; 15:939-51. [PMID: 23908594 DOI: 10.1593/neo.13804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Oncogenic receptor tyrosine kinase (RTK) signaling through the Ras-Raf-Mek-Erk (Ras-MAPK) pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs) are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC) subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD), synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN). This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations), MDA-MB-468 [epidermal growth factor receptor (EGFR) overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2) overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb) signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.
Collapse
|
118
|
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding, and endogenous RNA molecules, which are evolutionarily conserved but play a significant role in regulation of protein-coding gene expression at posttranscriptional and translational levels. Strikingly, a single miRNA is able to trigger hundreds of putative target genes by incomplete or complete complementary binding to their 3' untranslated regions. Given their appearance in almost all types of tissues, miRNAs have been demonstrated to be intensively involved in normal and pathological processes of human cells. Aside from the role as invaluable biomarkers in indication of tumorigenesis and tumor progression, numerous studies have revealed the potential of miRNAs as novel targets of anticancer drugs in cancer therapy. In this review article, we focus on the summary of the latest publications on the topic of miRNA and anticancer drugs, and expect to shed light on understanding the molecular mechanisms of chemoresistance involving miRNA regulation. These pieces of evidence will eventually provide insight into the development of novel and more efficacious anticancer drugs in the future.
Collapse
Affiliation(s)
- Zhiwei Xing
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | | | | | | | | |
Collapse
|
119
|
Dobbelstein M, Moll U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov 2014; 13:179-96. [DOI: 10.1038/nrd4201] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
120
|
Shen S, Mao CQ, Yang XZ, Du XJ, Liu Y, Zhu YH, Wang J. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol Pharm 2014; 11:2612-22. [PMID: 24521262 DOI: 10.1021/mp400714z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.
Collapse
Affiliation(s)
- Song Shen
- School of Life Sciences and ‡Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China , Hefei, Anhui 230027, P. R. China
| | | | | | | | | | | | | |
Collapse
|
121
|
Groner B, Vafaizadeh V. Cytokine regulation of mammary gland development and epithelial cell functions through discrete activities of Stat proteins. Mol Cell Endocrinol 2014; 382:552-559. [PMID: 24076095 DOI: 10.1016/j.mce.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany.
| | - Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
122
|
Selzer E. Impact of molecular targets in cancer drug development: historical influence and future perspectives. Expert Rev Clin Pharmacol 2014; 3:161-3. [DOI: 10.1586/ecp.10.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
123
|
Porta C, Sabbatini R, Procopio G, Paglino C, Galligioni E, Ortega C. Primary resistance to tyrosine kinase inhibitors in patients with advanced renal cell carcinoma: state-of-the-science. Expert Rev Anticancer Ther 2014. [DOI: 10.1586/era.12.81] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
124
|
Choi J, Landrette SF, Wang T, Evans P, Bacchiocchi A, Bjornson R, Cheng E, Stiegler AL, Gathiaka S, Acevedo O, Boggon TJ, Krauthammer M, Halaban R, Xu T. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res 2014; 27:253-62. [PMID: 24283590 PMCID: PMC4065135 DOI: 10.1111/pcmr.12197] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 02/02/2023]
Abstract
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole-exome sequencing of drug-resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome-wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N-terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance-conferring second-site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF-PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK-activating, PLX4032-resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032-resistant melanoma cells are sensitive to novel, next-generation BRAF inhibitors, especially the ‘paradox-blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF-mutations.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Jenardhanan P, Mannu J, Mathur PP. The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: a computational approach to obstruct the role of MARK4 in prostate cancer progression. ACTA ACUST UNITED AC 2014; 10:1845-68. [DOI: 10.1039/c3mb70591a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The binding of identified ATP competitors specific to MARK4, characterized by a unique DFG Asp-in/αC helix-out inactive state, hampers the progression of prostate cancer.
Collapse
Affiliation(s)
| | | | - Premendu P. Mathur
- Centre for Bioinformatics
- Pondicherry University
- Puducherry, India
- KIIT University
- Bhubaneshwar - 751024, India
| |
Collapse
|
126
|
Wang WL, Yang DL, Gao LX, Tang CL, Ma WP, Ye HH, Zhang SQ, Zhao YN, Xu HJ, Hu Z, Chen X, Fan WH, Chen HJ, Li JY, Nan FJ, Li J, Feng B. 1H-2,3-dihydroperimidine derivatives: a new class of potent protein tyrosine phosphatase 1B inhibitors. Molecules 2013; 19:102-21. [PMID: 24366088 PMCID: PMC6271978 DOI: 10.3390/molecules19010102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022] Open
Abstract
A series of 1H-2,3-dihydroperimidine derivatives was designed, synthesized, and evaluated as a new class of inhibitors of protein tyrosine phosphatase 1B (PTP1B) with IC50 values in the micromolar range. Compounds 46 and 49 showed submicromolar inhibitory activity against PTP1B, and good selectivity (3.48-fold and 2.10-fold respectively) over T-cell protein tyrosine phosphatases (TCPTP). These results have provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.
Collapse
Affiliation(s)
- Wen-Long Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
- Jiangshu Alpha Biopharmaceuticals, Inc. Wuxi 214122, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (W.-L.W.); (B.F.); Tel.: +86-510-8519-7052(B.F.); Fax: +86-510-8519-7052 (B.F.)
| | - Dong-Lin Yang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Li-Xin Gao
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Chun-Lan Tang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Wei-Ping Ma
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Hui-Hua Ye
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Si-Qi Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Ya-Nan Zhao
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Hao-Jie Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Zhao Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Xia Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
| | - Wen-Hua Fan
- Jiangshu Alpha Biopharmaceuticals, Inc. Wuxi 214122, China; E-Mail:
| | - Hai-Jun Chen
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Jing-Ya Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Fa-Jun Nan
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
| | - Jia Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (L.-X.G.); (C.-L.T.); (W.-P.M.); (H.-J.C.); (J.-Y.L.); (F.-J.N.)
- Authors to whom correspondence should be addressed; E-Mails: (W.-L.W.); (B.F.); Tel.: +86-510-8519-7052(B.F.); Fax: +86-510-8519-7052 (B.F.)
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; E-Mails: (D.-L.Y.); (H.-H.Y.); (S.-Q.Z.); (Y.-N.Z.); (H.-J.X.); (Z.H.); (X.C.)
- Jiangshu Alpha Biopharmaceuticals, Inc. Wuxi 214122, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (W.-L.W.); (B.F.); Tel.: +86-510-8519-7052(B.F.); Fax: +86-510-8519-7052 (B.F.)
| |
Collapse
|
127
|
Friedman R. Drug resistance missense mutations in cancer are subject to evolutionary constraints. PLoS One 2013; 8:e82059. [PMID: 24376513 PMCID: PMC3869674 DOI: 10.1371/journal.pone.0082059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
128
|
Targeting the EGFR family of receptor tyrosine kinases. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
129
|
Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE, Zubovych I, Seo BY, Kim J, Eskiocak B, Chung H, McMillan E, Wu S, De Brabander J, Komurov K, Toombs JE, Wei S, Peyton M, Williams N, Gazdar AF, Posner BA, Brekken RA, Sood AK, Deberardinis RJ, Roth MG, Minna JD, White MA. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 2013; 155:552-66. [PMID: 24243015 DOI: 10.1016/j.cell.2013.09.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 08/30/2013] [Indexed: 01/27/2023]
Abstract
Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology.
Collapse
Affiliation(s)
- Hyun Seok Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Rousalova I, Banerjee S, Sangwan V, Evenson K, McCauley JA, Kratzke R, Vickers SM, Saluja A, D'Cunha J. Minnelide: a novel therapeutic that promotes apoptosis in non-small cell lung carcinoma in vivo. PLoS One 2013; 8:e77411. [PMID: 24143232 PMCID: PMC3797124 DOI: 10.1371/journal.pone.0077411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. METHODS Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. RESULTS In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. CONCLUSION In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.
Collapse
Affiliation(s)
- Ilona Rousalova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, Goldman S, Chintagumpala M, Wallace D, Takebe N, Boyett JM, Gilbertson RJ, Curran T. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res 2013; 19:6305-12. [PMID: 24077351 DOI: 10.1158/1078-0432.ccr-13-1425] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To investigate the safety, dose-limiting toxicities, and pharmacokinetics of the smoothened inhibitor vismodegib in children with refractory or relapsed medulloblastoma. EXPERIMENTAL DESIGN Initially, vismodegib was administered daily at 85 mg/m(2) and escalated to 170 mg/m(2). The study was then revised to investigate a flat-dosing schedule of 150 mg for patients with small body surface area (BSA, 0.67-1.32 m(2)) or 300 mg for those who were larger (BSA, 1.33-2.20 m(2)). Pharmacokinetics were performed during the first course of therapy, and the right knees of all patients were imaged to monitor bone toxicity. Immunohistochemical analysis was done to identify patients with Sonic Hedgehog (SHH)-subtype medulloblastoma. RESULTS Thirteen eligible patients were enrolled in the initial study: 6 received 85 mg/m(2) vismodegib, and 7 received 170 mg/m(2). Twenty eligible patients were enrolled in the flat-dosing part of the study: 10 at each dosage level. Three dose-limiting toxicities were observed, but no drug-related bone toxicity was documented. The median (range) vismodegib penetration in the cerebrospinal fluid (CSF) was 0.53 (0.26-0.78), when expressed as a ratio of the concentration of vismodegib in the CSF to that of the unbound drug in plasma. Antitumor activity was seen in 1 of 3 patients with SHH-subtype disease whose tumors were evaluable, and in none of the patients in the other subgroups. CONCLUSIONS Vismodegib was well tolerated in children with recurrent or refractory medulloblastoma; only two dose-limiting toxicities were observed with flat dosing. The recommended phase II study dose is 150 or 300 mg, depending on the patient's BSA. Clin Cancer Res; 19(22); 6305-12. ©2013 AACR.
Collapse
Affiliation(s)
- Amar Gajjar
- Authors' Affiliations: Departments of Oncology, Pharmaceutical Sciences, Pathology, Radiological Sciences, Biostatistics, and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee; Center for Neuroscience Research, Children's National Medical Center, Washington, DC; Division of Hematology-Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Texas Children's Hospital, Houston, Texas; Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Miller ML, Molinelli EJ, Nair JS, Sheikh T, Samy R, Jing X, He Q, Korkut A, Crago AM, Singer S, Schwartz GK, Sander C. Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets. Sci Signal 2013; 6:ra85. [PMID: 24065146 DOI: 10.1126/scisignal.2004014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depends on the activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies.
Collapse
Affiliation(s)
- Martin L Miller
- 1Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
134
|
Kang H, Kim C, Lee H, Kim W, Lee EK. Post-transcriptional controls by ribonucleoprotein complexes in the acquisition of drug resistance. Int J Mol Sci 2013; 14:17204-20. [PMID: 23965981 PMCID: PMC3759960 DOI: 10.3390/ijms140817204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/03/2023] Open
Abstract
Acquisition of drug resistance leads to failure of anti-cancer treatments and therapies. Although several successive chemotherapies are available, along with efforts towards clinical applications of new anti-cancer drugs, it is generally realized that there is a long way to go to treat cancers. Resistance to anti-cancer drugs results from various factors, including genetic as well as epigenetic differences in tumors. Determining the molecular and cellular mechanisms responsible for the acquisition of drug resistance may be a helpful approach for the development of new therapeutic strategies to overcome treatment failure. Several studies have shown that the acquisition of drug resistance is tightly regulated by post-transcriptional regulators such as RNA binding proteins (RBPs) and microRNAs (miRNAs), which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, epithelial-mesenchymal transition, and drug metabolism. Here, we review our current understanding of ribonucleoprotein complexes, including RBPs and miRNAs, which play critical roles in the acquisition of drug resistance and have potential clinical implications for cancer.
Collapse
Affiliation(s)
- Hoin Kang
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea; E-Mails: (H.K.); (C.K.); (H.L.)
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea; E-Mails: (H.K.); (C.K.); (H.L.)
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea; E-Mails: (H.K.); (C.K.); (H.L.)
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (E.K.L.); Tel.: +82-31-219-2513 (W.K.); +82-2-2258-7295 (E.K.L.); Fax: +82-31-219-1610 (W.K.); +82-2-596-4435 (E.K.L.)
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea; E-Mails: (H.K.); (C.K.); (H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (W.K.); (E.K.L.); Tel.: +82-31-219-2513 (W.K.); +82-2-2258-7295 (E.K.L.); Fax: +82-31-219-1610 (W.K.); +82-2-596-4435 (E.K.L.)
| |
Collapse
|
135
|
Richters A, Ketzer J, Getlik M, Grütter C, Schneider R, Heuckmann JM, Heynck S, Sos ML, Gupta A, Unger A, Schultz-Fademrecht C, Thomas RK, Bauer S, Rauh D. Targeting Gain of Function and Resistance Mutations in Abl and KIT by Hybrid Compound Design. J Med Chem 2013; 56:5757-72. [DOI: 10.1021/jm4004076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Richters
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Julia Ketzer
- Department of Medical Oncology,
Sarcoma Center, West German Cancer Center, University Duisburg-Essen Medical School, Hufelandstrasse 55, D-45122
Essen, Germany
| | - Matthäus Getlik
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Ralf Schneider
- Chemical Genomics Centre of the Max-Planck-Society,
Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Johannes M. Heuckmann
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Stefanie Heynck
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Martin L. Sos
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
| | - Anu Gupta
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | | | - Roman K. Thomas
- Department of Translational Genomics, University of Cologne, Weyertal 115b, D-50931 Cologne,
Germany
- Department of Pathology, University of Cologne, Joseph-Stelzmann Strasse 9,
D-50931 Cologne, Germany
| | - Sebastian Bauer
- Department of Medical Oncology,
Sarcoma Center, West German Cancer Center, University Duisburg-Essen Medical School, Hufelandstrasse 55, D-45122
Essen, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max-Planck-Society,
Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| |
Collapse
|
136
|
Zhu S, Travis SM, Elcock AH. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study. J Chem Theory Comput 2013; 9:3151-3164. [PMID: 23914145 PMCID: PMC3731164 DOI: 10.1021/ct400104x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant. Imposition of position restraints in corresponding simulations that used the Amber ff99SB-ILDN force field had little effect on their ability to match experiment. Overall, the study shows that both force fields can work well for predicting the effects of active-site mutations on small molecule binding affinities and demonstrates how a direct combination of experiment and computation can be a powerful strategy for developing an understanding of protein-inhibitor interactions.
Collapse
Affiliation(s)
- Shun Zhu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
137
|
Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci U S A 2013; 110:11982-7. [PMID: 23818604 DOI: 10.1073/pnas.1300136110] [Citation(s) in RCA: 539] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.
Collapse
|
138
|
Burbridge MF, Bossard CJ, Saunier C, Fejes I, Bruno A, Léonce S, Ferry G, Da Violante G, Bouzom F, Cattan V, Jacquet-Bescond A, Comoglio PM, Lockhart BP, Boutin JA, Cordi A, Ortuno JC, Pierré A, Hickman JA, Cruzalegui FH, Depil S. S49076 is a novel kinase inhibitor of MET, AXL, and FGFR with strong preclinical activity alone and in association with bevacizumab. Mol Cancer Ther 2013; 12:1749-62. [PMID: 23804704 DOI: 10.1158/1535-7163.mct-13-0075] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aberrant activity of the receptor tyrosine kinases MET, AXL, and FGFR1/2/3 has been associated with tumor progression in a wide variety of human malignancies, notably in instances of primary or acquired resistance to existing or emerging anticancer therapies. This study describes the preclinical characterization of S49076, a novel, potent inhibitor of MET, AXL/MER, and FGFR1/2/3. S49076 potently blocked cellular phosphorylation of MET, AXL, and FGFRs and inhibited downstream signaling in vitro and in vivo. In cell models, S49076 inhibited the proliferation of MET- and FGFR2-dependent gastric cancer cells, blocked MET-driven migration of lung carcinoma cells, and inhibited colony formation of hepatocarcinoma cells expressing FGFR1/2 and AXL. In tumor xenograft models, a good pharmacokinetic/pharmacodynamic relationship for MET and FGFR2 inhibition following oral administration of S49076 was established and correlated well with impact on tumor growth. MET, AXL, and the FGFRs have all been implicated in resistance to VEGF/VEGFR inhibitors such as bevacizumab. Accordingly, combination of S49076 with bevacizumab in colon carcinoma xenograft models led to near total inhibition of tumor growth. Moreover, S49076 alone caused tumor growth arrest in bevacizumab-resistant tumors. On the basis of these preclinical studies showing a favorable and novel pharmacologic profile of S49076, a phase I study is currently underway in patients with advanced solid tumors. Mol Cancer Ther; 12(9); 1749-62. ©2013 AACR.
Collapse
Affiliation(s)
- Mike F Burbridge
- Corresponding Author: Mike F. Burbridge, Oncology Research and Development Unit, Institut de Recherches Servier, 125 chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Lambert GK, Duhme-Klair AK, Morgan T, Ramjee MK. The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov Today 2013; 18:992-1000. [PMID: 23769978 DOI: 10.1016/j.drudis.2013.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 06/04/2013] [Indexed: 12/23/2022]
Abstract
The story of the inhibition of BCR-ABL as a treatment for chronic myelogenous leukaemia serves to illustrate key aspects of the kinase drug discovery and development process. Firstly, elucidation of the disease mechanism enabled identification of the molecular target(s) which catalysed pharmaceutical research and resulted in Gleevec(®) (Novartis) as the first FDA approved BCR-ABL inhibitor. However, clinical success was soon tempered by the emergence of drug resistance through various mechanisms. Using rational drug design, several hypotheses were devised to overcome resistance issues leading to the development of second generation inhibitors, providing clinicians and patients with greater therapeutic choice.
Collapse
Affiliation(s)
- Gemma K Lambert
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom; Cyclofluidic Limited, BioPark, Welwyn Garden City AL7 3AX, United Kingdom
| | | | | | | |
Collapse
|
140
|
Martini M, Ciraolo E, Gulluni F, Hirsch E. Targeting PI3K in Cancer: Any Good News? Front Oncol 2013; 3:108. [PMID: 23658859 PMCID: PMC3647219 DOI: 10.3389/fonc.2013.00108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it’s one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug candidates include PI3K inhibitors, both pan- and isoform-specific inhibitors, AKT, mTOR, and dual PI3K/mTOR inhibitors. As novel compounds progress into clinical trials, it’s becoming urgent to identify and select patient population that most likely benefit from PI3K inhibition. In this review we will discuss individual PIK3CA mutations as predictors of sensitivity and resistance to targeted therapies, leading to use of novel PI3K/mTOR/AKT inhibitors to a more “personalized” treatment.
Collapse
Affiliation(s)
- Miriam Martini
- Molecular Biotechnology Center, University of Turin Turin, Italy
| | | | | | | |
Collapse
|
141
|
Jamal-Hanjani M, Thanopoulou E, Peggs KS, Quezada SA, Swanton C. Tumour heterogeneity and immune-modulation. Curr Opin Pharmacol 2013; 13:497-503. [PMID: 23664091 PMCID: PMC3988963 DOI: 10.1016/j.coph.2013.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Intratumour heterogeneity (ITH) has been demonstrated in various tumour types. Distinct clonal subpopulations can exist within different regions of a tumour. ITH has evident implications for cancer diagnosis and treatment. There is increasing evidence for the association between ITH and drug resistance. ITH may allow the effective use of immunotherapeutics against tumour neo-antigens.
Recent advances in sequencing technologies have revealed extensive intratumour heterogeneity (ITH) both within individual tumours and between primary and metastatic tumours for different cancer types. Such genetic diversity may have clinical implications for both cancer diagnosis and treatment with increasing evidence linking ITH and therapeutic resistance. Nonetheless, whilst limiting the activity of targeted agents, tumour genetic heterogeneity may provide a new therapeutic opportunity through generation of neo-antigens that could be recognised and targeted by the patient's own immune system in response to immune-modulatory therapies. Longitudinal genomic studies assessing tumour clonal architecture and its correlation with the underlying immune response to cancer in each particular patient are needed to follow tumour evolutionary dynamics over time and through therapy, in order to further understand the mechanisms behind drug resistance and to inform the development of new combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Mariam Jamal-Hanjani
- Translational Cancer Therapeutics Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
142
|
Ducker GS, Atreya CE, Simko JP, Hom YK, Matli MR, Benes CH, Hann B, Nakakura EK, Bergsland EK, Donner DB, Settleman J, Shokat KM, Warren RS. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2013; 33:1590-600. [PMID: 23542178 PMCID: PMC3982880 DOI: 10.1038/onc.2013.92] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 01/25/2013] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) regulates cell growth by integrating nutrient and growth factor signaling and is strongly implicated in cancer. But mTOR is not an oncogene, and which tumors will be resistant or sensitive to new ATP-competitive mTOR inhibitors now in clinical trials remains unknown. We screened a panel of over 600 human cancer cell lines to identify markers of resistance and sensitivity to the mTOR inhibitor PP242. RAS and PIK3CA mutations were the most significant genetic markers for resistance and sensitivity to PP242, respectively; colon origin was the most significant marker for resistance based on tissue type. Among colon cancer cell lines, those with KRAS mutations were most resistant to PP242, while those without KRAS mutations most sensitive. Surprisingly, cell lines with co-mutation of PIK3CA and KRAS had intermediate sensitivity. Immunoblot analysis of the signaling targets downstream of mTOR revealed that the degree of cellular growth inhibition induced by PP242 was correlated with inhibition of phosphorylation of the translational repressor 4E-BP1, but not ribosomal protein S6. In a tumor growth inhibition trial of PP242 in patient-derived colon cancer xenografts, resistance to PP242 induced inhibition of 4E-BP1 phosphorylation and xenograft growth was again observed in KRAS mutant tumors without PIK3CA co-mutation, compared to KRAS WT controls. We show that, in the absence of PIK3CA co-mutation, KRAS mutations are associated with resistance to PP242 and that this is specifically linked to changes in the level of phosphorylation of 4E-BP1.
Collapse
Affiliation(s)
- G S Ducker
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - C E Atreya
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - J P Simko
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Y K Hom
- 1] Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA, USA [2] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - M R Matli
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA [2] Section of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - C H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - B Hann
- 1] Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA, USA [2] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - E K Nakakura
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA [2] Section of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - E K Bergsland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - D B Donner
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA [2] Section of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - J Settleman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - K M Shokat
- 1] Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA [2] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA [3] Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - R S Warren
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA [2] Section of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
143
|
A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis 2013; 2:e39. [PMID: 23552882 PMCID: PMC3641357 DOI: 10.1038/oncsis.2013.4] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite initial and often dramatic responses of epidermal growth factor receptor (EGFR)-addicted lung tumors to the EGFR-specific tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, nearly all develop resistance and relapse. To explore novel mechanisms mediating acquired resistance, we employed non-small-cell lung cancer (NSCLC) cell lines bearing activating mutations in EGFR and rendered them resistant to EGFR-specific TKIs through chronic adaptation in tissue culture. In addition to previously observed resistance mechanisms including EGFR-T790M ‘gate-keeper' mutations and MET amplification, a subset of the seven chronically adapted NSCLC cell lines including HCC4006, HCC2279 and H1650 cells exhibited marked induction of fibroblast growth factor (FGF) 2 and FGF receptor 1 (FGFR1) mRNA and protein. Also, adaptation to EGFR-specific TKIs was accompanied by an epithelial to mesenchymal transition (EMT) as assessed by changes in CDH1, VIM, ZEB1 and ZEB2 expression and altered growth properties in Matrigel. In adapted cell lines exhibiting increased FGF2 and FGFR1 expression, measures of growth and signaling, but not EMT, were blocked by FGFR-specific TKIs, an FGF-ligand trap and FGFR1 silencing with RNAi. In parental HCC4006 cells, cell growth was strongly inhibited by gefitinib, although drug-resistant clones progress within 10 days. Combined treatment with gefitinib and AZD4547, an FGFR-specific TKI, prevented the outgrowth of drug-resistant clones. Thus, induction of FGF2 and FGFR1 following chronic adaptation to EGFR-specific TKIs provides a novel autocrine receptor tyrosine kinase-driven bypass pathway in a subset of lung cancer cell lines that are initially sensitive to EGFR-specific TKIs. The findings support FGFR-specific TKIs as potentially valuable additions to existing targeted therapeutic strategies with EGFR-specific TKIs to prevent or delay acquired resistance in EGFR-driven NSCLC.
Collapse
|
144
|
Weyergang A, Selbo PK, Berg K. Sustained EKR inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy. Biochim Biophys Acta Gen Subj 2013; 1830:2659-70. [DOI: 10.1016/j.bbagen.2012.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
145
|
Bitterman PB, Polunovsky VA. Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation. Mol Cancer Ther 2013; 11:1051-61. [PMID: 22572598 DOI: 10.1158/1535-7163.mct-11-0530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular-signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one by one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation-initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell toward malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small-molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacologic response to therapeutics targeting eIF4F remains an unmet challenge.
Collapse
Affiliation(s)
- Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
146
|
He Y, Niu C, Wen X, Xi Z. Biomacromolecular 3D-QSAR to Decipher Molecular Herbicide Resistance in Acetohydroxyacid Synthases. Mol Inform 2013; 32:139-44. [PMID: 27481275 DOI: 10.1002/minf.201200144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/05/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Yinwu He
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, NO 94, Weijin Road, Tianjin, 300071, P. R. China fax: (+86) 022-23504782.
| |
Collapse
|
147
|
He Y, Xu J, Yu ZH, Gunawan AM, Wu L, Wang L, Zhang ZY. Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic acid scaffold. J Med Chem 2013; 56:832-42. [PMID: 23305444 DOI: 10.1021/jm301781p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (mPTPB) is a virulence factor secreted by the pathogen and mediates mycobacterial survival in macrophages by targeting host cell immune responses. Consequently, mPTPB represents an exciting new target to combat tuberculosis (TB) infection. We describe a medicinal chemistry oriented approach that transforms a benzofuran salicylic acid scaffold into a highly potent (IC(50) = 38 nM) and selective mPTPB inhibitor (>50 fold against a large panel of PTPs). Importantly, the inhibitor is capable of reversing the altered host immune responses induced by the bacterial phosphatase and restoring the macrophage's full capacity to secrete IL-6 and undergo apoptosis in response to interferon-γ stimulation, validating the concept that chemical inhibition of mPTPB may be therapeutically useful for novel TB treatment. The study further demonstrates that bicyclic salicylic acid pharmacophores can be used to deliver PTP inhibitors with high potency, selectivity, and cellular efficacy.
Collapse
Affiliation(s)
- Yantao He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Erlotinib and gefitinib, tyrosine kinase inhibitors used to block EGFR (epidermal growth factor receptor) signalling in cancer, are thought to bind only the active conformation of the EGFR-TKD (tyrosine kinase domain). Through parallel computational and crystallographic studies, we show in the present study that erlotinib also binds the inactive EGFR-TKD conformation, which may have significant implications for its use in EGFR-mutated cancers.
Collapse
|
149
|
Abstract
Pharmacogenomics and its predecessor pharmacogenetics study the contribution of genetic factors to the interindividual variability in drug efficacy and safety. One of the major goals of pharmacogenomics is to tailor drugs to individuals based on their genetic makeup and molecular profile. From early findings in the 1950s uncovering inherited deficiencies in drug metabolism that explained drug-related adverse events, to nowadays genome-wide approaches assessing genetic variation in multiple genes, pharmacogenomics has come a long way. The evolution of pharmacogenomics has paralleled the evolution of genotyping technologies, the completion of the human genome sequencing and the HapMap project. Despite these advances, the implementation of pharmacogenomics in clinical practice has yet been limited. Here we present an overview of the history and current applications of pharmacogenomics in patient selection, dosing, and drug development with illustrative examples of these categories. Some of the challenges in the field and future perspectives are also presented.
Collapse
Affiliation(s)
- Rosane Charlab
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
150
|
Nam HJ, Im SA, Oh DY, Elvin P, Kim HP, Yoon YK, Min A, Song SH, Han SW, Kim TY, Bang YJ. Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther 2013; 12:16-26. [PMID: 23144237 DOI: 10.1158/1535-7163.mct-12-0109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src is a nonreceptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Increased Src activity has been reported in many types of human cancer, including gastric cancer. Therefore, this factor has been identified as a promising therapeutic target for cancer treatments, and targeting Src in gastric cancer is predicted to have potent effects. We evaluated the antitumor effect of a c-Src/Abl kinase inhibitor, saracatinib (AZD0530), alone or combined with chemotherapeutic agents in gastric cancer cell lines and a NCI-N87 xenograft model. Among 10 gastric cancer cell lines, saracatinib specifically inhibited the growth and migration/invasion of SNU216 and NCI-N87 cells. Saracatinib blocked the Src/FAK, HER family, and oncogenic signaling pathways, and it induced G(1) arrest and apoptosis in SNU216 and NCI-N87 cells. Apoptosis required induction of the proapoptotic BCL2 family member Bim. Knockdown of Bim using siRNA decreased apoptosis induced by treatment with saracatinib, suggesting that Bim has an important role in saracatinib-induced apoptosis. Saracatinib enhanced the effects of lapatinib, an EGFR/HER2 dual inhibitor, in SNU216 and NCI-N87 cells. Furthermore, combined treatment with saracatinib and 5-fluorouracil (5-FU) or cisplatin exerted synergistic effects in both saracatinib-sensitive and saracatinib-resistant cells. Consistent with our in vitro findings, cotreatment with saracatinib and 5-FU resulted in enhanced antitumor activity in the NCI-N87 xenografts. These data indicate that the inhibition of Src kinase activity by saracatinib alone or in combination with other agents can be a strategy to target gastric cancer.
Collapse
Affiliation(s)
- Hyun-Jin Nam
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|