101
|
Dai D, Lacadie CM, Holmes SE, Cool R, Anticevic A, Averill C, Abdallah C, Esterlis I. Ketamine Normalizes the Structural Alterations of Inferior Frontal Gyrus in Depression. CHRONIC STRESS 2021; 4:2470547020980681. [PMID: 33426409 PMCID: PMC7758564 DOI: 10.1177/2470547020980681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Background Ketamine is a novel fast-acting antidepressant. Acute ketamine treatment can reverse microstructure deficits and normalize functional alterations in the brain, but little is known about the impacts of ketamine on brain volumes in individuals with depression. Methods We used 3 T magnetic resonance imaging (MRI) and tensorbased morphological methods to investigate the regional volume differences for 29 healthy control (HC) subjects and 21 subjects with major depressive disorder (MDD), including 10 subjects with comorbid post-traumatic stress disorder (PTSD). All the subjects participated in MRI scanning before and 24 h post intravenous ketamine infusion. The effects of acute ketamine administration on HC, MDD, and MDD/PTSD groups were examined separately by whole-brain voxel-wise t-tests. Results Our data showed smaller volume of inferior frontal gyrus (IFG, opercular part) in MDD and MDD/PTSD subjects compared to HC, and a significant correlation between opercular IFG volume and depressive severity in MDD subjects only. Ketamine administration normalized the structural alterations of opercular IFG in both MDD and MDD/PTSD groups, and significantly improved depressive and PTSD symptoms. Twenty-four hours after a single ketamine infusion, there were two clusters of voxels with volume changes in MDD subjects, including significantly increased volumes of opercular IFG. No significant structural alterations were found in the MDD/PTSD or HC groups. Conclusion These findings provide direct evidence that acute ketamine administration can normalize structural alterations associated with depression and highlight the importance of IFG in the guidance of future therapeutic targets.
Collapse
Affiliation(s)
- Dan Dai
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan Cool
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut
| | - Chris Averill
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| | - Chadi Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut.,Michael E. DeBakey, VA Medical Center, Houston, Texas.,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| |
Collapse
|
102
|
Lazarevic V, Yang Y, Flais I, Svenningsson P. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors. Mol Psychiatry 2021; 26:7425-7435. [PMID: 34376822 PMCID: PMC8872981 DOI: 10.1038/s41380-021-01246-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022]
Abstract
Ketamine produces a rapid antidepressant response in patients with major depressive disorder (MDD), but the underlying mechanisms appear multifaceted. One hypothesis, proposes that by antagonizing NMDA receptors on GABAergic interneurons, ketamine disinhibits afferens to glutamatergic principal neurons and increases extracellular glutamate levels. However, ketamine seems also to reduce rapid glutamate release at some synapses. Therefore, clinical studies in MDD patients have stressed the need to identify mechanisms whereby ketamine decreases presynaptic activity and glutamate release. In the present study, the effect of ketamine and its antidepressant metabolite, (2R,6R)-HNK, on neuronally derived glutamate release was examined in rodents. We used FAST methodology to measure depolarization-evoked extracellular glutamate levels in vivo in freely moving or anesthetized animals, synaptosomes to detect synaptic recycling ex vivo and primary cortical neurons to perform functional imaging and to examine intracellular signaling in vitro. In all these versatile approaches, ketamine and (2R,6R)-HNK reduced glutamate release in a manner which could be blocked by AMPA receptor antagonism. Antagonism of adenosine A1 receptors, which are almost exclusively expressed at nerve terminals, also counteracted ketamine's effect on glutamate release and presynaptic activity. Signal transduction studies in primary neuronal cultures demonstrated that ketamine reduced P-T286-CamKII and P-S9-Synapsin, which correlated with decreased synaptic vesicle recycling. Moreover, systemic administration of A1R antagonist counteracted the antidepressant-like actions of ketamine and (2R,6R)-HNK in the forced swim test. To conclude, by studying neuronally released glutamate, we identified a novel retrograde adenosinergic feedback mechanism that mediate inhibitory actions of ketamine on glutamate release that may contribute to its rapid antidepressant action.
Collapse
Affiliation(s)
- Vesna Lazarevic
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yunting Yang
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ivana Flais
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
103
|
Zhang K, Sakamoto A, Chang L, Qu Y, Wang S, Pu Y, Tan Y, Wang X, Fujita Y, Ishima T, Hatano M, Hashimoto K. Splenic NKG2D confers resilience versus susceptibility in mice after chronic social defeat stress: beneficial effects of (R)-ketamine. Eur Arch Psychiatry Clin Neurosci 2021; 271:447-456. [PMID: 31875248 PMCID: PMC7981328 DOI: 10.1007/s00406-019-01092-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
The spleen is a large immune organ that plays a key role in the immune system. The precise molecular mechanisms underlying the relationship between the spleen and stress-related psychiatric disorders are unknown. Here we investigated the role of spleen in stress-related psychiatric disorders. FACS analysis was applied to determine the contribution of the spleen to susceptibility and resilience in mice that were subjected to chronic social defeat stress (CSDS). We found a notable increase in splenic volume and weight in CSDS-susceptible mice compared to control (no CSDS) mice and CSDS-resilient mice. The number of granulocytes, but not of T cells and B cells, in the spleen of susceptible mice was higher than in the spleen of both control and resilient mice. Interestingly, NKG2D (natural killer group 2, member D) expression in the spleen of CSDS-susceptible mice was higher than that in control mice and CSDS-resilient mice. In addition, NKG2D expression in the spleen of patients with depression was higher than that in controls. Both increased splenic weight and increased splenic NKG2D expression in CSDS-susceptible mice were ameliorated after a subsequent administration of (R)-ketamine. The present findings indicate a novel role of splenic NKG2D in stress susceptibility versus resilience in mice subjected to CSDS. Furthermore, abnormalities in splenic functions in CSDS-susceptible mice were ameliorated after subsequent injection of (R)-ketamine. Thus, the brain-spleen axis might, at least in part, contribute to the pathogenesis of stress-related psychiatric disorders such as depression.
Collapse
Affiliation(s)
- Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan ,Present Address: Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000 China
| | - Akemi Sakamoto
- Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
104
|
Sha H, Peng P, Wei G, Wang J, Wu Y, Huang H. Neuroprotective Effects of Dexmedetomidine on the Ketamine-Induced Disruption of the Proliferation and Differentiation of Developing Neural Stem Cells in the Subventricular Zone. Front Pediatr 2021; 9:649284. [PMID: 34386466 PMCID: PMC8353121 DOI: 10.3389/fped.2021.649284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Ketamine disrupts the proliferation and differentiation of developing neural stem cells (NSCs). Therefore, the safe use of ketamine in pediatric anesthesia has been an issue of increasing concern among anesthesiologists and children's parents. Dexmedetomidine (DEX) is widely used in sedation as an antianxiety agent and for analgesia. DEX has recently been shown to provide neuroprotection against anesthetic-induced neurotoxicity in the developing brain. The aim of this in vivo study was to investigate whether DEX exerted neuroprotective effects on the proliferation and differentiation of NSCs in the subventricular zone (SVZ) following neonatal ketamine exposure. Methods: Postnatal day 7 (PND-7) male Sprague-Dawley rats were equally divided into the following five groups: control group (n = 8), ketamine group (n = 8), 1 μg/kg DEX+ketamine group (n = 8), 5 μg/kg DEX+ketamine group (n = 8) and 10 μg/kg DEX+ketamine group (n = 8). Immediately after treatment, rats received a single intraperitoneal injection of BrdU, and the proliferation and differentiation of NSCs in the SVZ were assessed using immunostaining at 24 h after the BrdU injection. In the olfactory behavioral tests, rats in each group were raised until 2 months old, and the buried food test and olfactory memory test were performed. Results: The proliferation of NSCs and astrocytic differentiation in the SVZ were significantly inhibited at 24 h after repeated ketamine exposure in the neonatal period, and neuronal differentiation was markedly increased. Furthermore, pretreatment with moderately high (5 μg/kg) or high doses (10 μg/kg) of DEX reversed ketamine-induced disturbances in the proliferation and differentiation of NSCs. In the behavior tests, repeated neonatal ketamine exposure induced olfactory cognitive dysfunction in the adult stage, and moderately high and high doses of DEX reversed the olfactory cognitive dysfunction induced by ketamine. Conclusions: Based on the present findings, pretreatment with a moderately high (5 μg/kg) or high dose (10 μg/kg) of DEX may alleviate the developmental neurogenesis disorder in the SVZ at 24 h after repeated ketamine exposure and improve olfactory cognitive dysfunction in adulthood.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peipei Peng
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guohua Wei
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Wang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - He Huang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
105
|
Chen MH, Kao CF, Tsai SJ, Li CT, Lin WC, Hong CJ, Bai YM, Tu PC, Su TP. Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study. Genomics 2020; 113:507-514. [PMID: 33370585 DOI: 10.1016/j.ygeno.2020.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Evidence suggested the crucial roles of brain-derived neurotrophic factor (BDNF) and glutamate system functioning in the antidepressant mechanisms of low-dose ketamine infusion in treatment-resistant depression (TRD). METHODS 65 patients with TRD were genotyped for 684,616 single nucleotide polymorphisms (SNPs). Twelve ketamine-related genes were selected for the gene-based genome-wide association study on the antidepressant effect of ketamine infusion and the resulting serum ketamine and norketamine levels. RESULTS Specific SNPs and whole genes involved in BDNF-TrkB signaling (i.e., rs2049048 in BDNF and rs10217777 in NTRK2) and the glutamatergic and GABAergic systems (i.e., rs16966731 in GRIN2A) were associated with the rapid (within 240 min) and persistent (up to 2 weeks) antidepressant effect of low-dose ketamine infusion and with serum ketamine and norketamine levels. DISCUSSION Our findings confirmed the predictive roles of BDNF-TrkB signaling and glutamatergic and GABAergic systems in the underlying mechanisms of low-dose ketamine infusion for TRD treatment.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|
106
|
Phillips KF, Deshpande LS. Calcium Hypothesis of Gulf War Illness: Role of Calcium Ions in Neurological Morbidities in a DFP-Based Rat Model for Gulf War Illness. Neurosci Insights 2020; 15:2633105520979841. [PMID: 33354668 PMCID: PMC7734545 DOI: 10.1177/2633105520979841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Gulf War Illness (GWI) refers to a multi-system disorder that afflicts approximately 30% of First Gulf War (GW) veterans. Amongst the symptoms exhibited, mood and memory impairment are commonly reported by GW veterans. Exposure to organophosphate (OP) compounds which target the cholinergic system is considered a leading cause for GWI symptoms. It is hypothesized that chronic OP-based war-time stimulation of cholinergic signaling led to recruitment of excitatory glutamatergic signaling and other downstream signaling cascades leading to neuronal injury, neuroinflammation, generation of reactive oxygen species, oxidative stress, and mitochondrial damage within the central nervous system. These findings have been observed in both experimental models and GWI veterans. In this context the role of calcium (Ca2+) signaling in GWI has come to the forefront. Here we present our Ca2+ hypothesis of GWI that suggests sustained neuronal Ca2+ elevations serve as a molecular trigger for pathological synaptic plasticity that has allowed for the persistence of GWI symptoms. Subsequently we discuss that therapeutic targeting of Ca2+ homeostatic mechanisms provides novel targets for effective treatment of GWI-related neurological signs in our rodent model.
Collapse
Affiliation(s)
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, USA
- Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
107
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar-Kyoto rats. J Psychopharmacol 2020; 34:1418-1430. [PMID: 33200659 PMCID: PMC7708672 DOI: 10.1177/0269881120967857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The chronic mild stress (CMS) procedure is a widely used animal model of depression, and its application in Wistar-Kyoto (WKY) rats has been validated as a model of antidepressant-refractory depression. While not responding to chronic treatment with antidepressant drugs, WKY rats do respond to acute deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC). In antidepressant-responsive strains there is evidence suggesting a role for AMPA subtype of glutamate receptor in the action mechanism of both antidepressants and DBS. METHODS Animals were subjected to CMS for 6 to 8 weeks; sucrose intake was monitored weekly and novel object recognition (NOR) test was conducted following recovery from CMS. Wistars were treated chronically with venlafaxine (VEN), while WKY were treated acutely with either DBS, optogenetic stimulation (OGS) of virally-transduced (AAV5-hSyn-ChR2-EYFP) mPFC or ventral hippocampus, or acute intra-mPFC injection of the AMPA receptor positive allosteric modulator CX-516. The AMPA receptor antagonist NBQX was administered, at identical sites in mPFC, immediately following the exposure trial in the NOR. RESULTS Sucrose intake and NOR were suppressed by CMS, and restored by VEN in Wistars and by DBS, OGS, or CX-516 in WKY. However, OGS of the ventral hippocampal afferents to mPFC was ineffective. A low dose of NBQX selectively blocked the procognitive effect of VEN, DBS and OGS. CONCLUSIONS These results suggest that activation of AMPA receptors in the mPFC represents a common pathway for the antidepressant effects of both conventional (VEN) and novel (DBS, OGS) antidepressant modalities, in both antidepressant responsive (Wistar) and antidepressant-resistant (WKY) rats.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
108
|
Rapid acting antidepressants in the mTOR pathway: Current evidence. Brain Res Bull 2020; 163:170-177. [DOI: 10.1016/j.brainresbull.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
|
109
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
110
|
Ribeiro ACR, Zhu J, Kronfol MM, Jahr FM, Younis RM, Hawkins E, McClay JL, Deshpande LS. Molecular mechanisms for the antidepressant-like effects of a low-dose ketamine treatment in a DFP-based rat model for Gulf War Illness. Neurotoxicology 2020; 80:52-59. [PMID: 32592718 DOI: 10.1016/j.neuro.2020.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
Exposure to organophosphates (OP) during the First Gulf War is among one of the factors for Gulf War Illness (GWI) development in veterans and it has been challenging to treat GWI symptoms with existing therapies. Ketamine produces a rapid-onset and sustained antidepressant response, but there is no evidence whether ketamine treatment is effective for GWI depression. Repeated, low-dose exposure to diisopropyl fluorophosphate (DFP) mimic Gulf War related OP exposures and produces a chronic depressive state in rats. In this study, DFP-exposed rats treated with ketamine (10 mg/kg, i.p.) exhibited antidepressant-like effect on the Forced Swim Test at 1-h. This effect persisted at 24-h post ketamine, a time-point by which it is eliminated from the brain suggesting involvement of mechanisms that affect long-term synaptic plasticity. Western blot analysis showed significantly lower Brain-Derived Neurotrophic Factor (BDNF) levels in DFP rat brains. Ketamine produced a nonsignificant increase in BDNF expression at 1-h but produced a larger, significant (2.2-fold) increase at 24-h in DFP rats. We previously reported chronic hippocampal calcium elevations ([Ca2+]i) in DFP rats. Ketamine-treated DFP rats exhibited significantly lower [Ca2+]i at 1-h but not at 24-h. Interestingly, treatment with ANA-12, a TrkB-BDNF receptor antagonist, in DFP rats blunted ketamine's antidepressant-like effect at 24-h but not at 1-h. These experiments suggest that in a rat model of DFP-induced depression, inhibition of the NMDAR-Ca2+ contributes to the rapid-onset antidepressant effects of ketamine while the antidepressant actions that persisted at 24-h post ketamine administration involve upregulation of BDNF signaling.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jackie Zhu
- Department of Biology, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamad M Kronfol
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Fay M Jahr
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabha M Younis
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisa Hawkins
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
111
|
Fujita Y, Hashimoto K. Decreased bone mineral density in ovariectomized mice is ameliorated after subsequent repeated intermittent administration of (R)-ketamine, but not (S)-ketamine. Neuropsychopharmacol Rep 2020; 40:401-406. [PMID: 32812706 PMCID: PMC7722686 DOI: 10.1002/npr2.12132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Aim Depression is a common symptom in people with osteoporosis. (R)‐ketamine produced greater potency and longer‐lasting antidepressant‐like actions than (S)‐ketamine in rodents. Here, we examined the effects of two ketamine enantiomers on the reduced bone mineral density (BMD) in the ovariectomized (OVX) mice which is an animal model of postmenopausal osteoporosis. Methods Female ddY mice were OVX or sham‐operated. Subsequently, saline (10 mL/kg/d, twice weekly), (R)‐ketamine (10 mg/kg/d, twice weekly), or (S)‐ketamine (10 mg/kg/d, twice weekly) was administered intraperitoneally into OVX or sham mice for the 6 weeks. The femur from all mice was collected 3 days after the final injection, and BMD in the femur was measured. Results The reduction of cortical BMD and total BMD in the OVX mice was significantly ameliorated after subsequent repeated intermittent administration of (R)‐ketamine, but not (S)‐ketamine. Conclusion The study shows that (R)‐ketamine can ameliorate the reduced cortical BMD and total BMD in OVX mice. Therefore, (R)‐ketamine would be a novel therapeutic drug for women with osteoporosis. (R)‐ketamine, but not (S)‐ketamine, ameliorated decreased bone mineral density in ovariectomized mice. Therefore, (R)‐ketamine would be a novel therapeutic drug for women with osteoporosis.
![]()
Collapse
Affiliation(s)
- Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
112
|
Antidepressant and anti-amnesic effects of the aqueous lyophilisate of the leaves of Leptadenia arborea on an animal model of cognitive deficit associated depression. Biomed Pharmacother 2020; 130:110603. [PMID: 34321164 DOI: 10.1016/j.biopha.2020.110603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/28/2022] Open
Abstract
Leptadenia arborea (Asclepiadaceae) is a plant used in traditional medicine to treat syphilis, migraine, and mental illnesses. The aim of our study was to investigate possible antidepressant and anti-amnesic effects of the aqueous lyophilisate of the leaves of Leptadenia arborea in an animal model of cognitive deficit associated depression. Swiss albino adult mice of both sexes were used for this study. A 14-day combined stress model was used to induce depression with early cognitive deficits. The forced swimming test, the open field test and plasma corticosterone level were used to assess antidepressant-like effect. The novel object recognition task (NORT), the Morris Water Maze (MWM) and neurochemical analysis of hippocampal acetylcholinesterase activity was also carried out to assess memory integrity. The aqueous lyophelisate of L. arborea increased swimming time and decreased immobility time in the forced swimming test. In the open field test they was no difference in the number of lines crossed between groups, and the lyophilisate-treated mice spent more time in the centre compared to the control. The lyophilisate decreased the plasma level of corticosterone compared to the control. The lyophilisate decreased the latency to reach the hidden platform and increased the time spent in the target quadrant in the MWM. The lyophilisate also increased the time of exploration of the novel object in the NORT and decreased the acetylcholinesterase activity in the hippocampus. L. arborea effects were decreased when it was co-administered with pCPA. Results suggest that the aqueous lyophilisate of the leaves of L. arborea possess antidepressant-like and anti-amnesic effects.
Collapse
|
113
|
Popik P, Khoo SYS, Kuziak A, Golebiowska J, Potasiewicz A, Hogendorf A, Popik O, Matloka M, Moszczynski R, Nikiforuk A, Witkin JM. Distinct cognitive and discriminative stimulus effects of ketamine enantiomers in rats. Pharmacol Biochem Behav 2020; 197:173011. [PMID: 32758523 DOI: 10.1016/j.pbb.2020.173011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
Abstract
Although (S)-ketamine was approved for use in treatment-resistant depression in 2019, new preclinical findings suggest that (R)-ketamine might produce better efficacy and tolerability relative to (S)-ketamine. Here we evaluated the effects of (R)-, (S)-, and (R,S)-ketamine on executive functions as measured in the attentional set shifting task (ASST) and on their discriminative stimulus effects in rats. Earlier data demonstrated that cognitive flexibility is compromised by (R,S)-ketamine, but the effects of enantiomers in rats are unknown. Separate cohorts of rats were tested in ASST and trained to discriminate either (R,S)-ketamine, (S)-ketamine, or (R)-ketamine (all at 10 mg/kg) from saline; in order to maintain the discrimination, a higher (R)-ketamine dose (17.5 mg/kg) was subsequently instituted. In ASST, all three forms increased the trials to criterion measure at reversal learning and extra-dimensional set-shifting phases. However, in contrast to (R)- and (S)-ketamine, (R,S)-ketamine prolonged the mean time to complete a single trial during early stages, suggesting increased reaction time, and/or unspecific side-effects related to motor or motivational impairments. In the drug discriminations, all rats acquired their respective discriminations between drug and saline. In (R,S)-ketamine-trained rats, (R)-ketamine and (S)-ketamine only partially substituted for the training dose of (R,S)-ketamine. Further, (R)-ketamine did not fully substitute in rats trained to (S)-ketamine. The data suggest more serious cognitive deficits produced by (R,S)-ketamine than its enantiomers. Furthermore, (R,S)-ketamine and its isomers share overlapping but not isomorphic discriminative stimulus effects predicting distinct subjective responses to (R)- vs. (S)-ketamine in humans.
Collapse
Affiliation(s)
- Piotr Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Shaun Yon-Seng Khoo
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Agata Kuziak
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Joanna Golebiowska
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agnieszka Potasiewicz
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Adam Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Oskar Popik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | | | | | - Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Jeffrey M Witkin
- Department of Neuroscience, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Department of Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
114
|
Pochwat B, Domin H, Rafało-Ulińska A, Szewczyk B, Nowak G. Ketamine and Ro 25-6981 Reverse Behavioral Abnormalities in Rats Subjected to Dietary Zinc Restriction. Int J Mol Sci 2020; 21:ijms21134791. [PMID: 32640759 PMCID: PMC7369754 DOI: 10.3390/ijms21134791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical and preclinical studies indicate that zinc (Zn) is an essential factor in the development and treatment of major depressive disorder (MDD). Conventional monoamine-based antidepressants mobilize zinc in the blood and brain of depressed patients as well as rodents. N-methyl-D-aspartate acid receptor (NMDAR) antagonists exhibit antidepressant-like activity. However, not much is known about the antidepressant efficacy of NMDAR antagonists in zinc-deficient (ZnD) animals. We evaluated the antidepressant-like activity of two NMDAR antagonists (ketamine; global NMDAR antagonist and Ro 25-6981 (Ro); selective antagonist of the GluN2B NMDAR subunit) in ZnD rats using the forced swim test (FST) and sucrose intake test (SIT). A single dose of either Ro 25-6981 or ketamine normalized depressive-like behaviors in ZnD rats; however, Ro was effective in both tests, while ketamine was only effective in the FST. Additionally, we investigated the mechanism of antidepressant action of Ro at the molecular (analysis of protein expression by Western blotting) and anatomical (density of dendritic spines by Golgi Cox-staining) levels. ZnD rats exhibited decreased phosphorylation of the p70S6K protein, and enhanced density of dendritic spines in the prefrontal cortex (PFC) compared to control rats. The antidepressant-like activity of Ro was associated with the increased phosphorylation of p70S6K and ERK in the PFC. In summary, single doses of the NMDAR antagonists ketamine and Ro exhibited antidepressant-like activity in the ZnD animal model of depression. Animals were only deprived of Zn for 4 weeks and the biochemical effects of Zn deprivation and Ro were investigated in the PFC and hippocampus. The shorter duration of dietary Zn restriction may be a limitation of the study. However, future studies with longer durations of dietary Zn restriction, as well as the investigation of multiple brain structures, are encouraged as a supplement to this study.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna street 12, 31-343 Krakow, Poland; (A.R.-U.); (B.S.)
- Correspondence: (B.P.); (G.N.); Tel.: +48-126623362 (B.P.); +48-126623215 (G.N.); Fax: +48-126374500 (B.P. & G.N.)
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Smetna street 12, 31-343 Krakow, Poland;
| | - Anna Rafało-Ulińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna street 12, 31-343 Krakow, Poland; (A.R.-U.); (B.S.)
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna street 12, 31-343 Krakow, Poland; (A.R.-U.); (B.S.)
| | - Gabriel Nowak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna street 12, 31-343 Krakow, Poland; (A.R.-U.); (B.S.)
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (B.P.); (G.N.); Tel.: +48-126623362 (B.P.); +48-126623215 (G.N.); Fax: +48-126374500 (B.P. & G.N.)
| |
Collapse
|
115
|
Gao S, Gao X, Wu Z, Li H, Yang Z, Zhang F. Process for ( S)-Ketamine and ( S)-Norketamine via Resolution Combined with Racemization. J Org Chem 2020; 85:8656-8664. [PMID: 32510222 DOI: 10.1021/acs.joc.0c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A concise, recyclable, and efficient process is presented for the preparation of (S)-ketamine (esketamine, (S)-1a) via classic resolution combined with the recycling of the undesired isomer. With commercially available ketone 2 as the starting material, this procedure features three steps including (1) an unique hydroxylation-ring expansion rearrangement, (2) mild amination via methanesulfonate, and (3) chiral separation using L-(+)-tartaric acid. The three simple steps are all performed in mild conditions and (S)-1a tartrate is obtained in 99.5% ee without recrystallization. Subsequently, racemization of the unwanted (R)-1a remained in resolution mother liquor was performed in the presence of a Lewis acid in quantitative yield with >99.0% chemical purity. This original and economical process afforded esketamine in 67.4% (28.9% without racemization) overall yield with two times recycling of the mother liquor without column purification. In addition, this procedure can also be applied to the preparation of (S)-norketamine, which is a safer potential antidepressant.
Collapse
Affiliation(s)
- Shenghua Gao
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Xuezhi Gao
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Zenong Wu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Houyong Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Zhezhou Yang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Fuli Zhang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China.,College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| |
Collapse
|
116
|
Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol 2020; 177:113935. [DOI: 10.1016/j.bcp.2020.113935] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
|
117
|
Zhu J, Hawkins E, Phillips K, Deshpande LS. Assessment of Ketamine and Its Enantiomers in an Organophosphate-Based Rat Model for Features of Gulf War Illness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134710. [PMID: 32629972 PMCID: PMC7369928 DOI: 10.3390/ijerph17134710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/02/2023]
Abstract
Approximately 33% of U.S. soldiers from the first Gulf War suffer from a multi-system disorder known as the Gulf War Illness (GWI). GW veterans suffer from a cluster of symptoms that prominently include fatigue and can include mood-related symptoms. Compared to traditional antidepressants, ketamine (KET) produces a fast-onset and long-lasting antidepressant response, but assessments of KET for GWI-related depression are lacking. The etiology of GWI is multi-factorial and exposure to organophosphates (OP) during deployment is one of the factors underlying GWI development. Here, male Sprague-Dawley rats were repeatedly exposed to an OP DFP and three months later these rats, when assessed on a battery of rodent behavioral assays, displayed signs consistent with aspects of GWI characteristics. When treated with a sub-anesthetic dose of KET (3, 5, or 10 mg/kg, i.p.), DFP-treated rats exhibited a significant improvement in immobility time, open-arm exploration, and sucrose consumption as early as 1 h and much of these effects persisted at 24-h post-KET injection. KET's stereoisomers, R-KET and S-KET, also exhibited such effects in DFP rats, with R-KET being the more potent isomer. Our studies provide a starting point for further assessment of KET for GWI depression.
Collapse
Affiliation(s)
- Jackie Zhu
- Department of Biology, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Elisa Hawkins
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Kristin Phillips
- School of Neuroscience, Virginia Tech, Blacksburg, VA 23298, USA;
| | - Laxmikant S. Deshpande
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +804-828-3392; Fax: +804-828-6432
| |
Collapse
|
118
|
Liang H, Tang WK, Chu WCW, Ernst T, Chen R, Chang L. Striatal and white matter volumes in chronic ketamine users with or without recent regular stimulant use. Drug Alcohol Depend 2020; 213:108063. [PMID: 32498030 PMCID: PMC7686125 DOI: 10.1016/j.drugalcdep.2020.108063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies found enlarged striatum and white matter in those with stimulants use disorders. Whether primarily ketamine users (Primarily-K) and ketamine users who co-used stimulants and other substances (K+PolyS) have abnormal brain volumes is unknown. This study aims to evaluate possible brain structural abnormalities, cognitive function and depressive symptoms, between Primarily-K and K+PolyS users. METHODS Striatal and white matter volumes were automatically segmented in 39 Primarily-K users, 41 K+PolyS users and 46 non-drug users (ND). Cognitive performance in 7 neurocognitive domains and depressive symptoms were also evaluated. RESULTS Ketamine users had larger caudates than ND-controls (Right: 1-way-ANCOVA-p=0.035; K+PolyS vs. ND, p=0.030; Linear trend for K+PolyS>Primarily-K>ND, p=0.011; Left: 1-way-ANCOVA-p=0.047, Primarily-K vs. ND p=0.051) and larger total white matter (1-way ANCOVA-p=0.009, Poly+K vs. Primarily-K, p=0.05; Poly+K vs. ND p=0.011; Linear trend for K+PolyS>Primarily-K >ND, p=0.004). Across all ketamine users, they performed poorer on Arithmetic, learning and memory tasks, and were more depressed than Non-users (p<0.001 to p=0.001). Greater lifetime ketamine usage correlated with more depressive symptoms (r=0.27, p=0.008). Larger white matter correlated with better learning across all participants (r=0.21, p=0.019), while larger right caudate correlated with lower depression scores in ketamine users (r=-0.28, p=0.013). CONCLUSION Ketamine users had larger caudates and total white matter than ND-controls. The even larger white matter in K+PolyS users suggests additive effects from co-use of ketamine and stimulants. However, across the ketamine users, since greater volumes were associated with better learning and less depressive symptom, the enlarged caudates and white matter might represent a compensatory response.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Winnie CW Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201 USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine,University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
119
|
Are NMDA and opioid receptors involved in the antidepressant actions of ketamine? Proc Natl Acad Sci U S A 2020; 117:11200-11201. [PMID: 32430328 DOI: 10.1073/pnas.2001264117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
120
|
Risk of psychosis after repeated intermittent administration of (S)-ketamine, but not (R)-ketamine, in mice. J Affect Disord 2020; 269:198-200. [PMID: 32339136 DOI: 10.1016/j.jad.2020.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
|
121
|
Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 2020; 10:2045125320916657. [PMID: 32440333 PMCID: PMC7225830 DOI: 10.1177/2045125320916657] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine, a drug introduced in the 1960s as an anesthetic agent and still used for that purpose, has garnered marked interest over the past two decades as an emerging treatment for major depressive disorder. With increasing evidence of its efficacy in treatment-resistant depression and its potential anti-suicidal action, a great deal of investigation has been conducted on elucidating ketamine's effects on the brain. Of particular interest and therapeutic potential is the ability of ketamine to exert rapid antidepressant properties as early as several hours after administration. This is in stark contrast to the delayed effects observed with traditional antidepressants, often requiring several weeks of therapy for a clinical response. Furthermore, ketamine appears to have a unique mechanism of action involving glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity. This paper provides a brief overview of ketamine with regard to pharmacology/pharmacokinetics, toxicology, the current state of clinical trials on depression, postulated antidepressant mechanisms and potential biomarkers (biochemical, inflammatory, metabolic, neuroimaging sleep-related and cognitive) for predicting response to and/or monitoring of therapeutic outcome with ketamine.
Collapse
Affiliation(s)
- Dmitriy Matveychuk
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Rejish K. Thomas
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Swainson
- Misericordia Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Khullar
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, 12-105B Clin Sci Bldg, Edmonton, Alberta T6G 2G3, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Grey Nuns Community Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
122
|
Peng FZ, Fan J, Ge TT, Liu QQ, Li BJ. Rapid anti-depressant-like effects of ketamine and other candidates: Molecular and cellular mechanisms. Cell Prolif 2020; 53:e12804. [PMID: 32266752 PMCID: PMC7260066 DOI: 10.1111/cpr.12804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder takes at least 3 weeks for clinical anti‐depressants, such as serotonin selective reuptake inhibitors, to take effect, and only one‐third of patients remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive disorder patients in a short time and is reported to be effective to treatment‐resistant depression patients. The rapid and strong anti‐depressant‐like effects of ketamine cause wide concern. In addition to ketamine, caloric restriction and sleep deprivation also elicit similar rapid anti‐depressant‐like effects. However, mechanisms about the rapid anti‐depressant‐like effects remain unclear. Elucidating the mechanisms of rapid anti‐depressant effects is the key to finding new therapeutic targets and developing therapeutic patterns. Therefore, in this review we summarize potential molecular and cellular mechanisms of rapid anti‐depressant‐like effects based on the pre‐clinical and clinical evidence, trying to provide new insight into future therapy.
Collapse
Affiliation(s)
- Fan Zhen Peng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Qian Qian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
123
|
(S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Pharmacol Biochem Behav 2020; 191:172876. [DOI: 10.1016/j.pbb.2020.172876] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023]
|
124
|
Neuronal brain injury after cerebral ischemic stroke is ameliorated after subsequent administration of (R)-ketamine, but not (S)-ketamine. Pharmacol Biochem Behav 2020; 191:172904. [DOI: 10.1016/j.pbb.2020.172904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
125
|
Gao S, Gao X, Yang Z, Zhang F. Process Research and Impurity Control Strategy of Esketamine. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shenghua Gao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Xuezhi Gao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Zhezhou Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, China
| |
Collapse
|
126
|
The Impact of Nutrition and Intestinal Microbiome on Elderly Depression-A Systematic Review. Nutrients 2020; 12:nu12030710. [PMID: 32156003 PMCID: PMC7146624 DOI: 10.3390/nu12030710] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this review is to systematically review the evidence whether proper nutrition has a positive impact on the prevention or decline of depressive symptoms among elderly people. In addition, possible connections between nutrition, microbiome, and serotonin molecules and its tryptophan precursor are discussed. The methodology follows the PRISMA guidelines, including the PRISMA flow chart. The authors systematically reviewed peer-review, English-written articles published in Web of Science and PubMed between 2013 and 2018. The findings of six original articles, detected on the set inclusion and exclusion criteria, indicate that there is an association between nutrition and depressive symptoms in the target group, i.e., that proper nutrition has a positive impact on the prevention or reduction of depressive symptoms among elderly people. The findings also reveal that there is a considerable correlation between the intakes of vitamin B and a decrease in the prevalence of depressive symptoms. Furthermore, sufficient nutrient intake of tryptophan appears to be an important factor in terms of nutrition and serotonin levels in the body. The authors consider it important to explore associations between the overall dietary intake and depression since diets are not consumed as individual nutrients. Returning to preventive approaches seems to be a rational way to promote the mental health of seniors. Future studies thus need to include interdisciplinary collaboration: from a good diagnosis of the disease by a psychiatrist, through an analysis of the need for nutrient metabolism by a biochemist to the development of a nutritional plan by a nutritional therapist. The limitations of this review consist in a relatively small number of the studies on this topic, including just few randomized controlled trials, which are a guarantee of efficacy and objectivity in comparison with cross-sectional studies.
Collapse
|
127
|
Wei Y, Chang L, Hashimoto K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav 2020; 190:172870. [DOI: 10.1016/j.pbb.2020.172870] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
|
128
|
Brain-derived neurotrophic factor-TrkB signaling and the mechanism of antidepressant activity by ketamine in mood disorders. Eur Arch Psychiatry Clin Neurosci 2020; 270:137-138. [PMID: 32008067 DOI: 10.1007/s00406-020-01095-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Yang Y, Maher DP, Cohen SP. Emerging concepts on the use of ketamine for chronic pain. Expert Rev Clin Pharmacol 2020; 13:135-146. [DOI: 10.1080/17512433.2020.1717947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yunpeng Yang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dermot P. Maher
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Steven P. Cohen
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
130
|
Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1. Transl Psychiatry 2020; 10:32. [PMID: 32066676 PMCID: PMC7026089 DOI: 10.1038/s41398-020-0733-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
In rodent models of depression, (R)-ketamine has greater potency and longer-lasting antidepressant effects than (S)-ketamine; however, the precise molecular mechanisms underlying the antidepressant actions of (R)-ketamine remain unknown. Using RNA-sequencing analysis, we identified novel molecular targets that contribute to the different antidepressant effects of the two enantiomers. Either (R)-ketamine (10 mg/kg) or (S)-ketamine (10 mg/kg) was administered to susceptible mice after chronic social defeat stress (CSDS). RNA-sequencing analysis of prefrontal cortex (PFC) and subsequent GSEA (gene set enrichment analysis) revealed that transforming growth factor (TGF)-β signaling might contribute to the different antidepressant effects of the two enantiomers. (R)-ketamine, but not (S)-ketamine, ameliorated the reduced expressions of Tgfb1 and its receptors (Tgfbr1 and Tgfbr2) in the PFC and hippocampus of CSDS susceptible mice. Either pharmacological inhibitors (i.e., RepSox and SB431542) or neutralizing antibody of TGF-β1 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Moreover, depletion of microglia by the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Similar to (R)-ketamine, the recombinant TGF-β1 elicited rapid and long-lasting antidepressant effects in animal models of depression. Our data implicate a novel microglial TGF-β1-dependent mechanism underlying the antidepressant effects of (R)-ketamine in rodents with depression-like phenotype. Moreover, TGF-β1 and its receptor agonists would likely constitute a novel rapid-acting and sustained antidepressant in humans.
Collapse
|
131
|
Wilkowska A, Szałach Ł, Cubała WJ. Ketamine in Bipolar Disorder: A Review. Neuropsychiatr Dis Treat 2020; 16:2707-2717. [PMID: 33209026 PMCID: PMC7670087 DOI: 10.2147/ndt.s282208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Bipolar disorder (BD) is a psychiatric illness associated with high morbidity, mortality and suicide rate. It has neuroprogressive course and a high rate of treatment resistance. Hence, there is an unquestionable need for new BD treatment strategies. Ketamine appears to have rapid antidepressive and antisuicidal effects. Since most of the available studies concern unipolar depression, here we present a novel insight arguing that ketamine might be a promising treatment for bipolar disorder.
Collapse
Affiliation(s)
- Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Szałach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
132
|
Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 2020; 188:172837. [PMID: 31830487 PMCID: PMC6997025 DOI: 10.1016/j.pbb.2019.172837] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies have demonstrated that depression, one of the most common psychiatric illnesses, is associated with reduced levels of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), contributing to neuronal atrophy in the prefrontal cortex (PFC) and hippocampus, and reduced hippocampal adult neurogenesis. Conventional monoaminergic antidepressants can block/reverse, at least partially, these deficits in part via induction of BDNF and/or VEGF, although these drugs have significant limitations, notably a time lag for therapeutic response and low response rates. Recent studies reveal that ketamine, an N-methyl-d-aspartate receptor antagonist produces rapid (within hours) and sustained (up to a week) antidepressant actions in both patients with treatment-resistant depression and rodent models of depression. Rodent studies also demonstrate that ketamine rapidly increases BDNF and VEGF release and/or expression in the medial PFC (mPFC) and hippocampus, leading to increase in the number and function of spine synapses in the mPFC and enhancement of hippocampal neurogenesis. These neurotrophic effects of ketamine are associated with the antidepressant effects of this drug. Together, these findings provide evidence for a neurotrophic mechanism underlying the rapid and sustained antidepressant actions of ketamine and pave the way for the development of rapid and more effective antidepressants with fewer side effects than ketamine.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
133
|
Hashimoto K. Impact of age on optimal dose of antidepressants. EClinicalMedicine 2020; 18:100233. [PMID: 31922121 PMCID: PMC6948222 DOI: 10.1016/j.eclinm.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
|
134
|
Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front Psychiatry 2020; 11:548505. [PMID: 33329087 PMCID: PMC7710541 DOI: 10.3389/fpsyt.2020.548505] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonin reuptake inhibitors and benzodiazepines are evidence-based pharmacological treatments for Anxiety Disorders targeting serotonin and GABAergic systems, respectively. Although clearly effective, these medications fail to improve anxiety symptoms in a significant proportion of patients. New insights into the glutamate system have directed attention toward drugs that modulate glutamate as potential alternative treatments for anxiety disorders. Here we summarize the current understanding of the potential role of glutamate neurotransmission in anxiety disorders and highlight specific glutamate receptors that are potential targets for novel anxiety disorder treatments. We also review clinical trials of medications targeting the glutamate system in DSM-5 anxiety disorders. Understanding the role of the glutamate system in the pathophysiology of anxiety disorder may aid in developing novel pharmacological agents that are effective in treating anxiety disorders.
Collapse
Affiliation(s)
- Madeeha Nasir
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Trujillo
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jessica Levine
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jennifer B Dwyer
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Zachary W Rupp
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
135
|
Tan Y, Fujita Y, Qu Y, Chang L, Pu Y, Wang S, Wang X, Hashimoto K. Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent repeated intermittent administration of (R)-ketamine, but not (S)-ketamine: Role of BDNF-TrkB signaling. Pharmacol Biochem Behav 2019; 188:172839. [PMID: 31866390 DOI: 10.1016/j.pbb.2019.172839] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/25/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) antagonists including phencyclidine (PCP) and ketamine produce cognitive deficits in rodents and humans. We previously reported that (R)-ketamine produced the beneficial effects compared to (S)-ketamine in several animal models including depression. Here we compared the effects of two enantiomers of ketamine on cognitive deficits in mice after repeated administration of PCP. PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were ameliorated by subsequent repeated intermittent administration of (R)-ketamine (10 mg/kg/day, twice weekly for 2-weeks), but not (S)-ketamine. Western blot analysis showed decreased levels of brain-derived neurotrophic factor (BDNF) and decreased ratio of phosphorylated-TrkB (p-TrkB) to TrkB in the prefrontal cortex (PFC) and hippocampus of PCP-treated mice. Furthermore, PCP-induced reduction of BDNF and p-TrkB/TrkB ratio in the PFC and hippocampus of PCP-treated mice was ameliorated by subsequent intermittent administration of (R)-ketamine. Interestingly, the beneficial effects of (R)-ketamine were blocked by pretreatment with TrkB inhibitor ANA-12. These findings suggest that (R)-ketamine could ameliorate PCP-induced cognitive deficits via activation of BDNF-TrkB signaling in the brain. Therefore, (R)-ketamine could be a potential therapeutic drug for cognitive impairment in patients with schizophrenia.
Collapse
Affiliation(s)
- Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
136
|
Beneficial effects of anti-RANKL antibody in depression-like phenotype, inflammatory bone markers, and bone mineral density in male susceptible mice after chronic social defeat stress. Behav Brain Res 2019; 379:112397. [PMID: 31790783 DOI: 10.1016/j.bbr.2019.112397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Multiple lines of evidence suggest a link between depression and osteoporosis in elderly people. Receptor activator of nuclear factor-κB ligand (RANKL) plays a role in the pathology of osteoporosis, and anti-RANKL antibody has been used in the treatment of osteoporosis. In this study, we investigated whether anti-mouse RANKL antibody could attenuate depression-like phenotypes, inflammatory bone markers and bone mineral density (BMD) in male susceptible mice after chronic social defeat stress (CSDS). We measured plasma levels of inflammatory bone markers, including osteoprotegerin (OPG), RANKL, and osteopontin. A single intravenous injection of anti-RANKL (2 mg/kg) elicited rapid antidepressant effects in CSDS susceptible mice. Furthermore, anti-RANKL significantly improved the increased plasma levels of RANKL and decreased OPG/RANKL ratio in CSDS susceptible mice. Moreover, anti-RANKL significantly attenuated the decreased BMD in CSDS susceptible mice. Interestingly, there is a positive correlation between anhedonia-like behavior and OPG/RANKL ratio in mice. These findings demonstrate that anti-RANKL may have beneficial effects in depression-like phenotype and abnormalities in bone functions of CSDS susceptible mice. It is, therefore, likely that anti-human RANKL antibody (i.e., Denosumab) would be a potential therapeutic drug for depression and osteoporosis.
Collapse
|