101
|
Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
103
|
Kato S, Garenne D, Noireaux V, Maeda YT. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021; 22:3451-3459. [PMID: 34258998 DOI: 10.1021/acs.biomac.1c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.
Collapse
Affiliation(s)
- Shuzo Kato
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
104
|
Zervoudis NA, Obermeyer AC. The effects of protein charge patterning on complex coacervation. SOFT MATTER 2021; 17:6637-6645. [PMID: 34151335 DOI: 10.1039/d1sm00543j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein's binodal phase boundary. Protein concentrations over 100 mg mL-1 were achieved in the coacervate phase, with concentrations dependent on the tag polypeptide sequence covalently attached to the globular protein domain. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids in the tag polypeptide sequence alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.
Collapse
Affiliation(s)
- Nicholas A Zervoudis
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
105
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
106
|
Zhao C, Li J, Wang S, Xu Z, Wang X, Liu X, Wang L, Huang X. Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria. ACS NANO 2021; 15:10048-10057. [PMID: 34047543 DOI: 10.1021/acsnano.1c01694] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coacervate-based membraneless organelles with diverse functionality as well as the capability of mimicking intracellular physiological environments are attracting researchers' great interest. However, the further studies focusing on functionalized membranization of coacervate as a step toward an advanced membrane-bound protocell are still rare. In this study, we develop a way to compartmentalize coacervate based on reconstitution with a natural cellular wall, which could then serve as a promising chassis for the development of protocells with selective sequestration of various biomacromolecules. Significantly, the compartmentalized protocell could behave like a phagocyte and selectively capture, engulf, and then kill Escherichia coli efficiently. Taken together, our studies present a strategy for advancing coacervate-based protocell design as well as the development of smart materials with on-demand functionalization.
Collapse
Affiliation(s)
- Chunyu Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
107
|
Nakashima KK, van Haren MHI, André AAM, Robu I, Spruijt E. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat Commun 2021; 12:3819. [PMID: 34155210 PMCID: PMC8217494 DOI: 10.1038/s41467-021-24111-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
Active coacervate droplets are liquid condensates coupled to a chemical reaction that turns over their components, keeping the droplets out of equilibrium. This turnover can be used to drive active processes such as growth, and provide an insight into the chemical requirements underlying (proto)cellular behaviour. Moreover, controlled growth is a key requirement to achieve population fitness and survival. Here we present a minimal, nucleotide-based coacervate model for active droplets, and report three key findings that make these droplets into evolvable protocells. First, we show that coacervate droplets form and grow by the fuel-driven synthesis of new coacervate material. Second, we find that these droplets do not undergo Ostwald ripening, which we attribute to the attractive electrostatic interactions and translational entropy within complex coacervates, active or passive. Finally, we show that the droplet growth rate reflects experimental conditions such as substrate, enzyme and protein concentration, and that a different droplet composition (addition of RNA) leads to altered growth rates and droplet fitness. These findings together make active coacervate droplets a powerful platform to mimic cellular growth at a single-droplet level, and to study fitness at a population level.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
108
|
Agarwal S, Klocke MA, Pungchai PE, Franco E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat Commun 2021; 12:3557. [PMID: 34117248 PMCID: PMC8196065 DOI: 10.1038/s41467-021-23850-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bottom-up synthetic biology aims to engineer artificial cells capable of responsive behaviors by using a minimal set of molecular components. An important challenge toward this goal is the development of programmable biomaterials that can provide active spatial organization in cell-sized compartments. Here, we demonstrate the dynamic self-assembly of nucleic acid (NA) nanotubes inside water-in-oil droplets. We develop methods to encapsulate and assemble different types of DNA nanotubes from programmable DNA monomers, and demonstrate temporal control of assembly via designed pathways of RNA production and degradation. We examine the dynamic response of encapsulated nanotube assembly and disassembly with the support of statistical analysis of droplet images. Our study provides a toolkit of methods and components to build increasingly complex and functional NA materials to mimic life-like functions in synthetic cells.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Melissa A Klocke
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Passa E Pungchai
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
109
|
Huang Y, Wang X, Li J, Lin Y, Chen H, Liu X, Huang X. Reversible Light‐Responsive Coacervate Microdroplets with Rapid Regulation of Enzymatic Reaction Rate. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
110
|
Mu W, Ji Z, Zhou M, Wu J, Lin Y, Qiao Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. SCIENCE ADVANCES 2021; 7:eabf9000. [PMID: 34049872 PMCID: PMC8163073 DOI: 10.1126/sciadv.abf9000] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 05/04/2023]
Abstract
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
111
|
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021; 15:664151. [PMID: 33967699 PMCID: PMC8096919 DOI: 10.3389/fncel.2021.664151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the C9orf72 repeat expansion mutation as causative for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in 2011, a multitude of cellular pathways have been implicated. However, evidence has also been accumulating for a key mechanism of cellular compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is fundamental for the formation of membraneless organelles including stress granules, the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear pore. Evidence has now accumulated showing that the formation and function of these membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation and disrupt the physiological phase separation of proteins involved in the formation of these liquid-like organelles. Hence abnormal phase separation may explain a number of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review article, we will discuss the principles of phase separation, phase separation of the DPRs and repeat RNA themselves and how they perturb LLPS associated with membraneless organelles and the functional consequences of this. We will then discuss how phase separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43 proteinopathy, and how LLPS may be targeted therapeutically in disease.
Collapse
Affiliation(s)
- Daniel A Solomon
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Rebekah Smikle
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
112
|
Affiliation(s)
- Yuhui Chen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
113
|
Yewdall NA, André AA, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101416] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
114
|
Can coacervation unify disparate hypotheses in the origin of cellular life? Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101415] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
115
|
Wang X, Zhang P, Tian L. Spatiotemporal organization of coacervate microdroplets. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
116
|
|
117
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
118
|
Bao P, Paterson DA, Peyman SA, Jones JC, Sandoe JAT, Gleeson HF, Evans SD, Bushby RJ. Production of giant unilamellar vesicles and encapsulation of lyotropic nematic liquid crystals. SOFT MATTER 2021; 17:2234-2241. [PMID: 33469638 DOI: 10.1039/d0sm01684e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We describe a modified microfluidic method for making Giant Unilamellar Vesicles (GUVs) via water/octanol-lipid/water double emulsion droplets. At a high enough lipid concentration we show that the de-wetting of the octanol from these droplets occurs spontaneously (off-chip) without the need to use shear to aid the de-wetting process. The resultant mixture of octanol droplets and GUVs can be separated by making use of the buoyancy of the octanol. A simpler microfluidic device and pump system can be employed and, because of the higher flow-rates and much higher rate of formation of the double emulsion droplets (∼1500 s-1 compared to up to ∼75 s-1), it is easier to make larger numbers of GUVs and larger volumes of solution. Because of the potential for using GUVs that incorporate lyotropic nematic liquid crystals in biosensors we have used this method to make GUVs that incorporate the nematic phases of sunset yellow and disodium chromoglycate. However, the phase behaviour of these lyotropic liquid crystals is quite sensitive to concentration and we found that there is an unexpected spread in the concentration of the contents of the GUVs obtained.
Collapse
Affiliation(s)
- Peng Bao
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel A Paterson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK and Leeds Institute of Medical Research, University of Leeds, Leeds, LS2 9JT, UK
| | - J Cliff Jones
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan A T Sandoe
- Leeds Institute of Medical Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
119
|
Seo H, Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. BIOMICROFLUIDICS 2021; 15:021301. [PMID: 33833845 PMCID: PMC8012066 DOI: 10.1063/5.0048441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in droplet microfluidics have led to the fabrication of versatile vesicles with a structure that mimics the cellular membrane. These artificial cell-like vesicles including polymersomes and liposomes effectively enclose an aqueous core with well-defined size and composition from the surrounding environment to implement various biological reactions, serving as a diverse functional reactor. The advantage of realizing various biological phenomena within a compartment separated by a membrane that resembles a natural cell membrane is actively explored in the fields of synthetic biology as well as biomedical applications including drug delivery, biosensors, and bioreactors, to name a few. In this Perspective, we first summarize various methods utilized in producing these polymersomes and liposomes. Moreover, we will highlight some of the recent advances in the design of these artificial cell-like vesicles for functional bioreactors and discuss the current issues and future perspectives.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
120
|
van Stevendaal MHME, Vasiukas L, Yewdall NA, Mason AF, van Hest JCM. Engineering of Biocompatible Coacervate-Based Synthetic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7879-7889. [PMID: 33587612 PMCID: PMC7908014 DOI: 10.1021/acsami.0c19052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Polymer-stabilized complex coacervate microdroplets have emerged as a robust platform for synthetic cell research. Their unique core-shell properties enable the sequestration of high concentrations of biologically relevant macromolecules and their subsequent release through the semipermeable membrane. These unique properties render the synthetic cell platform highly suitable for a range of biomedical applications, as long as its biocompatibility upon interaction with biological cells is ensured. The purpose of this study is to investigate how the structure and formulation of these coacervate-based synthetic cells impact the viability of several different cell lines. Through careful examination of the individual synthetic cell components, it became evident that the presence of free polycation and membrane-forming polymer had to be prevented to ensure cell viability. After closely examining the structure-toxicity relationship, a set of conditions could be found whereby no detrimental effects were observed, when the artificial cells were cocultured with RAW264.7 cells. This opens up a range of possibilities to use this modular system for biomedical applications and creates design rules for the next generation of coacervate-based, biomedically relevant particles.
Collapse
Affiliation(s)
- Marleen H. M. E. van Stevendaal
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - Laurynas Vasiukas
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - N. Amy Yewdall
- Institute
for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Alexander F. Mason
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| |
Collapse
|
121
|
Pavlovic M, Antonietti M, Zeininger L. Cascade communication in disordered networks of enzyme-loaded microdroplets. Chem Commun (Camb) 2021; 57:1631-1634. [PMID: 33459334 DOI: 10.1039/d0cc08310k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A network of aqueous emulsion droplets that exhibits programmed and directional chemical inter-droplet communication is described. A non-reciprocal transfer of substrates between enzyme-containing aqueous emulsion droplets is realized by (biochemically) induced osmolarity gradients and concomitant concentration gradients are used to direct a multistep enzymatic cascade reaction across multiple droplets.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
122
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
123
|
Karoui H, Seck MJ, Martin N. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Chem Sci 2021; 12:2794-2802. [PMID: 34164043 PMCID: PMC8179374 DOI: 10.1039/d0sc06418a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Membraneless organelles are phase-separated droplets that are dynamically assembled and dissolved in response to biochemical reactions in cells. Complex coacervate droplets produced by associative liquid-liquid phase separation offer a promising approach to mimic such dynamic compartmentalization. Here, we present a model for membraneless organelles based on enzyme/polyelectrolyte complex coacervates able to induce their own condensation and dissolution. We show that glucose oxidase forms coacervate droplets with a cationic polysaccharide on a narrow pH range, so that enzyme-driven monotonic pH changes regulate the emergence, growth, decay and dissolution of the droplets depending on the substrate concentration. Significantly, we demonstrate that time-programmed coacervate assembly and dissolution can be achieved in a single-enzyme system. We further exploit this self-driven enzyme phase separation to produce multiphase droplets via dynamic polyion self-sorting in the presence of a secondary coacervate phase. Taken together, our results open perspectives for the realization of programmable synthetic membraneless organelles based on self-regulated enzyme/polyelectrolyte complex coacervation.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Marianne J Seck
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| |
Collapse
|
124
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
125
|
Ding P, Chen L, Wei C, Zhou W, Li C, Wang J, Wang M, Guo X, Cohen Stuart MA, Wang J. Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Macromol Rapid Commun 2020; 42:e2000635. [PMID: 33368740 DOI: 10.1002/marc.202000635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte complex nanoparticles with integrated advances of coacervate complexes and nanomaterials have attracted considerable attention as soft templates and functional nano-carriers. Herein, a facile and robust strategy, namely electrostatic assembly directed polymerization (EADP), for efficient and scalable preparation of stable coacervate nanoparticles is presented. With homo-polyelectrolyte PAA (polyacrylic acid) as template and out of charge stoichiometry, the cationic monomers are polymerized together with cross-linkers, which creates coacervate nanoparticles featuring high stability against salt through one-pot synthesis. The particle size can be tuned by varying the cross-linker amount and salt concentrations during the polymerization and the composition of nanoparticles, as well as the corresponding properties can be regulated by combining different charged blocks from both strong and weak ionic monomers. The strategy can tolerate both high monomer concentrations and increased volume of up to l L, which is favorable for scaled-up preparations. Moreover, the coacervate nanoparticles can be freeze-dried to produce a product in powder form, which can be redispersed without any effect on the particle size and size distribution. Finally, the obtained nanoparticles loaded with enzyme and Au nanoparticles exhibit enhanced catalytic performance, demonstrating a great potential for exploring various applications of coacervate particles as soft and functional nano-carriers.
Collapse
Affiliation(s)
- Peng Ding
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lusha Chen
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Cheng Wei
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chendan Li
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiahua Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
126
|
Altenburg WJ, Yewdall NA, Vervoort DFM, van Stevendaal MHME, Mason AF, van Hest JCM. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nat Commun 2020; 11:6282. [PMID: 33293610 PMCID: PMC7722712 DOI: 10.1038/s41467-020-20124-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.
Collapse
Affiliation(s)
- Wiggert J Altenburg
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - N Amy Yewdall
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Daan F M Vervoort
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Marleen H M E van Stevendaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
127
|
Deng J, Walther A. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation. Chem 2020; 6:3329-3343. [PMID: 35252623 PMCID: PMC7612463 DOI: 10.1016/j.chempr.2020.09.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multivalency-driven liquid-liquid phase separation (LLPS) is essential in biomolecular condensates to facilitate spatiotemporal regulation of biological functions. Providing programmable model systems would help to better understand the LLPS processes in biology, and furnish new types of compartmentalized synthetic reaction crucibles that exploit biological principles. Herein, we demonstrate a concept for programming LLPS using transient multivalency between ATP-driven sequence-defined functionalized nucleic acid polymers (SfNAPs), which serve as simple models for membrane-less organelles. The ATP-driven SfNAPs are transiently formed by an enzymatic reaction network (ERN) of concurrent ATP-powered DNA ligation and DNA restriction. The lifetimes can be programmed by the ATP concentration, which manifests on the LLPS length scale in tunable lifetimes for the all-DNA coacervates. Critically, the prominent programmability of the DNA-based building blocks allows to encode distinct molecular recognitions for multiple multivalent systems, enabling sorted LLPS and thus multicomponent DNA coacervates, reminiscent of the diverse membraneless organelles in biological systems. The ATP-driven coacervates are capable for multivalent trapping of micron-scale colloids and biomolecules to generate functions as emphasized for rate enhancements in enzymatic cascades. This work supports ATP-driven multivalent coacervation as a valuable mechanism for dynamic multicomponent and function biomolecular condensate mimics and for autonomous materials design in general.
Collapse
Affiliation(s)
- Jie Deng
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
128
|
Sakuta H, Fujita F, Hamada T, Hayashi M, Takiguchi K, Tsumoto K, Yoshikawa K. Self-Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid-Liquid Phase Separation. Chembiochem 2020; 21:3323-3328. [PMID: 32667694 PMCID: PMC7754443 DOI: 10.1002/cbic.202000344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Recently, liquid-liquid phase separation (LLPS) has attracted considerable attention among researchers in the life sciences as a plausible mechanism for the generation of microstructures inside cells. LLPS occurs through multiple nonspecific interactions and does not always require a lock-and-key interaction with a binary macromolecular solution. The remarkable features of LLPS include the non-uniform localization and concentration of solutes, resulting in the ability to isolate certain chemical systems and thereby parallelize multiple chemical reactions within the limited space of a living cell. We report that, by using the macromolecules, poly(ethylene glycol) (PEG) and dextran, that exhibit LLPS in an aqueous solution, cell-sized liposomes are spontaneously formed therein in the presence of phospholipids. In this system, LLPS is generated through the depletion effect of macromolecules. The results showed that cell-like microdroplets entrapping DNA wrapped by a phospholipid layer emerge in a self-organized manner.
Collapse
Affiliation(s)
- Hiroki Sakuta
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3Kyotanabe, Kyoto610-0394Japan
| | - Fumika Fujita
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3Kyotanabe, Kyoto610-0394Japan
| | - Tsutomu Hamada
- School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomi, Ishikawa923-1292Japan
| | - Masahito Hayashi
- Department of Frontier BioscienceHosei UniversityKoganei, Tokyo184-8584Japan
| | - Kingo Takiguchi
- Graduate School of ScienceNagoya University Furo-cho, Chikusa-kuNagoya, Aichi464-8602Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials Graduate School of EngineeringMie UniversityKurimamachiya-cho 1577Tsu, Mie514-8507Japan
| | - Kenichi Yoshikawa
- Graduate School of Life and Medical SciencesDoshisha UniversityTataramiyakodani 1–3Kyotanabe, Kyoto610-0394Japan
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606-8501Japan
| |
Collapse
|
129
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
130
|
Cochereau R, Renard D, Noûs C, Boire A. Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules. J Colloid Interface Sci 2020; 580:709-719. [PMID: 32712477 DOI: 10.1016/j.jcis.2020.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Understanding the dynamics of macromolecular assemblies in solution, such as Liquid-Liquid Phase Separation (LLPS), represents technologic and fundamental challenges in many fields. In cell biology, such dynamics are of great interest, because of their involvement in subcellular processes. In our study, we aimed to control the assembly of macromolecules in aqueous semi-permeable vesicles, that we named osmosomes, using microfluidics. We developed a microfluidic chip that allows for producting and trapping Giant Unilamellar Vesicles (GUVs) encapsulating macromolecules. This device also allows for modification of the composition of the inner phase and of the membranes of the trapped GUVs. The vesicles are produced from water-in-oil-in-water (w/o/w) double emulsions in less than 20 min after discarding the oil phase. They are highly monodisperse and their diameter can be modulated between 20 and 110 µm by tuning the flow rates of fluid phases. Their unilamellarity is proofed by two techniques: (1) fluorescence quenching experiments and (2) the insertion of the α-hemolysin membrane protein pore. We demonstrate that the internal pH of osmosomes can be tuned in less than 1 min by controlling solvent exchanges through the α-hemolysin pores. The detailed analysis of the exchange kinetics suggests that the microfluidic chip provides an efficient pore formation due to the physical trapping of vesicles and the constant flow rate. Finally, we show a proof of concept for macromolecular assembly within osmosomes by pH-triggered LLPS of wheat proteins within a few minutes.
Collapse
|
131
|
Song D, Jo Y, Choi JM, Jung Y. Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions. Nat Commun 2020; 11:5642. [PMID: 33159068 PMCID: PMC7648067 DOI: 10.1038/s41467-020-19476-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/16/2020] [Indexed: 01/17/2023] Open
Abstract
Membrane-less organelles or compartments are considered to be dynamic reaction centers for spatiotemporal control of diverse cellular processes in eukaryotic cells. Although their formation mechanisms have been steadily elucidated via the classical concept of liquid-liquid phase separation, biomolecular behaviors such as protein interactions inside these liquid compartments have been largely unexplored. Here we report quantitative measurements of changes in protein interactions for the proteins recruited into membrane-less compartments (termed client proteins) in living cells. Under a wide range of phase separation conditions, protein interaction signals were vastly increased only inside compartments, indicating greatly enhanced proximity between recruited client proteins. By employing an in vitro phase separation model, we discovered that the operational proximity of clients (measured from client-client interactions) could be over 16 times higher than the expected proximity from actual client concentrations inside compartments. We propose that two aspects should be considered when explaining client proximity enhancement by phase separation compartmentalization: (1) clients are selectively recruited into compartments, leading to concentration enrichment, and more importantly, (2) recruited clients are further localized around compartment-forming scaffold protein networks, which results in even higher client proximity.
Collapse
Affiliation(s)
- Daesun Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongsang Jo
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong-Mo Choi
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
132
|
Buddingh' BC, Llopis-Lorente A, Abdelmohsen LKEA, van Hest JCM. Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding. Chem Sci 2020; 11:12829-12834. [PMID: 34094478 PMCID: PMC8163283 DOI: 10.1039/d0sc03933k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 01/25/2023] Open
Abstract
Structural and spatial organization are fundamental properties of biological systems that allow cells to regulate a wide range of biochemical processes. This organization is often transient and governed by external cues that initiate dynamic self-assembly processes. The construction of synthetic cell-like materials with similar properties requires the hierarchical and reversible organization of selected functional components on molecular scaffolds to dynamically regulate signaling pathways. The realization of such transient molecular programs in synthetic cells, however, remains underexplored due to the associated complexity of such hierarchical platforms. In this contribution, we effectuate dynamic spatial organization of effector protein subunits in a synthetic biomimetic compartment, a giant unilamellar vesicle (GUV), by associating in a reversible manner two fragments of a split luciferase to the membrane. This induces their structural dimerization, which consequently leads to the activation of enzymatic signaling. Importantly, such organization and activation are dynamic processes, and can be autonomously regulated - thus opening up avenues toward continuous spatiotemporal control over supramolecular organization and signaling in an artificial cell.
Collapse
Affiliation(s)
- Bastiaan C Buddingh'
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
133
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
134
|
Deng J, Walther A. ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002629. [PMID: 32881127 DOI: 10.1002/adma.202002629] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that plays an indispensable role in various cellular processes, from energy supply to cell-to-cell signaling. Nature has developed sophisticated strategies to use the energy stored in ATP for many metabolic and non-equilibrium processes, and to sense and bind ATP for biological signaling. The variations in the ATP concentrations from one organelle to another, from extracellular to intracellular environments, and from normal cells to cancer cells are one motivation for designing ATP-triggered and ATP-fueled systems and materials, because they show great potential for applications in biological systems by using ATP as a trigger or chemical fuel. Over the last decade, ATP has been emerging as an attractive co-assembling component for man-made stimuli-responsive as well as for fuel-driven active systems and materials. Herein, current advances and emerging concepts for ATP-triggered and ATP-fueled self-assemblies and materials are discussed, shedding light on applications and highlighting future developments. By bringing together concepts of different domains, that is from supramolecular chemistry to DNA nanoscience, from equilibrium to non-equilibrium self-assembly, and from fundamental sciences to applications, the aim is to cross-fertilize current approaches with the ultimate aim to bring synthetic ATP-dependent systems closer to living systems.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
135
|
Deng NN. Complex coacervates as artificial membraneless organelles and protocells. BIOMICROFLUIDICS 2020; 14:051301. [PMID: 32922586 PMCID: PMC7470879 DOI: 10.1063/5.0023678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 05/17/2023]
Abstract
Complex coacervates are water droplets dispersed in water, which are formed by spontaneous liquid-liquid phase separation of an aqueous solution of two oppositely charged polyelectrolytes. Similar to the membraneless organelles that exist in biological cells, complex coacervate droplets are membraneless and have a myriad of features including easy formation, high viscosity, selective encapsulation of biomolecules, and dynamic behaviors in response to environmental stimuli, which make coacervates an excellent option for constructing artificial membraneless organelles. In this article, I first summarize recent advances in artificial compartments that are built from coacervates and their response to changes in the surrounding environment and then show the advantages of microfluidic techniques in the preparation of monodisperse coacervates and encapsulation of coacervates in droplets and liposomes to construct complex cell-like compartments, and finally discuss the future challenges of such membraneless aqueous compartments in cell mimics and origin of life.
Collapse
Affiliation(s)
- Nan-Nan Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
136
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
137
|
Chen Y, Yuan M, Zhang Y, Liu S, Yang X, Wang K, Liu J. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions. Chem Sci 2020; 11:8617-8625. [PMID: 34123122 PMCID: PMC8163383 DOI: 10.1039/d0sc03849k] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Coacervate microdroplets, formed via liquid–liquid phase separation, have been extensively explored as a compartment model for the construction of artificial cells or organelles. In this study, coacervate-in-coacervate multi-compartment protocells were constructed using four polyelectrolytes, in which carboxymethyl-dextran and diethylaminoethyl-dextran were deposited on the surface of as-prepared polydiallyldimethyl ammonium/deoxyribonucleic acid coacervate microdroplets through layer-by-layer assembly. The resulting multi-compartment protocells were composed from two immiscible coacervate phases with distinct physical and chemical properties. Molecule transport experiments indicated that small molecules could diffuse between two coacervate phases and that macromolecular enzymes could be retained. Furthermore, a competitive cascade enzymatic reaction of glucose oxidase/horseradish peroxidase–catalase was performed in the multi-compartment protocells. The different enzyme organization and productions of H2O2 led to a distinct polymerization of dopamine. The spatial organization of different enzymes in immiscible coacervate phases, the distinct reaction fluxes between coacervate phases, and the enzymatic cascade network led to distinguishable signal generation and product outputs. The development of this multi-compartment structure could pave the way toward the spatial organization of multi-enzyme cascades and provide new ideas for the design of organelle-containing artificial cells. A coacervate-in-coacervate micro-architecture is constructed as a multi-compartment protocell model, in which a multi-enzyme cascade is spatially organized for competitive enzymatic reactions.![]()
Collapse
Affiliation(s)
- Yufeng Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Min Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Songyang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
138
|
Abstract
The discovery of membraneless organelles (MLOs) formed by liquid-liquid phase separation raised many questions about the spatial organization of biomolecular processes in cells, but also offered a new tool to mimic cellular media. Since disordered and charged protein domains are often necessary for phase separation, coacervates can be used as models both to understand MLO regulation and to develop dynamic cellular-like compartments. A versatile way to turn passive coacervate droplets into active and dynamic compartments is by introducing enzymatic reactions that affect parameters relevant for complex coacervation, such as the charge and length of the components. However, these reactions strictly take place in a heterogeneous medium, and the complexity thereof is hardly addressed, making it difficult to achieve true control. In this chapter we help close this gap by describing two coacervate systems in which enzymatic reactions endow coacervate droplets with a dynamic character. We further highlight the technical challenges posed by the two-phase systems and strategies to overcome them.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
139
|
Jing H, Bai Q, Lin Y, Chang H, Yin D, Liang D. Fission and Internal Fusion of Protocell with Membraneless "Organelles" Formed by Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8017-8026. [PMID: 32584581 DOI: 10.1021/acs.langmuir.0c01864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of protocells with hierarchical structures and living functions is still a great challenge. Growing evidence demonstrates that the membraneless organelles, which facilitate many essential cellular processes, are formed by RNA, protein, and other biopolymers via liquid-liquid phase separation (LLPS). The formation of the protocell in the early days of Earth could follow the same principle. In this work, we develop a novel coacervate-based protocell containing membraneless subcompartments via spontaneous liquid-liquid phase separation by simply mixing single-stranded oligonucleotides (ss-oligo), quaternized dextran (Q-dextran), and poly(l-lysine) (PLL) together. The resulting biphasic droplet, with PLL/ss-oligo phase being the internal subcompartments and Q-dextran/ss-oligo phase as the surrounding medium, is capable of sequestering and partitioning biomolecules into distinct regions. When the droplet is exposed to salt or Dextranase, the surrounding Q-dextran/ss-oligo phase will be gradually dissociated, resulting in the chaotic movement and fusion of internal subcompartments. Besides, the external electric field at a lower strength can drive the biphasic droplet to undergo a deviated circulation concomitant with the fusion of localized subcompartments, while a high-strength electric field can polarize the whole droplet, resulting in the release of daughter droplets in a controllable manner. Our study highlights that liquid-liquid phase separation of biopolymers is a powerful strategy to construct hierarchically structured protocells resembling the morphology and functions of living cells and provides a step toward a better understanding of the transition mechanism from nonliving to living matter under prebiotic conditions.
Collapse
Affiliation(s)
- Hairong Jing
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya'nan Lin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haojing Chang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dongxiao Yin
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Polymer Chemistry and Physics, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
140
|
Abstract
Coacervate micro-droplets produced by liquid-liquid phase separation are increasingly used to emulate the dynamical organization of membraneless organelles found in living cells. Designing synthetic coacervates able to be formed and disassembled with improved spatiotemporal control is still challenging. In this chapter, we describe the design of photoswitchable coacervate droplets produced by phase separation of short double stranded DNA in the presence of an azobenzene cation. The droplets can be reversibly dissolved with light, which provides a new approach for the spatiotemporal regulation of coacervation. Significantly, the dynamics of light-actuated droplet formation and dissolution correlates with the capture and release of guest solutes. The reported system can find applications for the dynamic photocontrol of biomolecule compartmentalization, paving the way to the light-activated regulation of signaling pathways in artificial membraneless organelles.
Collapse
|
141
|
Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret JC, Erb TJ. Light-powered CO 2 fixation in a chloroplast mimic with natural and synthetic parts. Science 2020; 368:649-654. [PMID: 32381722 DOI: 10.1126/science.aaz6802] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Nature integrates complex biosynthetic and energy-converting tasks within compartments such as chloroplasts and mitochondria. Chloroplasts convert light into chemical energy, driving carbon dioxide fixation. We used microfluidics to develop a chloroplast mimic by encapsulating and operating photosynthetic membranes in cell-sized droplets. These droplets can be energized by light to power enzymes or enzyme cascades and analyzed for their catalytic properties in multiplex and real time. We demonstrate how these microdroplets can be programmed and controlled by adjusting internal compositions and by using light as an external trigger. We showcase the capability of our platform by integrating the crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a synthetic network for carbon dioxide conversion, to create an artificial photosynthetic system that interfaces the natural and the synthetic biological worlds.
Collapse
Affiliation(s)
- Tarryn E Miller
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Thomas Beneyton
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Thomas Schwander
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christoph Diehl
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | - Richard McLean
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tanguy Chotel
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France
| | - Peter Claus
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Niña Socorro Cortina
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Jean-Christophe Baret
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France. .,Institut Universitaire de France, Paris 75005, France
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany. .,Center for Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
142
|
Beneyton T, Love C, Girault M, Tang TD, Baret J. High‐Throughput Synthesis and Screening of Functional Coacervates Using Microfluidics. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Beneyton
- Univ. Bordeaux, CNRS CRPP, UMR 5031 115 avenue Albert Schweitzer 33600 Pessac France
| | - Celina Love
- Max Planck Institute for Molecular Cell Biology and Genetics Pfotenhauerstrasse 108 01307 Dresden Germany
- Cluster of Excellence Physics of Life TU Dresden 01062 Dresden Germany
| | - Mathias Girault
- Univ. Bordeaux, CNRS CRPP, UMR 5031 115 avenue Albert Schweitzer 33600 Pessac France
| | - T.‐Y. Dora Tang
- Max Planck Institute for Molecular Cell Biology and Genetics Pfotenhauerstrasse 108 01307 Dresden Germany
- Cluster of Excellence Physics of Life TU Dresden 01062 Dresden Germany
| | - Jean‐Christophe Baret
- Univ. Bordeaux, CNRS CRPP, UMR 5031 115 avenue Albert Schweitzer 33600 Pessac France
- Institut Universitaire de France 75005 Paris France
| |
Collapse
|
143
|
Abstract
Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
144
|
Last MG, Deshpande S, Dekker C. pH-Controlled Coacervate-Membrane Interactions within Liposomes. ACS NANO 2020; 14:4487-4498. [PMID: 32239914 PMCID: PMC7199211 DOI: 10.1021/acsnano.9b10167] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
Membraneless organelles formed by liquid-liquid phase separation are dynamic structures that are employed by cells to spatiotemporally regulate their interior. Indeed, complex coacervation-based phase separation is involved in a multitude of biological tasks ranging from photosynthesis to cell division to chromatin organization, and more. Here, we use an on-chip microfluidic method to control and study the formation of membraneless organelles within liposomes, using pH as the main control parameter. We show that a transmembrane proton flux that is created by a stepwise change in the external pH can readily bring about the coacervation of encapsulated components in a controlled manner. We employ this strategy to induce and study electrostatic as well as hydrophobic interactions between the coacervate and the lipid membrane. Electrostatic interactions using charged lipids efficiently recruit coacervates to the membrane and restrict their movement along the inner leaflet. Hydrophobic interactions via cholesterol-tagged RNA molecules provide even stronger interactions, causing coacervates to wet the membrane and affect the local lipid-membrane structure, reminiscent of coacervate-membrane interactions in cells. The presented technique of pH-triggered coacervation within cell-sized liposomes may find applications in synthetic cells and in studying biologically relevant phase separation reactions in a bottom-up manner.
Collapse
Affiliation(s)
- Mart G.
F. Last
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Siddharth Deshpande
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippenweg 4, 6708 WE Wageningen, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
145
|
Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, Dimova R, Tang TD. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angew Chem Int Ed Engl 2020; 59:5950-5957. [PMID: 31943629 PMCID: PMC7187140 DOI: 10.1002/anie.201914893] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 11/15/2022]
Abstract
In situ, reversible coacervate formation within lipid vesicles represents a key step in the development of responsive synthetic cellular models. Herein, we exploit the pH responsiveness of a polycation above and below its pKa , to drive liquid-liquid phase separation, to form single coacervate droplets within lipid vesicles. The process is completely reversible as coacervate droplets can be disassembled by increasing the pH above the pKa . We further show that pH-triggered coacervation in the presence of low concentrations of enzymes activates dormant enzyme reactions by increasing the local concentration within the coacervate droplets and changing the local environment around the enzyme. In conclusion, this work establishes a tunable, pH responsive, enzymatically active multi-compartment synthetic cell. The system is readily transferred into microfluidics, making it a robust model for addressing general questions in biology, such as the role of phase separation and its effect on enzymatic reactions using a bottom-up synthetic biology approach.
Collapse
Affiliation(s)
- Celina Love
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - David T. Gonzales
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
- Center for Systems Biology DresdenPfotenhauerstraße 10801307DresdenGermany
| | | | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - T.‐Y. Dora Tang
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
| |
Collapse
|
146
|
Spoelstra W, van der Sluis EO, Dogterom M, Reese L. Nonspherical Coacervate Shapes in an Enzyme-Driven Active System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1956-1964. [PMID: 31995710 PMCID: PMC7057537 DOI: 10.1021/acs.langmuir.9b02719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/27/2020] [Indexed: 04/14/2023]
Abstract
Coacervates are polymer-rich droplets that form through liquid-liquid phase separation in polymer solutions. Liquid-liquid phase separation and coacervation have recently been shown to play an important role in the organization of biological systems. Such systems are highly dynamic and under continuous influence of enzymatic and chemical processes. However, it is still unclear how enzymatic and chemical reactions affect the coacervation process. Here, we present and characterize a system of enzymatically active coacervates containing spermine, RNA, free nucleotides, and the template independent RNA (de)polymerase PNPase. We find that these RNA coacervates display transient nonspherical shapes, and we systematically study how PNPase concentration, UDP concentration, and temperature affect coacervate morphology. Furthermore, we show that PNPase localizes predominantly into the coacervate phase and that its depolymerization activity in high-phosphate buffer causes coacervate degradation. Our observations of nonspherical coacervate shapes may have broader implications for the relationship between (bio)chemical activity and coacervate biology.
Collapse
Affiliation(s)
- Willem
Kasper Spoelstra
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Eli O. van der Sluis
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Louis Reese
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
147
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
148
|
Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, Dimova R, Tang TD. Reversible pH‐Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Celina Love
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - David T. Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | | | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - T.‐Y. Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
| |
Collapse
|
149
|
Mountain GA, Keating CD. Formation of Multiphase Complex Coacervates and Partitioning of Biomolecules within them. Biomacromolecules 2019; 21:630-640. [PMID: 31743027 DOI: 10.1021/acs.biomac.9b01354] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological systems employ liquid-liquid phase separation to localize macromolecules and processes. The properties of intracellular condensates that allow for multiple, distinct liquid compartments and the impact of their coexistence on phase composition and solute partitioning are not well understood. Here, we generate two and three coexisting macromolecule-rich liquid compartments by complex coacervation based on ion pairing in mixtures that contain two or three polyanions together with one, two, or three polycations. While in some systems polyelectrolyte order-of-addition was important to achieve coexisting liquid phases, for others it was not, suggesting that the observed multiphase droplet morphologies are energetically favorable. Polyelectrolytes were distributed across all coacervate phases, depending on the relative interactions between them, which in turn impacted partitioning of oligonucleotide and oligopeptide solutes. These results show the ease of generating multiphase coacervates and the ability to tune their partitioning properties via the polyelectrolyte sharing inherent to multiphase complex coacervate systems.
Collapse
Affiliation(s)
- Gregory A Mountain
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Christine D Keating
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
150
|
Saha B, Chatterjee A, Reja A, Das D. Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity. Chem Commun (Camb) 2019; 55:14194-14197. [PMID: 31702760 DOI: 10.1039/c9cc07358b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we report the generation of simple condensates of short peptides with ATP, which are spatiotemporally formed under dissipative conditions created in presence of ATP-ase. These coacervates could imbibe cytochrome c and temporally modulate a redox reaction catalyzed by the entrapped protein, thus mimicking the advanced functional machinery of transient intercellular membraneless condensates of large proteins and RNA.
Collapse
Affiliation(s)
- Baishakhi Saha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|