101
|
Pan M, Wright WC, Chapple RH, Zubair A, Sandhu M, Batchelder JE, Huddle BC, Low J, Blankenship KB, Wang Y, Gordon B, Archer P, Brady SW, Natarajan S, Posgai MJ, Schuetz J, Miller D, Kalathur R, Chen S, Connelly JP, Babu MM, Dyer MA, Pruett-Miller SM, Freeman BB, Chen T, Godley LA, Blanchard SC, Stewart E, Easton J, Geeleher P. The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nat Commun 2021; 12:6468. [PMID: 34753908 PMCID: PMC8578635 DOI: 10.1038/s41467-021-26640-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.
Collapse
Affiliation(s)
- Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Asif Zubair
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Manbir Sandhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jake E Batchelder
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brandt C Huddle
- The Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kaley B Blankenship
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Payton Archer
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew J Posgai
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - John Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Darcie Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Siquan Chen
- Cellular Screening Center, The University of Chicago, Chicago, IL, 60637, USA
| | - Jon Patrick Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - M Madan Babu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lucy A Godley
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
102
|
Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med 2021; 53:1792-1806. [PMID: 34848840 PMCID: PMC8640061 DOI: 10.1038/s12276-021-00700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
Collapse
Affiliation(s)
- Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China
| | - Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| |
Collapse
|
103
|
Bhushan A, Kumari R, Srivastava T. Scouting for common genes in the heterogenous hypoxic tumor microenvironment and their validation in glioblastoma. 3 Biotech 2021; 11:451. [PMID: 34631352 DOI: 10.1007/s13205-021-02987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Investigating the therapeutic and prognostic potential of genes in the heterogeneous hypoxic niche of glioblastoma. We have analyzed RNA expression of U87MG cells cultured in hypoxia compared to normoxia. Common differentially expressed genes (DEGs) from GSE45301 and GSE18494 and their functional enrichment was performed using MetaScape and PANTHER. Hub genes and their ontology were identified using MCode cytoHubba and ClueGO and validated with GlioVis, Oncomine, HPA and PrognoScan. Using the GEO2R analysis of GSE45301 and GSE18494 datasets, we have found a total of 246 common DEGs (180 upregulated and 66 downregulated) and identified 2 significant modules involved in ribosome biogenesis and TNF signaling. Meta-analysis of key genes of each module in cytoHubba identified 17 hub genes (ATF3, BYSL, DUSP1, EGFR, JUN, ETS1, LYAR, NIP7, NOLC1, NOP2, NOP56, PNO1, RRS1, TNFAIP3, TNFRSF1B, UTP15, VEGFA). Of the 17 hub genes, ATF3, BYSL, EGFR, JUN, NIP7, NOLC1, PNO1, RRS1, TNFAIP3 and VEGFA were identified as hypoxia signatures associated with poor prognosis in Glioma. Ribosome biogenesis emerged as a vital contender of possible therapeutic potential with BYSL, NIP7, NOLC1, PNO1 and RRS1 showing prognostic value. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02987-2.
Collapse
Affiliation(s)
- Ashish Bhushan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ranbala Kumari
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
104
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
105
|
Jie Q, Sun F, Li Q, Zhu J, Wei Y, Yang H, Long P, Wang Z, Yang X, Li D, Huang L, Ma Y. Downregulated ribosomal protein L39 inhibits trophoblast cell migration and invasion by targeting E-cadherin in the placenta of patients with preeclampsia. FASEB J 2021; 35:e21322. [PMID: 33710681 DOI: 10.1096/fj.202002061r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
Early-onset preeclampsia (PE) is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes. However, the mechanisms underlying the development of early-onset PE are not fully understood. Ribosomal protein L39 (RPL39) is a member of the S39E family of ribosomal proteins that plays an important role in stem cell self-renewal, cancer metastasis, and chemoresistance. In this study, we aimed to explore the potential function of RPL39 in placental trophoblast cells. We analyzed the expression of RPL39 in early-onset PE and normal placental tissues using real-time PCR, western blot analysis, and immunohistochemistry. The results showed that RPL39 was markedly downregulated in early-onset PE placental tissues. RPL39 knockdown inhibited trophoblast cell proliferation, migration, and invasion, as well as placental explant outgrowth. Flow cytometry analysis suggested that knockdown of RPL39 resulted in cell cycle arrest at the G0/G1 phase, but had no significant effect on cell apoptosis. We also found that RPL39 knockdown could alter cell morphology. We then measured the expression of the epithelial cell marker E-cadherin following knockdown of RPL39 in Bewo and HTR8/SVneo cells. RPL39 knockdown increased the expression of E-cadherin. Furthermore, E-cadherin expression was upregulated in placental explant outgrowth tissues transfected with RPL39 small interfering RNA. In conclusion, RPL39 plays an essential role in proliferation, invasion, and migration of trophoblast cells by targeting E-cadherin. Our findings provide novel insight into the mechanisms underlying the occurrence of early-onset PE.
Collapse
Affiliation(s)
- Qiuling Jie
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yunjian Wei
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huamei Yang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Long
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhen Wang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaohui Yang
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Dan Li
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Ma
- Department of Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
106
|
Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription. Genes (Basel) 2021; 12:genes12070961. [PMID: 34202617 PMCID: PMC8303148 DOI: 10.3390/genes12070961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Ribosomal transcription constitutes the major energy consuming process in cells and is regulated in response to proliferation, differentiation and metabolic conditions by several signalling pathways. These act on the transcription machinery but also on chromatin factors and ncRNA. The many ribosomal gene repeats are organised in a number of different chromatin states; active, poised, pseudosilent and repressed gene repeats. Some of these chromatin states are unique to the 47rRNA gene repeat and do not occur at other locations in the genome, such as the active state organised with the HMG protein UBF whereas other chromatin state are nucleosomal, harbouring both active and inactive histone marks. The number of repeats in a certain state varies on developmental stage and cell type; embryonic cells have more rRNA gene repeats organised in an open chromatin state, which is replaced by heterochromatin during differentiation, establishing different states depending on cell type. The 47S rRNA gene transcription is regulated in different ways depending on stimulus and chromatin state of individual gene repeats. This review will discuss the present knowledge about factors involved, such as chromatin remodelling factors NuRD, NoRC, CSB, B-WICH, histone modifying enzymes and histone chaperones, in altering gene expression and switching chromatin states in proliferation, differentiation, metabolic changes and stress responses.
Collapse
|
107
|
Kumar-Singh A, Parniewska MM, Giotopoulou N, Javadi J, Sun W, Szatmári T, Dobra K, Hjerpe A, Fuxe J. Nuclear Syndecan-1 Regulates Epithelial-Mesenchymal Plasticity in Tumor Cells. BIOLOGY 2021; 10:biology10060521. [PMID: 34208075 PMCID: PMC8230654 DOI: 10.3390/biology10060521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Tumor cells undergoing epithelial-mesenchymal transition (EMT) lose cell surface adhesion molecules and gain invasive and metastatic properties. EMT is a plastic process and tumor cells may shift between different epithelial-mesenchymal states during metastasis. However, how this is regulated is not fully understood. Syndecan-1 (SDC1) is the major cell surface proteoglycan in epithelial cells and has been shown to regulate carcinoma progression and EMT. Recently, it was discovered that SDC1 translocates into the cell nucleus in certain tumor cells. Nuclear SDC1 inhibits cell proliferation, but whether nuclear SDC1 contributes to the regulation of EMT is not clear. Here, we report that loss of nuclear SDC1 is associated with cellular elongation and an E-cadherin-to-N-cadherin switch during TGF-β1-induced EMT in human A549 lung adenocarcinoma cells. Further studies showed that nuclear translocation of SDC1 contributed to the repression of mesenchymal and invasive properties of human B6FS fibrosarcoma cells. The results demonstrate that nuclear translocation contributes to the capacity of SDC1 to regulate epithelial-mesenchymal plasticity in human tumor cells and opens up to mechanistic studies to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Ashish Kumar-Singh
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Malgorzata Maria Parniewska
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Nikolina Giotopoulou
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Joman Javadi
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Wenwen Sun
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Correspondence: (K.D.); (J.F.); Tel.: +46-707-980-065 (J.F.)
| | - Anders Hjerpe
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Karolinska Institutet, Division of Pathology, SE-14186 Stockholm, Sweden; (A.K.-S.); (M.M.P.); (N.G.); (J.J.); (W.S.); (T.S.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Correspondence: (K.D.); (J.F.); Tel.: +46-707-980-065 (J.F.)
| |
Collapse
|
108
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
109
|
The Ribosomal Gene Loci-The Power behind the Throne. Genes (Basel) 2021; 12:genes12050763. [PMID: 34069807 PMCID: PMC8157237 DOI: 10.3390/genes12050763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here, we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription are important for dynamic regulation of global gene expression and genome stability, e.g., through the modulation of long-range genomic interactions with the suppressive NAD environment. These observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key regulatory role in cellular homeostasis during normal development as well as disease, independent of their role in determining ribosome capacity and cellular growth rates.
Collapse
|
110
|
Werlen G, Jain R, Jacinto E. MTOR Signaling and Metabolism in Early T Cell Development. Genes (Basel) 2021; 12:genes12050728. [PMID: 34068092 PMCID: PMC8152735 DOI: 10.3390/genes12050728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its functions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosuppressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling.
Collapse
|
111
|
Effect of Graphene and Graphene Oxide on Airway Barrier and Differential Phosphorylation of Proteins in Tight and Adherens Junction Pathways. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11051283. [PMID: 34068174 PMCID: PMC8152977 DOI: 10.3390/nano11051283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Via inhalation we are continuously exposed to environmental and occupational irritants which can induce adverse health effects, such as irritant-induced asthma (IIA). The airway epithelium forms the first barrier encountered by these agents. We investigated the effect of environmental and occupational irritants on the airway epithelial barrier in vitro. The airway epithelial barrier was mimicked using a coculture model, consisting of bronchial epithelial cells (16HBE) and monocytes (THP-1) seeded on the apical side of a permeable support, and human lung microvascular endothelial cells (HLMVEC) grown on the basal side. Upon exposure to graphene (G) and graphene oxide (GO) in a suspension with fetal calf serum (FCS), ammonium persulfate (AP), sodium persulfate (SP) and hypochlorite (ClO−), the transepithelial electrical resistance (TEER) and flux of fluorescent labelled dextran (FD4-flux), was determined. Exposure to graphene nanoparticles (GNPs) induced an immediate negative effect on the epithelial barrier, whereas ClO− only had a negative impact after 24 h of exposure. AP and SP did not affect the barrier properties. The tight junctions (TJ) network showed less connected zonula occludens 1 (ZO-1) and occludin staining in GNP-exposed cocultures. Functional analysis of the phosphoproteomic data indicated that proteins in the adherens junction (AJ) and TJ pathways showed an altered phosphorylation due to GNP exposure. To conclude, the negative effect of GNPs on the epithelial barrier can be explained by the slightly altered the TJ organization which could be caused by alterations in the phosphorylation level of proteins in the AJ and TJ pathway.
Collapse
|
112
|
Halle MK, Sødal M, Forsse D, Engerud H, Woie K, Lura NG, Wagner-Larsen KS, Trovik J, Bertelsen BI, Haldorsen IS, Ojesina AI, Krakstad C. A 10-gene prognostic signature points to LIMCH1 and HLA-DQB1 as important players in aggressive cervical cancer disease. Br J Cancer 2021; 124:1690-1698. [PMID: 33723390 PMCID: PMC8110544 DOI: 10.1038/s41416-021-01305-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced cervical cancer carries a particularly poor prognosis, and few treatment options exist. Identification of effective molecular markers is vital to improve the individualisation of treatment. We investigated transcriptional data from cervical carcinomas related to patient survival and recurrence to identify potential molecular drivers for aggressive disease. METHODS Primary tumour RNA-sequencing profiles from 20 patients with recurrence and 53 patients with cured disease were compared. Protein levels and prognostic impact for selected markers were identified by immunohistochemistry in a population-based patient cohort. RESULTS Comparison of tumours relative to recurrence status revealed 121 differentially expressed genes. From this gene set, a 10-gene signature with high prognostic significance (p = 0.001) was identified and validated in an independent patient cohort (p = 0.004). Protein levels of two signature genes, HLA-DQB1 (n = 389) and LIMCH1 (LIM and calponin homology domain 1) (n = 410), were independent predictors of survival (hazard ratio 2.50, p = 0.007 for HLA-DQB1 and 3.19, p = 0.007 for LIMCH1) when adjusting for established prognostic markers. HLA-DQB1 protein expression associated with programmed death ligand 1 positivity (p < 0.001). In gene set enrichment analyses, HLA-DQB1high tumours associated with immune activation and response to interferon-γ (IFN-γ). CONCLUSIONS This study revealed a 10-gene signature with high prognostic power in cervical cancer. HLA-DQB1 and LIMCH1 are potential biomarkers guiding cervical cancer treatment.
Collapse
Affiliation(s)
- Mari K. Halle
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Marte Sødal
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - David Forsse
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Hilde Engerud
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Kathrine Woie
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Njål G. Lura
- grid.7914.b0000 0004 1936 7443Department of Clinical Medicine, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Kari S. Wagner-Larsen
- grid.7914.b0000 0004 1936 7443Department of Clinical Medicine, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Bjørn I. Bertelsen
- grid.412008.f0000 0000 9753 1393Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S. Haldorsen
- grid.7914.b0000 0004 1936 7443Department of Clinical Medicine, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - Akinyemi I. Ojesina
- grid.265892.20000000106344187Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ,grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Camilla Krakstad
- grid.412008.f0000 0000 9753 1393Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
113
|
Rao C, Frodyma DE, Southekal S, Svoboda RA, Black AR, Guda C, Mizutani T, Clevers H, Johnson KR, Fisher KW, Lewis RE. KSR1- and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition. eLife 2021; 10:e66608. [PMID: 33970103 PMCID: PMC8195604 DOI: 10.7554/elife.66608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Danielle E Frodyma
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Robert A Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Adrian R Black
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Keith R Johnson
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
- Department of Oral Biology, University of Nebraska Medical CenterOmahaUnited States
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Robert E Lewis
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
114
|
Ando A, Kirkbride RC, Jones DC, Grimwood J, Chen ZJ. LCM and RNA-seq analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in cotton fiber cell initiation. BMC Genomics 2021; 22:309. [PMID: 33926376 PMCID: PMC8082777 DOI: 10.1186/s12864-021-07579-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/03/2021] [Indexed: 01/21/2023] Open
Abstract
Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40–50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. Conclusions Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07579-1.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
115
|
Zhang X, Zhang J, Liu Y, Li J, Tan J, Song Z. Bcl-2 Associated Athanogene 2 (BAG2) is Associated With Progression and Prognosis of Hepatocellular Carcinoma: A Bioinformatics-Based Analysis. Pathol Oncol Res 2021; 27:594649. [PMID: 34257542 PMCID: PMC8262200 DOI: 10.3389/pore.2021.594649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Background: Bcl-2 associated athanogene2 (BAG2) is reported to act as an oncogene or a tumor-suppressor in tumors in a context-dependent way; however, its function in hepatocellular carcinoma (HCC) remains unclear. Methods: Immunohistochemistry (IHC) staining, cell counting kit-8 (CCK-8) assay, apoptotic assay, cell invasion assay and a set of bioinformatics tools were integrated to analyze the role of BAG2 in hepatocellular carcinoma. Results: BAG2 was significantly up-regulated in HCC. Prognostic analysis indicated that HCC patients with high expression of BAG2 had significantly shorter overall survival, progression free survival and disease specific survival. Besides, silencing BAG2 in HCC cells impaired cell proliferation, facilitated apoptosis and repressed invasion of the cells. Bioinformatics analysis showed that BAG2 might regulate ribosome biogenesis in HCC. Conclusion: This study revealed that the up-regulated BAG2 in HCC was associated with a worse prognosis and might favor the progression of the disease.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Department of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
116
|
Zhang X, Liu Y, Zhang Z, Tan J, Zhang J, Ou H, Li J, Song Z. Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature. Front Cell Dev Biol 2021; 9:649265. [PMID: 33748143 PMCID: PMC7969999 DOI: 10.3389/fcell.2021.649265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Aberrant regulation of angiogenesis involves in the growth and metastasis of tumors, but angiogenesis inhibitors fail to improve overall survival of pancreatic cancer patients in previous phase III clinical trials. A comprehensive knowledge of the mechanism of angiogenesis inhibitors against pancreatic cancer is helpful for clinical purpose and for the selection of patients who might benefit from the inhibitors. In this work, multi-omics analyses (transcriptomics, proteomics, and phosphoproteomics profiling) were carried out to delineate the mechanism of anlotinib, a novel angiogenesis inhibitor, against pancreatic cancer cells. The results showed that anlotinib exerted noteworthy cytotoxicity on pancreatic cancer cells. Multi-omics analyses revealed that anlotinib had a profound inhibitory effect on ribosome, and regulated cell cycle, RNA metabolism and lysosome. Based on the multi-omics results and available data deposited in public databases, an anlotinib-related gene signature was further constructed to identify a subgroup of pancreatic cancer patients who had a dismal prognosis and might be responsive to anlotinib.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Ou
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Department of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
117
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
118
|
Qi R, Wang J, Jiang Y, Qiu Y, Xu M, Rong R, Zhu T. Snai1-induced partial epithelial-mesenchymal transition orchestrates p53-p21-mediated G2/M arrest in the progression of renal fibrosis via NF-κB-mediated inflammation. Cell Death Dis 2021; 12:44. [PMID: 33414422 PMCID: PMC7790819 DOI: 10.1038/s41419-020-03322-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023]
Abstract
Renal fibrosis is the common feature of all progressive kidney diseases and exerts great burden on public health worldwide. The maladaptive repair mechanism of tubular epithelial cells, an important mediator of renal fibrogenesis, manifests with partial epithelial-mesenchymal transition (EMT) and cell cycle arrest. The aim of this study is to investigate the possible correlation between partial EMT and cell cycle arrest, and elucidate the underlying mechanism. We examined human kidney allograft samples with interstitial fibrosis and three mice renal fibrosis models, unilateral ureter obstruction (UUO), ischemia-reperfusion injury, and Adriamycin nephropathy. The partial EMT process and p53-p21 axis were elevated in both human allograft with interstitial fibrosis, as well as three mice renal fibrosis models, and showed a time-dependent increase as fibrosis progressed in the UUO model. Snai1 controlled the partial EMT process, and led to parallel changes in renal fibrosis, G2/M arrest, and inflammation. p53-p21 axis arrested cell cycle at G2/M, and prompted partial EMT and fibrosis together with inflammation. NF-κB inhibitor Bay11-7082 disrupted the reciprocal loop between Snai1-induced partial EMT and p53-p21-mediated G2/M arrest. We demonstrated the reciprocal loop between partial EMT and G2/M arrest of TECs during renal fibrogenesis and revealed NF-κB-mediated inflammatory response as the underlying mechanism. This study suggests that targeting NF-κB might be a plausible therapeutic strategy to disrupt the reciprocal loop between partial EMT and G2/M arrest, therefore alleviating renal fibrosis.
Collapse
Affiliation(s)
- Ruochen Qi
- grid.8547.e0000 0001 0125 2443Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China ,grid.8547.e0000 0001 0125 2443Shanghai Medical College, Fudan University, Shanghai, 200032 P.R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| | - Jiyan Wang
- grid.8547.e0000 0001 0125 2443Shanghai Medical College, Fudan University, Shanghai, 200032 P.R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| | - Yamei Jiang
- grid.8547.e0000 0001 0125 2443Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China ,grid.8547.e0000 0001 0125 2443Shanghai Medical College, Fudan University, Shanghai, 200032 P.R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| | - Yue Qiu
- grid.8547.e0000 0001 0125 2443Shanghai Medical College, Fudan University, Shanghai, 200032 P.R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| | - Ming Xu
- grid.8547.e0000 0001 0125 2443Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| | - Ruiming Rong
- grid.8547.e0000 0001 0125 2443Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China ,grid.8547.e0000 0001 0125 2443Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China
| | - Tongyu Zhu
- grid.8547.e0000 0001 0125 2443Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032 P. R. China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032 P. R. China
| |
Collapse
|
119
|
Abstract
Epithelial Mesenchymal Transition (EMT) initially discovered as a key developmental mechanism is now shown to be indirectly involved in fibrosis and is contributing to the progression of carcinomas. Additionally, to transcription factors driving the morphological transition, novel mechanisms are now described to modulate the different features of the transition. The debate as to whether EMT is essential for the dissemination of carcinoma cells from the primary tumors is likely to be resolved soon, considering that EMT is not a linear transition from an epithelial to a mesenchymal state. Multiple intermediate states can be reached without involving the presence of some of known transcription factors initially described as indispensable for the acquisition of mesenchymal-like phenotypes.
Collapse
Affiliation(s)
- Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
120
|
Isolation of Nucleoli for Characterization of Nucleolar Contents to Uncover Clues to Metastatic Progression. Methods Mol Biol 2021; 2294:269-274. [PMID: 33742408 DOI: 10.1007/978-1-0716-1350-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleolar isolation is a crucial technique for the study of nucleolar contents and regulation of ribosome biogenesis. Lysed cells are spun through various concentrations of sucrose and magnesium chloride to separate the notoriously dense nucleoli from the rest of the cell. Here we describe isolation of nucleoli from the breast cancer cell line MDA-MB-468. The resulting nucleolar fraction is subjected to immunoblotting to confirm the purity of the nucleolar fraction.
Collapse
|
121
|
Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience 2020; 24:102010. [PMID: 33490918 PMCID: PMC7811136 DOI: 10.1016/j.isci.2020.102010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate “specialized ribosomes” that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia. Chronic hypoxia stimulates RNA Pol I activity In hypoxia, a pool of specialized rRNA translates VEGFC IRES Hypoxia changes 2′-O-Me modification - epitranscriptomic marks on rRNA
Collapse
Affiliation(s)
- Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Hawley C Pruitt
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E 1824 6 Avenue South, Birmingham, AL 35233, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
122
|
Subbannayya Y, Haug M, Pinto SM, Mohanty V, Meås HZ, Flo TH, Prasad TK, Kandasamy RK. The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function. Int J Mol Sci 2020; 22:E275. [PMID: 33383959 PMCID: PMC7795831 DOI: 10.3390/ijms22010275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Markus Haug
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; (V.M.); (T.S.K.P.)
| | - Hany Zakaria Meås
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| | - T.S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; (V.M.); (T.S.K.P.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Y.S.); (M.H.); (S.M.P.); (H.Z.M.); (T.H.F.)
| |
Collapse
|
123
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
124
|
Dermit M, Dodel M, Lee FCY, Azman MS, Schwenzer H, Jones JL, Blagden SP, Ule J, Mardakheh FK. Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells. Dev Cell 2020; 55:298-313.e10. [PMID: 33171110 PMCID: PMC7660134 DOI: 10.1016/j.devcel.2020.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Flora C Y Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hagen Schwenzer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
125
|
Wang Y, Chen Y, Xiao S, Fu K. Integrated Analysis of the Functions and Prognostic Values of RNA-Binding Proteins in Colorectal Cancer. Front Cell Dev Biol 2020; 8:595605. [PMID: 33224957 PMCID: PMC7674310 DOI: 10.3389/fcell.2020.595605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Selecting effective treatment for CRC patients, especially in the early stages, remains a challenge because of the lack of adequate biomarkers. Recent evidence suggests that RNA-binding proteins (RBPs) play a vital role in development and progression of carcinogenesis. However, their mechanisms in cancer progression are still limited. The role of RBPs in CRC has been poorly understood. There were 1,542 reported RBPs analyzed between CRC tissues and normal tissues using the Wilcoxon test to identify differentially expressed RBPs (DE RBPs). Then, the potential functions and the prognostic value of these DE RBPs were explored through systematic bioinformatics analysis. There were 177 DE RBPs identified between CRC tissues and normal tissues. A protein-protein interaction network was constructed based on DE RBPs, and critical modules were screened. A regulatory network between prognostic DE RBPs and differentially expressed transcription factors was constructed. Besides, a risk signature was built based on prognostic DE RBPs, which is able to predict overall survival of CRC patients with high accuracy. In conclusion, the results provided a comprehensive understanding of the functions of RBPs in CRC, as well as an RBP-related prognostic signature.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
126
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
127
|
Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG, Postovit LM. Cancer Plasticity: The Role of mRNA Translation. Trends Cancer 2020; 7:134-145. [PMID: 33067172 PMCID: PMC8023421 DOI: 10.1016/j.trecan.2020.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is associated with dedifferentiated histopathologies concomitant with cancer cell survival within a changing, and often hostile, tumor microenvironment. These processes are enabled by cellular plasticity, whereby intracellular cues and extracellular signals are integrated to enable rapid shifts in cancer cell phenotypes. Cancer cell plasticity, at least in part, fuels tumor heterogeneity and facilitates metastasis and drug resistance. Protein synthesis is frequently dysregulated in cancer, and emerging data suggest that translational reprograming collaborates with epigenetic and metabolic programs to effectuate phenotypic plasticity of neoplasia. Herein, we discuss the potential role of mRNA translation in cancer cell plasticity, highlight emerging histopathological correlates, and deliberate on how this is related to efforts to improve understanding of the complex tumor ecology.
Collapse
Affiliation(s)
- Laura J Lee
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David Papadopoli
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Sonia Del Rincon
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
128
|
Panoutsopoulos AA, De Crescenzo AH, Lee A, Lu AM, Ross AP, Borodinsky LN, Marcucio R, Trainor PA, Zarbalis KS. Pak1ip1 Loss-of-Function Leads to Cell Cycle Arrest, Loss of Neural Crest Cells, and Craniofacial Abnormalities. Front Cell Dev Biol 2020; 8:510063. [PMID: 32984348 PMCID: PMC7490522 DOI: 10.3389/fcell.2020.510063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) comprise a transient progenitor cell population of neuroepithelial origin that contributes to a variety of cell types throughout vertebrate embryos including most mesenchymal cells of the cranial and facial structures. Consequently, abnormal NCC development underlies a variety of craniofacial defects including orofacial clefts, which constitute some of the most common birth defects. We previously reported the generation of manta ray (mray) mice that carry a loss-of-function allele of the gene encoding the preribosomal factor Pak1ip1. Here we describe cranioskeletal abnormalities in homozygous mray mutants that arise from a loss of NCCs after their specification. Our results show that the localized loss of cranial NCCs in the developing frontonasal prominences is caused by cell cycle arrest and cell death. In addition, and consistent with deficits in ribosome biosynthesis, homozygous mray mutants display decreased protein biosynthesis, further linking Pak1ip1 to a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Angelo Harlan De Crescenzo
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Albert Lee
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Amelia MacKenzie Lu
- David B. Falk College of Sport and Human Dynamics - Department of Public Health, Syracuse University, Syracuse, NY, United States
| | - Adam P Ross
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States
| | - Laura N Borodinsky
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States.,Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Ralph Marcucio
- Department of Orthopedic Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, School of Medicine, The University of Kansas Medical Center, Kansas, KS, United States
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California, Sacramento, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
129
|
Strbkova L, Carson BB, Vincent T, Vesely P, Chmelik R. Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200024R. [PMID: 32812412 PMCID: PMC7431880 DOI: 10.1117/1.jbo.25.8.086502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. AIM We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. APPROACH The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. RESULTS In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. CONCLUSIONS Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior.
Collapse
Affiliation(s)
- Lenka Strbkova
- Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic
| | - Brittany B. Carson
- Uppsala University, Department of Immunology, Genetics, and Pathology (IGP), Rudbeck Laboratory, Uppsala, Sweden
| | - Theresa Vincent
- Uppsala University, Department of Immunology, Genetics, and Pathology (IGP), Rudbeck Laboratory, Uppsala, Sweden
- NYU School of Medicine, Department of Microbiology, New York, United States
| | - Pavel Vesely
- Brno University of Technology, Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno, Czech Republic
| | - Radim Chmelik
- Brno University of Technology, Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno, Czech Republic
| |
Collapse
|
130
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
131
|
Fernández-Calero T, Davyt M, Perelmuter K, Chalar C, Bampi G, Persson H, Tosar JP, Hafstað V, Naya H, Rovira C, Bollati-Fogolín M, Ehrlich R, Flouriot G, Ignatova Z, Marín M. Fine-tuning the metabolic rewiring and adaptation of translational machinery during an epithelial-mesenchymal transition in breast cancer cells. Cancer Metab 2020; 8:8. [PMID: 32699630 PMCID: PMC7368990 DOI: 10.1186/s40170-020-00216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT BACKGROUND During breast cancer progression, the epithelial to mesenchymal transition has been associated with metastasis and endocrine therapy resistance; however, the underlying mechanisms remain elusive. To gain insight into this process, we studied the transition undergone by MCF7-derived cells, which is driven by the constitutive nuclear expression of a MKL1 variant devoid of the actin-binding domain (MKL1 ΔN200). We characterized the adaptive changes that occur during the MKL1-induced cellular model and focused on regulation of translation machinery and metabolic adaptation. METHODS We performed a genome-wide analysis at the transcriptional and translational level using ribosome profiling complemented with RNA-Seq and analyzed the expression of components of the translation machinery and enzymes involved in energy metabolism. NGS data were correlated with metabolomic measurements and quantification of specific mRNAs extracted from polysomes and western blots. RESULTS Our results reveal the expression profiles of a luminal to basal-like state in accordance with an epithelial to mesenchymal transition. During the transition, the synthesis of ribosomal proteins and that of many translational factors was upregulated. This overexpression of the translational machinery appears to be regulated at the translational level. Our results indicate an increase of ribosome biogenesis and translation activity. We detected an extensive metabolic rewiring occurring in an already "Warburg-like" context, in which enzyme isoform switches and metabolic shunts indicate a crucial role of HIF-1α along with other master regulatory factors. Furthermore, we detected a decrease in the expression of enzymes involved in ribonucleotide synthesis from the pentose phosphate pathway. During this transition, cells increase in size, downregulate genes associated with proliferation, and strongly upregulate expression of cytoskeletal and extracellular matrix genes. CONCLUSIONS Our study reveals multiple regulatory events associated with metabolic and translational machinery adaptation during an epithelial mesenchymal-like transition process. During this major cellular transition, cells achieve a new homeostatic state ensuring their survival. This work shows that ribosome profiling complemented with RNA-Seq is a powerful approach to unveil in-depth global adaptive cellular responses and the interconnection among regulatory circuits, which will be helpful for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Av. 8 de Octubre, 2738 Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Giovana Bampi
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Helena Persson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Völundur Hafstað
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | | | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gilles Flouriot
- Université de Rennes 1-IRSET, Campus Santé de Villejean, 35000 Rennes, France
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| |
Collapse
|
132
|
Son J, Hannan KM, Poortinga G, Hein N, Cameron DP, Ganley ARD, Sheppard KE, Pearson RB, Hannan RD, Sanij E. rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Front Cell Dev Biol 2020; 8:568. [PMID: 32719798 PMCID: PMC7349920 DOI: 10.3389/fcell.2020.00568] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.
Collapse
Affiliation(s)
- Jinbae Son
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Donald P. Cameron
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Austen R. D. Ganley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen E. Sheppard
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
133
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
134
|
Yang C, Wu HL, Li ZH, Chen XC, Su HY, Guo XY, An N, Jing KP, Pan QJ, Liu HF. Autophagy Inhibition Sensitizes Renal Tubular Epithelial Cell to G1 Arrest Induced by Transforming Growth Factor beta (TGF-β). Med Sci Monit 2020; 26:e922673. [PMID: 32555132 PMCID: PMC7297028 DOI: 10.12659/msm.922673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-β-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-β has not been explored well. Material/Methods The effects of autophagy inhibition on TGF-β-induced cell cycle arrest in TECs were explored in vitro. Human kidney-2 (HK-2) cells were stimulated by TGF-β with or without a combined treatment of autophagy inhibitor chloroquine (CQ) or bafilomycin A1 (Baf). Results Autophagy inhibition by CQ or Baf promotes the suppression of growth in TGF-β-treated HK-2 cells, as detected by the Cell Counting Kit-8 (CCK-8) method. In addition, CQ or Baf stimulation enhances G1 arrest in TGF-β treated HK-2 cells, as investigated using propidium iodide (PI) staining and flow cytometry, which was further confirmed by a decrease in the expression of phosphorylated retinoblastoma protein (p-RB) and cyclin-dependent kinase 4 (CDK4). The upregulation of p21 induced by CQ or Baf may mediate an enhanced G1 arrest in TGF-β treated HK-2 cells. Western blot analysis showed that TGF-β-induced expression of extracellular matrix fibronectin was notably upregulated in the presence of autophagy inhibitors. Conclusions Inhibition of autophagy sensitizes the TECs to G1 arrest and proliferation suppression induced by TGF-β that contributes to the induction of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Hong-Luan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Zhi-Hang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Xiao-Cui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Hong-Yong Su
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Xiao-Yan Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Ning An
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Kai-Peng Jing
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Qing-Jun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
135
|
Cheng C, Wang Z, Wang J, Ding C, Sun C, Liu P, Xu X, Liu Y, Chen B, Gu B. Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Transl Lung Cancer Res 2020; 9:693-704. [PMID: 32676331 PMCID: PMC7354118 DOI: 10.21037/tlcr-19-590] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Emerging evidence has suggested that dysbiosis of the lung microbiota may be associated with the development of lung diseases. However, the interplay between the lung microbiome and lung cancer remains unclear. The aim of the present study was to evaluate and compare differences in taxonomic and derived functional profiles in the lung microbiota between lung cancer and benign pulmonary diseases. Methods Bronchoalveolar lavage fluid (BALF) samples were collected from 32 patients with lung cancer and 22 patients with benign pulmonary diseases, and further analyzed by 16S rRNA amplicon sequencing. The obtained sequence data were deeply analyzed by bioinformatics methods. Results A significant differentiation trend was observed between the lung cancer and control groups based on principal coordinate analysis (PCoA), while richness and evenness in the lung microbiome of lung cancer patients generally resembled those of patients with benign pulmonary diseases. Phylum TM7 and six genera (c:TM7-3, Capnocytophaga, Sediminibacterium, Gemmiger, Blautia and Oscillospira) were enriched in the lung cancer group compared with the control group (adjust P<0.05). The area under the curve (AUC) combining the microbiome with clinical tumor markers to predict lung cancer was 84.52% (95% CI: 74.06–94.97%). In addition, predicted KEGG pathways showed that the functional differences in metabolic pathways of microbiome varied with groups. Conclusions The results indicated that differences existed in the lung microbiome of patients with lung cancer and those with benign pulmonary diseases, and some certain bacteria may have potential to predict lung cancer, though future larger-sample studies are required to validate this supposition.
Collapse
Affiliation(s)
- Chen Cheng
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | | | - Jingqiao Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chuang Sun
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Pingli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Yanan Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bi Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
136
|
Wei X, Zhu X, Jiang L, Huang X, Zhang Y, Zhao D, Du Y. Recent advances in understanding the role of hypoxia-inducible factor 1α in renal fibrosis. Int Urol Nephrol 2020; 52:1287-1295. [PMID: 32378138 DOI: 10.1007/s11255-020-02474-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the most common pathological manifestation of chronic kidney disease (CKD), and with numerous influencing factors, its pathogenesis is complex. Epithelial-mesenchymal transition (EMT) is known to promote the progression of renal fibrosis via alterations in the secreted proteome. Moreover, blocking or even reversing EMT can effectively reduce the degree of fibrosis. As such, targeting the key molecules responsible for promoting EMT may be an effective strategy for inhibiting renal fibrosis. Research in recent years has demonstrated that hypoxia-inducible factor 1α (HIF-1α) acts to promote renal fibrosis through regulation of EMT. However, the relationship between HIF-1α and EMT remains incompletely understood. In the present review, the underlying mechanism of the interaction between HIF-1α and EMT is explored to provide novel insight into the pathogenesis of renal fibrosis and new ideas for early targeted intervention.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Lili Jiang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Xiu Huang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Yangyang Zhang
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, 71 XinMin Street, Changchun, Jilin, China.
| |
Collapse
|
137
|
Chu W, Zhang X, Qi L, Fu Y, Wang P, Zhao W, Du J, Zhang J, Zhan J, Wang Y, Zhu WG, Yu Y, Zhang H. The EZH2-PHACTR2-AS1-Ribosome Axis induces Genomic Instability and Promotes Growth and Metastasis in Breast Cancer. Cancer Res 2020; 80:2737-2750. [PMID: 32312833 DOI: 10.1158/0008-5472.can-19-3326] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of histone methyltransferase EZH2 and ribosome synthesis strongly associate with cancer development and progression. We previously found that EZH2 regulates RNA polymerase III-transcribed 5S ribosomal RNA gene transcription. However, whether EZH2 regulates ribosome synthesis is still unknown. Here, we report that EZH2 promotes ribosome synthesis by targeting and silencing a long noncoding RNA PHACTR2-AS1. PHACTR2-AS1 directly bound ribosome DNA genes and recruited histone methyltransferase SUV39H1, which in turn triggered H3K9 methylation of these genes. Depletion of PHACTR2-AS1 resulted in hyperactivation of ribosome synthesis and instability of ribosomal DNA, which promoted cancer cell proliferation and metastasis. Administration of PHACTR2-AS1-30nt-RNA, which binds to SUV39H1, effectively inhibited breast cancer growth and lung metastasis in mice. PHACTR2-AS1 was downregulated in breast cancer patients, where lower PHACTR2-AS1 expression promoted breast cancer development and correlated with poor patient outcome. Taken together, we demonstrate that PHACTR2-AS1 maintains a H3K9 methylation-marked silent state of ribosomal DNA genes, comprising a regulatory axis that controls breast cancer growth and metastasis. SIGNIFICANCE: These findings reveal that EZH2 mediates ribosomal DNA stability via silencing of PHACTR2-AS1, representing a potential therapeutic target to control breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Wenhui Chu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Xi Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Lihua Qi
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yenan Fu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Peng Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei Zhao
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yunling Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yu Yu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
138
|
Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nat Commun 2020; 11:1723. [PMID: 32265444 PMCID: PMC7138853 DOI: 10.1038/s41467-020-15283-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer (TNBC), defined by the presence of metaplastic components of spindle, squamous, or sarcomatoid histology. The protein profiles underpinning the pathological subtypes and metastatic behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients. Comparing MBC and TNBC protein profiles we show MBC-specific increases related to epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic pathways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal events in spindle, inflammation- and apical junction-related proteins in squamous, and extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared spindle-specific signature of 17 upregulated proteins involved in translation and 19 downregulated proteins with roles in cell metabolism. These data identify potential subtype specific MBC biomarkers and therapeutic targets. Metaplastic breast carcinoma (MBC) is among the most aggressive subtypes of triple-negative breast cancer (TNBC) but the underlying proteome profiles are unknown. Here, the authors characterize the protein signatures of human MBC tissue samples and their relationship to TNBC and normal breast tissue.
Collapse
|
139
|
Liu Y, Ding Y, Nie Y, Yang M. EMP1 Promotes the Proliferation and Invasion of Ovarian Cancer Cells Through Activating the MAPK Pathway. Onco Targets Ther 2020; 13:2047-2055. [PMID: 32210572 PMCID: PMC7071728 DOI: 10.2147/ott.s240028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Epithelial membrane protein 1 (EMP1), a member of the EMP family, is overexpressed in a large number of tumors and is thought to be a cellular connexin on the cell membrane and is involved in proliferation, invasion, metastasis of tumor cells, and epithelial-mesenchymal transition (EMT). Nevertheless, its biomedical function in ovarian cancer is still unclear. Methods EMP1 was detected in ovarian cancer cell lines by whole transcriptome resequencing. The mRNA of EMP1 was examined by qRT-PCR. The relationship between expression of EMP1 and clinical classification, metastasis, and shortened survival time in ovarian cancer specimens was analysed by immunohistochemical (IHC). The mechanism of EMP1 enhanced proliferation and invasion of ovarian cancer cells was determined by siRNA interference, colony formation, migration and invasion experiments, and Western blot. Results EMP1 was up-regulated in ovarian cancer cell lines and ovarian cancer tissues in comparison with non-cancerous ovarian specimens. High expression of EMP1 in ovarian cancer specimens was obviously related to high clinical classification, metastasis, and shortened survival time. High expressed EMP1 facilitates cell proliferation, invasion and EMT in ovarian cancer cells. Over-expressed EMP1 increased the protein levels of RAS/RAF/MAPK/c-JUN. Conclusion Over-expressed EMP1 in ovarian cancer promotes tumor cell proliferation, invasion, and EMT by the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Yanting Nie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
140
|
Li Y, Chen F, Shen W, Li B, Xiang R, Qu L, Zhang C, Li G, Xie H, Katanaev VL, Jia L. WDR74 induces nuclear β-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Lett 2020; 471:103-115. [PMID: 31838084 DOI: 10.1016/j.canlet.2019.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer has been notorious for its lack of advance in clinical therapy, urging for effective therapeutic targets. WD repeat-containing protein 74 (WDR74) has previously been implicated in tumorigenesis, but its mechanistic functions remain not well understood. Herein, WDR74 expression was observed to be increased upon lung cancer progression from healthy normal tissues to the primary cancer and further to the metastatic cancer. Through gain- and loss-of-function approaches, we found that WDR74 regulated lung cancer cell proliferation, cell cycle progression, chemoresistance and cell aggressiveness in vitro. Moreover, a xenograft mouse model disclosed that WDR74 knockout inhibited lung cancer growth and metastasis, whereas WDR74 overexpression reciprocally enhanced these characteristics. Mechanistically, WDR74 promoted nuclear β-catenin accumulation and drove downstream Wnt-responsive genes, thus revealing that WDR74 activated the Wnt/β-catenin signaling pathway. Collectively, WDR74 inducing nuclear β-catenin accumulation and driving the downstream Wnt-responsive genes expression facilitates lung cancer growth and metastasis. WDR74 can serve as a candidate target for the prevention and treatment of lung cancer in clinic.
Collapse
Affiliation(s)
- Yumei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Fan Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Weiyu Shen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Rong Xiang
- Department of Pathology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, 350025, China
| | - Lijuan Qu
- Department of Pathology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, 350025, China
| | - Chen Zhang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Gao Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Huanzhang Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Vladimir L Katanaev
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Switzerland.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
141
|
Cooke M, Baker MJ, Kazanietz MG. Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Front Cell Dev Biol 2020; 8:118. [PMID: 32158759 PMCID: PMC7051914 DOI: 10.3389/fcell.2020.00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) representing ∼85% of new diagnoses. The disease is often detected in an advanced metastatic stage, with poor prognosis and clinical outcome. In order to escape from the primary tumor, cancer cells acquire highly motile and invasive phenotypes that involve the dynamic reorganization of the actin cytoskeleton. These processes are tightly regulated by Rac1, a small G-protein that participates in the formation of actin-rich membrane protrusions required for cancer cell motility and for the secretion of extracellular matrix (ECM)-degrading proteases. In this perspective article we focus on the mechanisms leading to aberrant Rac1 signaling in NSCLC progression and metastasis, highlighting the role of Rac Guanine nucleotide Exchange Factors (GEFs). A plausible scenario is that specific Rac-GEFs activate discrete intracellular pools of Rac1, leading to unique functional responses in the context of specific oncogenic drivers, such as mutant EGFR or mutant KRAS. The identification of dysregulated Rac signaling regulators may serve to predict critical biomarkers for metastatic disease in lung cancer patients, ultimately aiding in refining patient prognosis and decision-making in the clinical setting.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
142
|
Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells 2020; 9:cells9020428. [PMID: 32059478 PMCID: PMC7072371 DOI: 10.3390/cells9020428] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) contributes to tumor progression, cancer cell invasion, and therapy resistance. EMT is regulated by transcription factors such as the protein products of the SNAI gene family, which inhibits the expression of epithelial genes. Several signaling pathways, such as TGF-beta1, IL-6, Akt, and Erk1/2, trigger EMT responses. Besides regulatory transcription factors, RNA molecules without protein translation, micro RNAs, and long non-coding RNAs also assist in the initialization of the EMT gene cluster. A challenging novel aspect of EMT research is the investigation of the interplay between tumor microenvironments and EMT. Several microenvironmental factors, including fibroblasts and myofibroblasts, as well as inflammatory, immune, and endothelial cells, induce EMT in tumor cells. EMT tumor cells change their adverse microenvironment into a tumor friendly neighborhood, loaded with stromal regulatory T cells, exhausted CD8+ T cells, and M2 (protumor) macrophages. Several EMT inhibitory mechanisms are instrumental in reversing EMT or targeting EMT cells. Currently, these mechanisms are also significant for clinical use.
Collapse
|
143
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
144
|
El Hassouni B, Mantini G, Immordino B, Peters GJ, Giovannetti E. CX-5461 Inhibits Pancreatic Ductal Adenocarcinoma Cell Growth, Migration and Induces DNA Damage. Molecules 2019; 24:4445. [PMID: 31817270 PMCID: PMC6943431 DOI: 10.3390/molecules24244445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inhibition of ribosome biogenesis has recently emerged as a promising strategy for the treatment of metastatic tumors. The RNA polymerase I inhibitor CX-5461 has shown efficacy in a panel of cancer types and is currently being tested in clinical trials. However, further preclinical studies to unravel molecular mechanisms underlying the activity of this drug are warranted. METHODS In this study, we have investigated the effects of CX-5461 on cell growth and migration of pancreatic cancer cells by the sulforhodamine-B and wound healing assay, respectively. Furthermore, we assessed the expression of epithelial-to-mesenchymal transition (EMT) genes by qRT-PCR, while protein expression of DNA damage marker phospho-H2A.X was studied by Western blot and immunofluorescence. RESULTS CX-5461 inhibits pancreatic cancer cell growth in the nanomolar range and inhibits the migratory capability of the cells. Additionally, CX-5461 induced expression of EMT factor SNAI1 and caused DNA double-strand breaks as measured by increased expression of phospho-H2A.X. CONCLUSION This study demonstrated that CX-5461 is active against pancreatic cancer cells and modulation of EMT factors, as well as increased expression of phospho-H2A.X, support further pre-/clinical investigations, including the analyses of these markers.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzothiazoles/chemistry
- Benzothiazoles/pharmacology
- Benzothiazoles/therapeutic use
- Biomarkers, Tumor/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- DNA Damage/genetics
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Models, Biological
- Naphthyridines/chemistry
- Naphthyridines/pharmacology
- Naphthyridines/therapeutic use
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/pathology
- Gemcitabine
Collapse
Affiliation(s)
- Btissame El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (B.E.H.); (G.M.); (B.I.); (G.J.P.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (B.E.H.); (G.M.); (B.I.); (G.J.P.)
| | - Benoît Immordino
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (B.E.H.); (G.M.); (B.I.); (G.J.P.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (B.E.H.); (G.M.); (B.I.); (G.J.P.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (B.E.H.); (G.M.); (B.I.); (G.J.P.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
145
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
146
|
Yin N, Liu Y, Murray NR, Fields AP. Oncogenic protein kinase Cι signaling mechanisms in lung cancer: Implications for improved therapeutic strategies. Adv Biol Regul 2019; 75:100656. [PMID: 31623973 DOI: 10.1016/j.jbior.2019.100656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 11/28/2022]
Abstract
Protein Kinase Cι (PKCι) is a major oncogene involved in the initiation, maintenance and progression of numerous forms of human cancer. In the lung, PKCι is necessary for the maintenance of the transformed phenotype of the two major forms of non-small cell lung cancer (NSCLC), lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC). In addition, PKCι is necessary for both LADC and LSCC tumorigenesis by establishing and maintaining a highly aggressive stem-like, tumor-initiating cell phenotype. Interestingly however, while PKCι signaling in these two major lung cancer subtypes shares some common elements, it also drives distinct, sub-type specific pathways. Furthermore, recent analysis has revealed both PKCι-dependent and PKCι-independent pathways to LADC development. Herein, we discussion our current knowledge of oncogenic PKCι signaling in LADC and LSCC, and discuss these findings in the context of how they may inform strategies for improved therapeutic intervention in these deadly diseases.
Collapse
Affiliation(s)
- Ning Yin
- From the Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Yi Liu
- From the Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Nicole R Murray
- From the Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Alan P Fields
- From the Department of Cancer Cell Biology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
147
|
Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nat Commun 2019; 10:3856. [PMID: 31451693 PMCID: PMC6710267 DOI: 10.1038/s41467-019-11808-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Accurate prediction of chemo- or targeted therapy responses for patients with similar driver oncogenes through a simple and least-invasive assay represents an unmet need in the clinical diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic phenotypes is found to be predictive for patient therapy response, physiological performance, and survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyrosine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant cell killing in the glycolytic cells without affecting the cells with active mitochondrial oxidation. Non-invasive methods to predict treatment response are urgently needed. Here in lung cancer, the authors develop a single-cell on-chip cytometry method to metabolically phenotype disseminated tumor cells, revealing metabolic heterogeneity and predictors of therapy response and survival.
Collapse
|