101
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
102
|
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int J Mol Sci 2020; 21:ijms21165830. [PMID: 32823799 PMCID: PMC7461575 DOI: 10.3390/ijms21165830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.
Collapse
|
103
|
Translation Regulation by eIF2α Phosphorylation and mTORC1 Signaling Pathways in Non-Communicable Diseases (NCDs). Int J Mol Sci 2020; 21:ijms21155301. [PMID: 32722591 PMCID: PMC7432514 DOI: 10.3390/ijms21155301] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) are medical conditions that, by definition, are non-infectious and non-transmissible among people. Much of current NCDs are generally due to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption, smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction pathways. Alterations in cell and physiological signaling and transcriptional control pathways have been well studied in several human NCDs, but these same pathways also regulate expression and function of the protein synthetic machinery and mRNA translation which have been less well investigated. Alterations in expression of specific translation factors, and disruption of canonical mRNA translational regulation, both contribute to the pathology of many NCDs. The two most common pathological alterations that contribute to NCDs discussed in this review will be the regulation of eukaryotic initiation factor 2 (eIF2) by the integrated stress response (ISR) and the mammalian target of rapamycin complex 1 (mTORC1) pathways. Both pathways integrally connect mRNA translation activity to external and internal physiological stimuli. Here, we review the role of ISR control of eIF2 activity and mTORC1 control of cap-mediated mRNA translation in some common NCDs, including Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive pulmonary disease (COPD), and cardiac diseases. Our goal is to provide insights that further the understanding as to the important role of translational regulation in the pathogenesis of these diseases.
Collapse
|
104
|
Abstract
RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR. RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αβγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α.
Collapse
|
105
|
Abrishami V, Ilca SL, Gomez-Blanco J, Rissanen I, de la Rosa-Trevín JM, Reddy VS, Carazo JM, Huiskonen JT. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:43-52. [PMID: 32470354 DOI: 10.1016/j.pbiomolbio.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/10/2023]
Abstract
Technological advances in transmission electron microscopes and detectors have turned cryogenic electron microscopy (cryo-EM) into an essential tool for structural biology. A commonly used cryo-EM data analysis method, single particle analysis, averages hundreds of thousands of low-dose images of individual macromolecular complexes to determine a density map of the complex. The presence of symmetry in the complex is beneficial since each projection image can be assigned to multiple views of the complex. However, data processing that applies symmetry can average out asymmetric features and consequently data analysis methods are required to resolve asymmetric structural features. Scipion is a cryo-EM image processing framework that integrates functions from different image processing packages as plugins. To extend its functionality for handling symmetry mismatches, we present here a Scipion plugin termed LocalRec implementing the localized reconstruction method. When tested on an adenovirus data set, the plugin enables resolving the symmetry-mismatched trimeric fibre bound to the five-fold vertices of the capsid. Furthermore, it improves the structure determination of the icosahedral capsid by dealing with the defocus gradient across the particle. LocalRec is expected to be widely applicable in a range of cryo-EM investigations of flexible and symmetry mismatched complexes.
Collapse
Affiliation(s)
- Vahid Abrishami
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Josue Gomez-Blanco
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Current address: Department of Anatomy & Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 0C7, Canada
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | | | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - José-Maria Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
106
|
Costa-Mattioli M, Walter P. The integrated stress response: From mechanism to disease. Science 2020; 368:368/6489/eaat5314. [PMID: 32327570 DOI: 10.1126/science.aat5314] [Citation(s) in RCA: 870] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
107
|
In-silico analysis of eukaryotic translation initiation factors (eIFs) in response to environmental stresses in rice (Oryza sativa). Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00467-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
108
|
Marini G, Nüske E, Leng W, Alberti S, Pigino G. Reorganization of budding yeast cytoplasm upon energy depletion. Mol Biol Cell 2020; 31:1232-1245. [PMID: 32293990 PMCID: PMC7353153 DOI: 10.1091/mbc.e20-02-0125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Yeast cells, when exposed to stress, can enter a protective state in which cell division, growth, and metabolism are down-regulated. They remain viable in this state until nutrients become available again. How cells enter this protective survival state and what happens at a cellular and subcellular level are largely unknown. In this study, we used electron tomography to investigate stress-induced ultrastructural changes in the cytoplasm of yeast cells. After ATP depletion, we observed significant cytosolic compaction and extensive cytoplasmic reorganization, as well as the emergence of distinct membrane-bound and membraneless organelles. Using correlative light and electron microscopy, we further demonstrated that one of these membraneless organelles was generated by the reversible polymerization of eukaryotic translation initiation factor 2B, an essential enzyme in the initiation of protein synthesis, into large bundles of filaments. The changes we observe are part of a stress-induced survival strategy, allowing yeast cells to save energy, protect proteins from degradation, and inhibit protein functionality by forming assemblies of proteins.
Collapse
Affiliation(s)
- Guendalina Marini
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| |
Collapse
|
109
|
Marintchev A, Ito T. eIF2B and the Integrated Stress Response: A Structural and Mechanistic View. Biochemistry 2020; 59:1299-1308. [PMID: 32200625 DOI: 10.1021/acs.biochem.0c00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic translation initiation factor eIF2 is a GTPase, which brings the initiator Met-tRNAi to the ribosome as the eIF2-GTP·Met-tRNAi ternary complex (TC). TC regeneration is catalyzed by the guanine nucleotide exchange factor (GEF) eIF2B. eIF2 phosphorylation by several stress-induced kinases converts it into a competitive inhibitor of eIF2B. Inhibition of eIF2B activity lowers cellular TC concentrations, which in turn triggers the integrated stress response (ISR). Depending on its degree of activation and duration, the ISR protects the cell from the stress or can itself induce apoptosis. ISR dysregulation is a causative factor in the pathology of multiple neurodegenerative disorders, while ISR inhibitors are neuroprotective. The realization that eIF2B is a promising therapeutic target has triggered significant interest in its structure and its mechanisms of action and regulation. Recently, four groups published the cryo-electron microscopy structures of eIF2B with its substrate eIF2 and/or its inhibitor, phosphorylated eIF2 [eIF2(α-P)]. While all three structures of the nonproductive eIF2B·eIF2(α-P) complex are similar to each other, there is a sharp disagreement between the published structures of the productive eIF2B·eIF2 complex. One group reports a structure similar to that of the nonproductive complex, whereas two others observe a vastly different eIF2B·eIF2 complex. Here, we discuss the recent reports on the structure, function, and regulation of eIF2B; the preclinical data on the use of ISR inhibitors for the treatment of neurodegenerative disorders; and how the new structural and biochemical information can inform and influence the use of eIF2B as a therapeutic target.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
110
|
Komar AA, Merrick WC. A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2. Int J Mol Sci 2020; 21:E2054. [PMID: 32192132 PMCID: PMC7139343 DOI: 10.3390/ijms21062054] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,β,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - William C. Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
111
|
Pizzinga M, Harvey RF, Garland GD, Mordue R, Dezi V, Ramakrishna M, Sfakianos A, Monti M, Mulroney TE, Poyry T, Willis AE. The cell stress response: extreme times call for post‐transcriptional measures. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1578. [DOI: 10.1002/wrna.1578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Ryan Mordue
- MRC Toxicology Unit University of Cambridge Leicester UK
| | - Veronica Dezi
- MRC Toxicology Unit University of Cambridge Leicester UK
| | | | | | - Mie Monti
- MRC Toxicology Unit University of Cambridge Leicester UK
| | | | - Tuija Poyry
- MRC Toxicology Unit University of Cambridge Leicester UK
| | - Anne E. Willis
- MRC Toxicology Unit University of Cambridge Leicester UK
| |
Collapse
|
112
|
Anand AA, Walter P. Structural insights into ISRIB, a memory‐enhancing inhibitor of the integrated stress response. FEBS J 2019; 287:239-245. [DOI: 10.1111/febs.15073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Aditya A. Anand
- Department of Biochemistry and Biophysics University of California at San Francisco San Francisco CA USA
- Howard Hughes Medical Institute San Francisco CA USA
| | - Peter Walter
- Department of Biochemistry and Biophysics University of California at San Francisco San Francisco CA USA
- Howard Hughes Medical Institute San Francisco CA USA
| |
Collapse
|
113
|
Schmidt S, Gay D, Uthe FW, Denk S, Paauwe M, Matthes N, Diefenbacher ME, Bryson S, Warrander FC, Erhard F, Ade CP, Baluapuri A, Walz S, Jackstadt R, Ford C, Vlachogiannis G, Valeri N, Otto C, Schülein-Völk C, Maurus K, Schmitz W, Knight JRP, Wolf E, Strathdee D, Schulze A, Germer CT, Rosenwald A, Sansom OJ, Eilers M, Wiegering A. A MYC-GCN2-eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nat Cell Biol 2019; 21:1413-1424. [PMID: 31685988 PMCID: PMC6927814 DOI: 10.1038/s41556-019-0408-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC-eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Friedrich Wilhelm Uthe
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Denk
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Niels Matthes
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carsten Patrick Ade
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Apoorva Baluapuri
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | | | | | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Christoph Otto
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Katja Maurus
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Owen James Sansom
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| | - Armin Wiegering
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
114
|
Gordiyenko Y, Llácer JL, Ramakrishnan V. Structural basis for the inhibition of translation through eIF2α phosphorylation. Nat Commun 2019; 10:2640. [PMID: 31201334 PMCID: PMC6572841 DOI: 10.1038/s41467-019-10606-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58–63 with eIF2Bδ leading to a competition with Met-tRNAi. During stress, protein synthesis is inhibited through phosphorylation of the initiation factor eIF2 on its alpha subunit and its interaction with eIF2B. Here the authors describe a structure of the yeast eIF2B in complex with its substrate - the GDP-bound phosphorylated eIF2, providing insights into how phosphorylation results in a tighter interaction with eIF2B.
Collapse
Affiliation(s)
- Yuliya Gordiyenko
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - José Luis Llácer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas and CIBERER-ISCIII, Valencia, 46010, Spain.
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|