101
|
González-Chávez SA, Salas-Leiva JS, Salas-Leiva DE, López-Loeza SM, Sausameda-García J, Orrantia-Borunda E, Burgos-Vargas R, Alvarado-Jáquez MF, Torres-Quintana M, Cuevas-Martínez R, Chaparro-Barrera E, Marín-Terrazas C, Espino-Solís GP, Romero-López JP, Bernal-Alferes BDJ, Pacheco-Tena C. Levofloxacin induces differential effects in the transcriptome between the gut, peripheral and axial joints in the Spondyloarthritis DBA/1 mice: Improvement of intestinal dysbiosis and the overall inflammatory process. PLoS One 2023; 18:e0281265. [PMID: 36730179 PMCID: PMC9894406 DOI: 10.1371/journal.pone.0281265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
To analyze the effect of levofloxacin-induced intestinal microbiota modifications on intestinal, joint, and systemic inflammation in the DBA/1 mice with spontaneous arthritis. The study included two groups of mice, one of which received levofloxacin. The composition and structure of the microbiota were determined in the mice's stool using 16S rRNA sequencing; the differential taxa and metabolic pathway between mice treated with levofloxacin and control mice were also defied. The effect of levofloxacin was evaluated in the intestines, hind paws, and spines of mice through DNA microarray transcriptome and histopathological analyses; systemic inflammation was measured by flow cytometry. Levofloxacin decreased the pro-inflammatory bacteria, including Prevotellaceae, Odoribacter, and Blautia, and increased the anti-inflammatory Muribaculaceae in mice's stool. Histological analysis confirmed the intestinal inflammation in control mice, while in levofloxacin-treated mice, inflammation was reduced; in the hind paws and spines, levofloxacin also decreased the inflammation. Microarray showed the downregulation of genes and signaling pathways relevant in spondyloarthritis, including several cytokines and chemokines. Levofloxacin-treated mice showed differential transcriptomic profiles between peripheral and axial joints and intestines. Levofloxacin decreased the expression of TNF-α, IL-23a, and JAK3 in the three tissues, but IL-17 behaved differently in the intestine and the joints. Serum TNF-α was also reduced in levofloxacin-treated mice. Our results suggest that the microbiota modification aimed at reducing pro-inflammatory and increasing anti-inflammatory bacteria could potentially be a coadjuvant in treating inflammatory arthropathies.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Joan S. Salas-Leiva
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Dayana E. Salas-Leiva
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics (ICG), Dalhousie University, Halifax, NS, Canada
| | - Salma Marcela López-Loeza
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Jasanai Sausameda-García
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Erasmo Orrantia-Borunda
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | | | - Mayra Torres-Quintana
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Rubén Cuevas-Martínez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Eduardo Chaparro-Barrera
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Carlos Marín-Terrazas
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Gerardo Pável Espino-Solís
- Translational Research Laboratory and National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua, Mexico
| | - José Pablo Romero-López
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Brian de Jesús Bernal-Alferes
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - César Pacheco-Tena
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
- * E-mail:
| |
Collapse
|
102
|
Liu Q, Hao H, Li J, Zheng T, Yao Y, Tian X, Zhang Z, Yi H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Attenuates Cartilage Degeneration via Modulating Gut Microbiota in DMM-Induced Mice. Nutrients 2023; 15:nu15030747. [PMID: 36771453 PMCID: PMC9920331 DOI: 10.3390/nu15030747] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease primarily characterized by cartilage degeneration. Milk-derived extracellular vesicles (mEVs) were reported to inhibit catabolic and inflammatory processes in the cartilage of OA patients. However, the current therapies target the advanced symptoms of OA, and it is significant to develop a novel strategy to inhibit the processes driving OA pathology. In this study, we investigated the therapeutic potential of mEVs in alleviating OA in vivo. The results revealed that mEVs ameliorated cartilage degeneration by increasing hyaline cartilage thickness, decreasing histological Osteoarthritis Research Society International (OARSI) scores, enhancing matrix synthesis, and reducing the expression of cartilage destructive enzymes in the destabilization of medial meniscus (DMM) mice. In addition, the disturbed gut microbiota in DMM mice was partially improved upon treatment with mEVs. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the potential beneficial bacteria (Firmicutes, Ruminococcaceae, Akkermansiaceae) were increased. mEVs could alleviate the progression of OA by restoring matrix homeostasis and reshaping the gut microbiota. These findings suggested that mEVs might be a potential therapeutic dietary supplement for the treatment of OA.
Collapse
Affiliation(s)
- Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jiankun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Ting Zheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yukun Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Correspondence: (Z.Z.); (H.Y.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
- Correspondence: (Z.Z.); (H.Y.)
| |
Collapse
|
103
|
Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
104
|
Lockwood MB, Chlipala GE, Maeinschein-Cline M, DeVon HA, Lichvar AB, Samra MK, Park CG, Campara M, Doorenbos AZ, Tussing-Humphreys LM, Spaggiari M, Bronas UG, Steel JL, Green SS. Pain Interference in End Stage Kidney Disease is Associated with Changes in Gut Microbiome Features Before and After Kidney Transplantation. Pain Manag Nurs 2023; 24:68-77. [PMID: 36184305 PMCID: PMC9925398 DOI: 10.1016/j.pmn.2022.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Pain, a common debilitating symptom among kidney transplant recipients (KTRs), is among the most common and undertreated symptoms after kidney transplantation. AIMS Characterize associations between gut microbiome features and pain interference before and after kidney transplantation. DESIGN Longitudinal, repeated measures study, collecting fecal specimens and pain interference data pretransplant and 3 months posttransplant. SETTING Participants were recruited at the kidney transplant clinic at the University of Illinois Hospital & Health Sciences System. PARTICIPANTS/SUBJECTS 19 living donor kidney transplant recipients. METHODS We assessed fecal microbial community structure with shotgun metagenomic sequencing; we used pain interference scores derived from the Patient-Reported Outcomes Measurement Information System-57. RESULTS We measured a reduction in the Shannon diversity index in both groups after transplantation but observed no significant differences between groups at either time point. We did observe significant differences in fecal microbial Bray-Curtis similarity index among those reporting pain interference pre- transplant versus no pain interference at 3-months posttransplant (R = .306, p = .022), and between pain interference groups at posttransplant (R = .249, p = .041). Pairwise models showed significant differences between groups posttransplant in relative abundances of several taxa, including a 5-fold reduction.ßin Akkermansia among those with pain interference and a higher relative abundance of taxa associated with chronic inflammation in those with pain interference posttransplant. Functional gene analysis identified two features that were significantly enriched in those with pain interference, including a peptide transport system gene. CONCLUSIONS Gut microbiota community structure differs between groups with and without pain interference at 3 months after kidney transplantation. Several taxa involved in intestinal barrier integrity and chronic inflammation were associated with posttransplant pain.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Biobehavioral Health Science, University of Illinois Chicago, College of Nursing, Chicago, Illinois.
| | - George E Chlipala
- Research informatics core, University of Illinois, Chicago, Illinois
| | | | - Holli A DeVon
- Community Health Research, University of California Los Angeles School of Nursing, Los Angeles, California
| | | | - Manpreet K Samra
- Department of Medicine, Edward Hines Jr. VA Transplant Center, Loyola University Medical Center, Chicago, Illinois
| | - Chang G Park
- Department of Population Health Nursing Science, University of Illinois Chicago, College of Nursing, Chicago, Illinois
| | - Maya Campara
- University of Illinois Chicago, College of Medicine/Surgery, Chicago, Illinois
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, College of Nursing, Chicago, Illinois
| | - Lisa M Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, College of Nursing, Chicago, Illinois
| | - Mario Spaggiari
- College of Medicine, University of Illinois Chicago, College of Nursing, Chicago, Illinois
| | - Ulf G Bronas
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, College of Nursing, Chicago, Illinois
| | - Jennifer L Steel
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Excellence in Behavioral Medicine, Pittsburgh, Pennsylvania
| | - Stefan S Green
- Core Laboratory Services and Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois; Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
105
|
Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 2023; 164:e66-e76. [PMID: 35587528 DOI: 10.1097/j.pain.0000000000002694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Alterations in the composition and function of the gut microbiome in women with fibromyalgia have recently been demonstrated, including changes in the relative abundance of certain bile acid-metabolizing bacteria. Bile acids can affect multiple physiological processes, including visceral pain, but have yet to be explored for association to the fibromyalgia gut microbiome. In this study, 16S rRNA sequencing and targeted metabolomic approaches were used to characterize the gut microbiome and circulating bile acids in a cohort of 42 women with fibromyalgia and 42 healthy controls. Alterations in the relative abundance of several bacterial species known to metabolize bile acids were observed in women with fibromyalgia, accompanied by significant alterations in the serum concentration of secondary bile acids, including a marked depletion of α-muricholic acid. Statistical learning algorithms could accurately detect individuals with fibromyalgia using the concentration of these serum bile acids. Serum α-muricholic acid was highly correlated with symptom severity, including pain intensity and fatigue. Taken together, these findings suggest serum bile acid alterations are implicated in nociplastic pain. The changes observed in the composition of the gut microbiota and the concentration of circulating secondary bile acids seem congruent with the phenotype of increased nociception and are quantitatively correlated with symptom severity. This is a first demonstration of circulating bile acid alteration in individuals with fibromyalgia, potentially secondary to upstream gut microbiome alterations. If corroborated in independent studies, these observations may allow for the development of molecular diagnostic aids for fibromyalgia as well as mechanistic insights into the syndrome.
Collapse
|
106
|
Gonzalez-Alvarez ME, Sanchez-Romero EA, Turroni S, Fernandez-Carnero J, Villafañe JH. Correlation between the Altered Gut Microbiome and Lifestyle Interventions in Chronic Widespread Pain Patients: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:256. [PMID: 36837458 PMCID: PMC9964638 DOI: 10.3390/medicina59020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Background: Lifestyle interventions have a direct impact on the gut microbiome, changing its composition and functioning. This opens an innovative way for new therapeutic opportunities for chronic widespread patients. Purpose: The goal of the present study was to evaluate a correlation between lifestyle interventions and the gut microbiome in patients with chronic widespread pain (CWP). Methods: The systematic review was conducted until January 2023. Pain and microbiome were the two keywords selected for this revision. The search was conducted in PubMed, Chochrane, PEDro and ScienceDirect, where 3917 papers were obtained. Clinical trials with lifestyle intervention in CWP patients were selected. Furthermore, these papers had to be related with the gut microbiome, excluding articles related to other types of microbiomes. Results: Only six articles were selected under the eligibility criteria. Lifestyle interventions were exercise, electroacupuncture and ingesting a probiotic. Conclusions: Lifestyle intervention could be a suitable choice to improve the gut microbiome. This fact could be extrapolated into a better quality of life and lesser levels of pain.
Collapse
Affiliation(s)
- María Elena Gonzalez-Alvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain
- Escuela Internacional de Doctorado, Rey Juan Carlos University, 28008 Madrid, Spain
| | - Eleuterio A. Sanchez-Romero
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial (SEDCYDO), 28009 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Josué Fernandez-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain
- Escuela Internacional de Doctorado, Rey Juan Carlos University, 28008 Madrid, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
107
|
王 欣, 杜 信, 周 学. [New Developments in Research on the Relationship Between Osteoarthritis and Oral-Gut Microbes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:49-53. [PMID: 36647642 PMCID: PMC10409032 DOI: 10.12182/20230160508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis. The prevalence and the incidence of OA have been continuously growing along with increased life expectancy and the emerging problem of an aging population around the global. Reported findings have confirmed that osteoarthritis is a chronic inflammatory disease and its major risk factors included genetic susceptibility, aging, and environmental factors. However, the pathogenic mechanisms of osteoarthritis remain unclear. Recent studies have shown that oral-gut microbes are associated with the onset and development of osteoarthritis and may provide new targets for osteoarthritis treatment. Herein, we reviewed the latest developments in research on the relationship between oral-gut microbes and the onset and development of osteoarthritis, with a view to creating new perspectives for further elucidation of the pathogenesis of osteoarthritis and exploration of effective treatments in the future.
Collapse
Affiliation(s)
- 欣妍 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 信眉 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
108
|
Sophocleous A, Azfer A, Huesa C, Stylianou E, Ralston SH. Probiotics Inhibit Cartilage Damage and Progression of Osteoarthritis in Mice. Calcif Tissue Int 2023; 112:66-73. [PMID: 36261653 PMCID: PMC9813193 DOI: 10.1007/s00223-022-01030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Increasing interest has focussed on the possible role of alterations in the microbiome in the pathogenesis of metabolic disease, inflammatory disease, and osteoporosis. Here we examined the role of the microbiome in a preclinical model of osteoarthritis in mice subjected to destabilisation of medical meniscus (DMM). The intestinal microbiome was depleted by broad-spectrum antibiotics from 1 week before birth until the age of 6 weeks when mice were subjected reconstitution of the microbiome with faecal microbial transplant (FMT) followed by the administration of a mixture of probiotic strains Lacticaseibacillus paracasei 8700:2, Lactiplantibacillus plantarum HEAL9 and L. plantarum HEAL19 or vehicle. All mice were subjected to DMM at the age of 8 weeks. The severity of osteoarthritis was evaluated by histological analysis and effects on subchondral bone were investigated by microCT analyses. The combination of FMT and probiotics significantly inhibited cartilage damage at the medial femoral condyle such that the OARSI score was 4.64 ± 0.32 (mean ± sem) in the FMT and probiotic group compared with 6.48 ± 0.53 in the FMT and vehicle group (p = 0.007). MicroCT analysis of epiphyseal bone from the femoral condyle showed that the probiotic group had higher BV/TV, increased Tb.Th, and moderately thicker subchondral bone plates than the control group. There was no difference between groups in joint inflammation or in serum concentrations of inflammatory cytokines and chemokines. We conclude that treatment with probiotics following FMT in mice where the microbiome has been depleted inhibits DMM-induced cartilage damage and impacts on the structure of subchondral bone particularly at the femoral condyle. While further studies are required to elucidate the mechanism of action, our research suggests that these probiotics may represent a novel intervention for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Asim Azfer
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Carmen Huesa
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eleni Stylianou
- Department of Life Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Stuart H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
109
|
Su M, Tang Y, Kong W, Zhang S, Zhu T. Genetically supported causality between gut microbiota, gut metabolites and low back pain: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1157451. [PMID: 37125171 PMCID: PMC10140346 DOI: 10.3389/fmicb.2023.1157451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Background Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study. Methods Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's Q-test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation. Results We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP (p < 0.05). Among them, the lower level of family Ruminococcaceae (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected p = 0.045) and Lactobacillaceae (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected p = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's Q test revealed no Heterogeneity (p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null. Conclusion Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.
Collapse
Affiliation(s)
- Mengchan Su
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yidan Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| | - Weishuang Kong
- Department of Surgery, Xuanwei Hospital of Traditional Chinese Medicine, Xuanwei, China
| | - Shuangyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| |
Collapse
|
110
|
Goggans ML, Bilbrey EA, Quiroz-Moreno CD, Francis DM, Jacobi SK, Kovac J, Cooperstone JL. Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiol Spectr 2022; 10:e0250622. [PMID: 36346230 PMCID: PMC9769997 DOI: 10.1128/spectrum.02506-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.
Collapse
Affiliation(s)
- Mallory L. Goggans
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Emma A. Bilbrey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | | | - David M. Francis
- Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, USA
| | | | - Jasna Kovac
- Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessica L. Cooperstone
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
111
|
Melayah S, Ghozzi M, Ghedira I, Mankaï A. Anticardiolipin and anti-beta 2-glycoprotein I antibodies in patients with unexplained articular manifestations. J Clin Lab Anal 2022; 37:e24812. [PMID: 36514859 PMCID: PMC9833978 DOI: 10.1002/jcla.24812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine the frequency of antiphospholipid antibodies (aPL) in patients with unexplained articular manifestations. MATERIAL AND METHODS Three hundred thirteen patients suffering from arthritis or arthralgia without evident cause and 266 healthy blood donors (HBD) were included in the study. Anticardiolipin antibodies (aCL) and anti-beta 2-glycoprotein I antibodies (aβ2GPI) were measured by ELISA. RESULT Out of the 313 patients, 250 were females and 63 were males. The mean age of patients was 49 ± 14 years (17-87 years). One hundred eleven patients have arthralgia and 202 have arthritis. The frequency of aCL and/or aβ2 GPI (24.9%) was significantly higher in patients than in HBD (10.9%). The frequency of aβ2GPI was 23.6% in patients and 9.4% in the control group (p < 10-3 ). aβ2GPI-IgA was significantly more frequent in patients than in the control group (20.4% vs. 7.5%, p < 10-3 ). aβ2GPI was most commonly observed than aCL in patients (23.6% vs. 6.4%, p < 10-6 ). IgA isotype of aβ2GPI was the most frequent in 20.4% of patients while IgG and IgM were detected in 5.4% and 2.9% respectively. CONCLUSION This study showed that aPL were common in patients with articular manifestations and were mainly directed against β2 GPI. The role of these antibodies remains to be specified.
Collapse
Affiliation(s)
- Sarra Melayah
- Immunology LaboratoryFarhat Hached HospitalSousseTunisia
- Faculty of PharmacyMonastir UniversityMonastirTunisia
- Resarch Unit LR12SP11 on "Biologie moléculaire appliquée aux maladies cardiovasculaires et neurologiques, aux néphropathies héréditaires et à la pharmacogénétique" Biochemistry DepartmentSahloul University HospitalSousseTunisia
| | - Mariem Ghozzi
- Immunology LaboratoryFarhat Hached HospitalSousseTunisia
- Faculty of PharmacyMonastir UniversityMonastirTunisia
- Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections, LR14SP02"Sahloul University HospitalSousseTunisia
| | - Ibtissem Ghedira
- Immunology LaboratoryFarhat Hached HospitalSousseTunisia
- Faculty of PharmacyMonastir UniversityMonastirTunisia
| | - Amani Mankaï
- Immunology LaboratoryFarhat Hached HospitalSousseTunisia
- Higher School of Health and Technical SciencesTunis El Manar UniversityTunisTunisia
- Research Unit UR18ES01 on "Obesity: etiopathology and treatment" National Institute of Nutrition and Food TechnologyTunisTunisia
| |
Collapse
|
112
|
Alizadeh N, Naderi G, Kahrizi MS, Haghgouei T, Mobed A, Shah-Abadi ME. Microbiota-Pain Association; Recent Discoveries and Research Progress. Curr Microbiol 2022; 80:29. [PMID: 36474077 DOI: 10.1007/s00284-022-03124-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The relationship between gut microbiota and pain, such as visceral pain, headaches (migraine), itching, prosthetic joint infection (PJI), chronic abdominal pain (CAP), joint pain, etc., has received increasing attention. Several parts of the evidence suggest that microbiota is one of the most important pain modulators and they can regulate pain in the central and peripheral nervous systems. Any alteration in microbiota by diet or antibiotics mediation may characterize a novel therapeutic strategy for pain management. The present study includes the most up-to-date and influential scientific findings on the association of microbiota with pain, despite the fact that the underlying mechanism is not identified in most cases. According to recent research, identifying the molecular mechanisms of the microbiota-pain pathway can have a unique perspective in treating many diseases, even though there is a long way to reach the ideal point. This study will stress the influence of microbiota on the common diseases that can stimulate the pain with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Naser Alizadeh
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ghazal Naderi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Tannaz Haghgouei
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664, Iran.
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
113
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
114
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
115
|
Liu S, Li G, Zhu Y, Xu C, Yang Q, Xiong A, Weng J, Yu F, Zeng H. Analysis of gut microbiome composition, function, and phenotype in patients with osteoarthritis. Front Microbiol 2022; 13:980591. [PMID: 36504782 PMCID: PMC9732244 DOI: 10.3389/fmicb.2022.980591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Gut microbiome (GMB) disturbance can induce chronic low-grade inflammation, which is closely related to the occurrence and development of osteoarthritis (OA). However, the relationship between GMB and OA remains unclear. In this study, we collected stool samples from OA patients and healthy people, and performed Alpha diversity, Beta diversity, MetaStat, and LEfSe analysis by 16S rRNA sequencing to find out the species with significant difference between the two groups. Random forest analysis was performed to find out biomarkers that could distinguish between OA patients and healthy people. PICRUSt and Bugbase analysis were used to compare the difference in functions and phenotypes. Multivariate linear regression analysis (MaAsLin) was used to adjust for gender, age, and body mass index (BMI). The results showed that there was a significant difference in the overall composition of GMB between the two groups (p = 0.005). After adjusting for gender, age, and BMI, we found that p_Bacteroidota (Q = 0.039), c_Bacteroidia (Q = 0.039), and o_Bacteroidales (Q = 0.040) were enriched in the OA group, while s_Prevotella_copri (Q = 0.001) was enriched in the healthy control group. Prevotella could distinguish between OA patients and healthy people with a better diagnostic power (AUC = 77.5%, p < 0.001, 95% CI: 66.9-88.1%). The functions of DNA transcription, amino acid metabolism (including histidine, lysine, and isoleucine), ATP metabolism, and phospholipid metabolism significantly decreased, while glucose metabolism, protein acetylation, and aspartate kinase activity significantly increased in the OA group. In terms of phenotypes, we found that the relative abundance of aerobic (p = 0.003) and Gram-negative (p < 0.001) was higher in the OA group, while contains mobile elements (p = 0.001) and Gram-positive (p < 0.001) were higher in the healthy control group. Our study preliminarily demonstrated that there were differences in the composition, function, and phenotype of GMB in stool samples between OA patients and healthy people, which provided a novel perspective on further study in OA.
Collapse
Affiliation(s)
- Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chang Xu
- Peking University Shenzhen Hospital Intelligent Hospital Research Academy, Shenzhen, China
| | - Qi Yang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| |
Collapse
|
116
|
Tang J, Song X, Zhao M, Chen H, Wang Y, Zhao B, Yu S, Ma T, Gao L. Oral administration of live combined Bacillus subtilis and Enterococcus faecium alleviates colonic oxidative stress and inflammation in osteoarthritic rats by improving fecal microbiome metabolism and enhancing the colonic barrier. Front Microbiol 2022; 13:1005842. [PMID: 36439850 PMCID: PMC9686382 DOI: 10.3389/fmicb.2022.1005842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/30/2022] [Indexed: 10/02/2023] Open
Abstract
Osteoarthritis (OA) causes intestinal damage. The protective effect of probiotics on the intestine is indeed effective; however, the mechanism of protection against intestinal damage in OA is not clear. In this study, we used meniscal/ligamentous injury (MLI) to mimic OA in rats and explored the colonic protective effects of Bacillus subtilis and Enterococcus faecium on OA. Our study showed that treatment with B. subtilis and E. faecium attenuated colonic injury and reduced inflammatory and oxidative stress factors in the serum of osteoarthritic rats. α- and ß diversity of the fecal flora were not different among groups; no significant differences were observed in the abundances of taxa at the phylum and genus levels. We observed the presence of the depression-related genera Alistipes and Paraprevotella. Analysis of fecal untargeted metabolism revealed that histamine level was significantly reduced in the colon of OA rats, affecting intestinal function. Compared to that in the control group, the enriched metabolic pathways in the OA group were primarily for energy metabolisms, such as pantothenate and CoA biosynthesis, and beta-alanine metabolism. The treatment group had enriched linoleic acid metabolism, fatty acid biosynthesis, and primary bile acid biosynthesis, which were different from those in the control group. The differences in the metabolic pathways between the treatment and OA groups were more evident, primarily in symptom-related metabolic pathways such as Huntington's disease, spinocerebellar ataxia, energy-related central carbon metabolism in cancer, pantothenate and CoA biosynthesis metabolic pathways, as well as some neurotransmission and amino acid transport, and uptake- and synthesis-related metabolic pathways. On further investigation, we found that B. subtilis and E. faecium treatment enhanced the colonic barrier of OA rats, with elevated expressions of tight junction proteins occludin and Zonula occludens 1 and MUC2 mRNA. Intestinal permeability was reduced, and serum LPS levels were downregulated in the treatment group. B. subtilis and E. faecium also regulated the oxidative stress pathway Keap1/Nrf2, promoted the expression of the downstream protective proteins HO-1 and Gpx4, and reduced intestinal apoptosis. Hence, B. subtilis and E. faecium alleviate colonic oxidative stress and inflammation in OA rats by improving fecal metabolism and enhancing the colonic barrier.
Collapse
Affiliation(s)
- Jilang Tang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaopeng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yingying Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Binger Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiming Yu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
117
|
Cho KH, Na HS, Jhun J, Woo JS, Lee AR, Lee SY, Lee JS, Um IG, Kim SJ, Park SH, Cho ML. Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front Immunol 2022; 13:930511. [PMID: 36325344 PMCID: PMC9619036 DOI: 10.3389/fimmu.2022.930511] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated Lactobacillus (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of Faecalibacterium which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.
Collapse
Affiliation(s)
- Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jeong Su Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- Department of Medical Life Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho,
| |
Collapse
|
118
|
Wang W, Niu Y, Jia Q. Physical therapy as a promising treatment for osteoarthritis: A narrative review. Front Physiol 2022; 13:1011407. [PMID: 36311234 PMCID: PMC9614272 DOI: 10.3389/fphys.2022.1011407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease and a leading cause of disability in older adults. With an increasing population ageing and obesity, OA is becoming even more prevalent than it was in previous decades. Evidence indicates that OA is caused by the breakdown of joint tissues from mechanical loading and inflammation, but the deeper underlying mechanism of OA pathogenesis remains unclear, hindering efforts to prevent and treat this disease. Pharmacological treatments are mostly related to relieving symptoms, and there is no drug for radical cure. However, compelling evidence suggests that regular practice of resistance exercise may prevent and control the development of several musculoskeletal chronic diseases including OA, which may result in improved quality of life of the patients. In this review, we introduced the current understanding of the mechanism and clinical treatments of OA pathogenesis. We also reviewed the recent study of physical therapy in the treatment of skeletal system disorders, especially in OA. Finally, we discuss the present challenges and promising advantages of physical therapy in OA treatment.
Collapse
Affiliation(s)
- Wei Wang
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
| | - Yonggang Niu
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
| | - Qingxiu Jia
- School of Physical Education, Anyang Normal University, Anyang, China
- Anyang Key Laboratory of Fitness Training and Assessment, Anyang Normal University, Anyang, China
- *Correspondence: Qingxiu Jia,
| |
Collapse
|
119
|
Xie S, Guan C, Huang T, Liu Y, Yuan F, Xu D. Intermittent fasting promotes repair of rotator cuff injury in the early postoperative period by regulating the gut microbiota. J Orthop Translat 2022; 36:216-224. [PMID: 36263387 PMCID: PMC9574345 DOI: 10.1016/j.jot.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Background The repair of rotator cuff injury is affected by lifestyle and metabolic factors. Intermittent fasting (IF) can promote repair of damaged tissue by regulating intestinal flora, which provides an idea of therapy for rotator cuff injury. The aim of this study was to investigate the effects of fasting on rotator cuff repair after injury, and the role of intestinal flora or a single strain in this process. Methods Mice underwent rotator cuff injury were treated with intermittent fasting or fed ad libitum. Fasting began one month before surgery and continued until euthanasia. Fresh feces were collected at 2 weeks before surgery, on the day of surgery, and 2, 4, 8 weeks postoperatively for 16S rRNA microbiome sequencing. Supraspinatus tendon-humerus (SSTH) complex was collected at 2, 4 and 8 weeks after surgery. Live parabacteroides distasonis (Parabacteroides distasonis) was used for repair of rotator cuff injury, with equal amount of pasteurized P. distasonis (KPD) or sterile anaerobic phosphate buffer saline (PBS) as control. Biomechanical, radiological, histological analysis were used to assess the effect of rotator cuff repair. Results Biomechanical, radiological and histological analysis indicated that intermittent fasting significantly promoted the repair of rotator cuff injury in the early postoperative period (P < 0.05), but significantly inhibited the repair of rotator cuff injury at 4 weeks postoperatively (P < 0.05). 16S rRNA Microbiome sequencing result showed that P. distasonis was the species with the most obvious changes in intestinal flora of mice after fasting. The results of tensile test, X-ray analysis and histological analysis indicated that the live P. distasonis (LPD) significantly impaired the biomechanical properties, bone regeneration and fibrocartilage regeneration of enthesis postoperatively (P < 0.05). Conclusion Intermittent fasting promoted repair of rotator cuff injury in the early postoperative period by regulating the gut microbiota, in which P. distasonis played an important role. The translational potential of this article Intermittent fasting (IF) may be a beneficial lifestyle for the repair of rotator cuff injury in the early postoperative period in clinical, and the influence of a certain strain on the repair of rotator cuff injury may also provide an idea for the treatment of rotator cuff injury in the future.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Corresponding author. Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
120
|
Zertuche JP, Rabasa G, Lichtenstein AH, Matthan NR, Nevitt M, Torner J, Lewis CE, Dai Z, Misra D, Felson D. Alkylresorcinol, a biomarker for whole grain intake, and its association with osteoarthritis: the MOST study. Osteoarthritis Cartilage 2022; 30:1337-1343. [PMID: 35863678 PMCID: PMC9554937 DOI: 10.1016/j.joca.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Higher intake of fiber has been associated with lower risk of incident symptomatic osteoarthritis (OA). We examined whether levels of alkylresorcinol (AR), a marker of whole grain intake, were associated with OA in subjects in The Multicenter Osteoarthritis (MOST) Study. METHOD Knee x-rays and knee pain were assessed at baseline and through 60-months. Stored baseline fasting plasma samples were analyzed for AR homologues (C17:0, C19:0, C21:0, C23:0, C25:0) and total AR levels (AR sum). Two nested case-control studies, one for incident radiographic OA and one for incident symptomatic OA were performed with participants re-assessed at 15, 30 and 60 months. Multivariable conditional logistic regression with baseline covariates including age, sex, BMI, physical activity, quadriceps strength, race, smoking, depressive symptoms, diabetes and knee injury tested the association of log transformed AR levels with OA outcomes. RESULTS Seven hundred seventy-seven subjects were, on average, in their 60's, and most were women. For 60-month cumulative incidence, there was no significant association between quartiles of AR concentration and incident radiographic (e.g., for incident radiographic OA, highest vs lowest quartile of AR sum showed RR = 0.93 (95% CI 0.59, 1.47), and for symptomatic OA RR was 1.22 (95% CI 0.76, 1.94). In secondary analyses examining 30-month incidence, high AR levels were associated with a reduced risk of X-ray OA (RR = 0.31 (95% CI 0.15, 0.64). CONCLUSION In primary analyses, AR levels were not associated with risk of OA, but secondary analyses left open the possibility that high AR levels may protect against OA.
Collapse
Affiliation(s)
| | | | | | | | - M Nevitt
- University of California, San Francisco, USA.
| | | | - C E Lewis
- University of Alabama at Birmingham, USA.
| | - Z Dai
- Flinders University, College of Medicine and Public Health, Adelaide, Australia.
| | - D Misra
- Beth Israel Deaconess Medical Center, HMS, USA.
| | | |
Collapse
|
121
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
122
|
Xiang W, Ji B, Jiang Y, Xiang H. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review. Front Vet Sci 2022; 9:938629. [PMID: 36172610 PMCID: PMC9510893 DOI: 10.3389/fvets.2022.938629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.
Collapse
Affiliation(s)
- Wu Xiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Bingjin Ji
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Yiqin Jiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Han Xiang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Han Xiang
| |
Collapse
|
123
|
Vitetta L. Can krill oil from small crustaceans be a panacea that alleviates symptoms of knee osteoarthritis? Am J Clin Nutr 2022; 116:621-622. [PMID: 35880815 DOI: 10.1093/ajcn/nqac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
124
|
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort. Biomed Pharmacother 2022; 153:113518. [DOI: 10.1016/j.biopha.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
|
125
|
Evaluation of Prebiotics through an In Vitro Gastrointestinal Digestion and Fecal Fermentation Experiment: Further Idea on the Implementation of Machine Learning Technique. Foods 2022; 11:foods11162490. [PMID: 36010490 PMCID: PMC9407061 DOI: 10.3390/foods11162490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Prebiotics are non-digestible food ingredients that promote the growth of beneficial gut microorganisms and foster their activities. The performance of prebiotics has often been tested in mouse models in which the gut ecology differs from that of humans. In this study, we instead performed an in vitro gastrointestinal digestion and fecal fermentation experiment to evaluate the efficiency of eight different prebiotics. Feces obtained from 11 different individuals were used to ferment digested prebiotics. The total DNA from each sample was extracted and sequenced through Illumina MiSeq for microbial community analysis. The amount of short-chain fatty acids was assessed through gas chromatography. We found links between community shifts and the increased amount of short-chain fatty acids after prebiotics treatment. The results from differential abundance analysis showed increases in beneficial gut microorganisms, such as Bifidobacterium, Faeclibacterium, and Agathobacter, after prebiotics treatment. We were also able to construct well-performing machine-learning models that could predict the amount of short-chain fatty acids based on the gut microbial community structure. Finally, we provide an idea for further implementation of machine-learning techniques to find customized prebiotics.
Collapse
|
126
|
Mokrani M, Charradi K, Limam F, Aouani E, Urdaci MC. Grape seed and skin extract, a potential prebiotic with anti-obesity effect through gut microbiota modulation. Gut Pathog 2022; 14:30. [PMID: 35794638 PMCID: PMC9258160 DOI: 10.1186/s13099-022-00505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Obesity is a worldwide health problem and a significant risk factor for diabetes and cardiovascular diseases. Gut microbiota (GM) plays an essential role in obesity, and prebiotics such as polyphenols could be one way to improve microbial dysbiosis-induced obesity. Objective This study was designed to assess the effectiveness of grape seed and skin extract (GSSE), and/or orlistat on obese rats fed with high fat diet by targeting GM modulations. The impact of treatments was also studied in non-obese rats. Material and methods Rats were rendered obese or kept with a standard diet for three months. Then they were treated either with GSSE or orlistat or with the combined treatment (GSOR) during three months and then sacrificed. Adipose tissues, blood and faeces were collected and analyzed. Results In obese rats and to a lesser extent in non-obese rats, treatments decreased the weight of various adipose tissues and the serum levels of cholesterol, LDL, triglycerides, lipase, and CRP and increased HDL and adiponectin. GSOR treatment was even more efficient that orlistat. Obese rats had less GM diversity than non-obese rats and orlistat reduced it even more. However, diversity was restored with GSSE and GSOR treatments. Potential pathogenic Streptococcus alactolyticus/gallolyticus species were greatly increased in obese rats and drastically reduced with the treatments, as wells as other potential pathobionts. Conclusions GSSE exerts beneficial effects in obese rats and restores, at least partially, the observed dysbiosis. GSOR induced the highest beneficial effect. Moreover, the various treatments could also enhance physiological and GM modifications in non obese rats. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00505-0.
Collapse
|
127
|
Gleason B, Chisari E, Parvizi J. Osteoarthritis Can Also Start in the Gut: The Gut-Joint Axis. Indian J Orthop 2022; 56:1150-1155. [PMID: 35813544 PMCID: PMC9232669 DOI: 10.1007/s43465-021-00473-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023]
Abstract
Background Osteoarthritis is a common cause of pain and disability with an increasing prevalence among the global population (Hunter and Bierma-Zeinstra in Lancet 393(10182):1745-1759, 2019; Zhang and Jordan in Clinics in Geriatric Medicine 26(3):355-369, 2010). Altered immune responses and low-grade systemic inflammation driven by gut dysbiosis are being increasingly recognized as contributing factors to the pathophysiology of OA (Tan et al. in International Journal of Rheumatic Diseases. https://doi.org/10.1111/1756-185X.14123, 2021; Binvignat et al. in Joint, Bone, Spine 88(5):105203, 2021; Ramasamy et al. in Nutrients 13(4):1272, 2021), which increased the interest in the so-called "gut-joint axis". The various microbiota in the gastrointestinal tract is commonly referred to as the gut microbiome. The gut microbiome is affected by age, sex, and immune system activity as well as medications, environment, and diet (Arumugam in Nature. https://doi.org/10.1038/nature09944, 2011). The microbiome is pivotal to maintain host health and contributes to nutrition, host defense, and immune development (Nishida et al. in Clinical Journal of Gastroenterology 11:1-10, 2018). Alterations in this microbiome can induce dysbiosis, which is associated with many human disease states including allergies, autoimmune disease, diabetes, and cancer (Lin and Zhang in BMC Immunology 18(1):2, 2017). A gut-joint axis is proposed as a link involving the gastrointestinal microbiome, the immune response that it induces, and joint health. Results Emerging evidence has shown that there are specific changes in the microbiome that are associated with osteoarthritis, including increased Firmicutes/Bacteroides ratio, Streptococcus spp. prevalence, and local inflammation (Collins in Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2015.03.014, 2015; Rios in Science and Reports. https://doi.org/10.1038/s41598-019-40601-x, 2019; Schott in JCI insight. https://doi.org/10.1172/jci.insight.95997, 2018; Boer et al. in Nature Communications 10:4881, 2019). Both the innate and adaptive immune systems are affected by the gut microbiome and can become dysregulated in dysbiosis which ultimately triggers events associated with joint OA. Conclusions The gut is an intriguing and novel target for OA therapy. Dietary modification or supplementation with fiber, probiotics, or prebiotics could provide a positive impact on the gut joint axis.
Collapse
Affiliation(s)
- Brendan Gleason
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
| | - Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
| |
Collapse
|
128
|
Golovach I, Rekalov D. Osteoarthritis and intestinal microbiota: pathogenetic significance of the joint — gut — microbiome axis. PAIN, JOINTS, SPINE 2022; 12:72-80. [DOI: 10.22141/pjs.12.2.2022.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Introduction. Osteoarthritis (ОА) is a disease leading to joint degeneration, accompanied by constant pain, inflammation, and functional failure of the joints. Although many factors contribute to the development of ОА, the gut microbiome has recently emerged as an important pathogenic factor in ОА initiation and progression. The purpose of the study was to analyze modern literature data regarding the link between the gut microbiome and ОА. Materials and methods. The available data of clinical studies and scientific reviews were analyzed, and modern meta-analyses on the influence of gut microbiota on the development and progression of ОА were evaluated. Results. Gut microbiota is responsible for a number of metabolic, immunological, and structural and neurological functions, potentially elucidating the heterogeneity of OA phenotypes and formation of individual features of the course of the disease. Numerous studies support the hypothesis of the existence of a gut – joint axis and the interaction between gut microbiota and OA-relevant risk factors. The proposed concept begins with intestinal disruption and dysbacteriosis, disruption of microbiota homeostasis, continuous changes in microbial composition and genomic plasticity for optimal adaptation of bacteria to the host environment, accompanied by both adaptive and innate immune responses due to translocation of bacteria and bacterial products into the bloodstream to the joint. This cascade ultimately leads to inflammation in the joint and contributes to the development and progression of OA. Interpretion of the potential mechanisms of OA pathogenesis is essential for the development of new preventive and disease-modifying therapeutic interventions. In addition, gut microbiota is also a potential biomarker related to inflammation and gut dysbiosis to predict the progression of ОА and monitor the effectiveness of therapeutic interventions. Conclusions. In this review, we summarized research data that are supporting the hypothesis of a “joint – gut – microbiota axis” and the interaction between gut microbiota and the OA-relevant factors, including age, gender, metabolism, obesity.
Collapse
|
129
|
Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat Commun 2022; 13:3358. [PMID: 35688919 PMCID: PMC9187648 DOI: 10.1038/s41467-022-31038-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
Archaea are common constituents of the gut microbiome of humans, ruminants, and termites but little is known about their diversity and abundance in other animals. Here, we analyse sequencing and quantification data of archaeal and bacterial 16S rRNA genes from 250 species of animals covering a large taxonomic spectrum. We detect the presence of archaea in 175 animal species belonging to invertebrates, fish, amphibians, birds, reptiles and mammals. We identify five dominant gut lineages, corresponding to Methanobrevibacter, Methanosphaera, Methanocorpusculum, Methanimicrococcus and "Ca. Methanomethylophilaceae". Some archaeal clades, notably within Methanobrevibacter, are associated to certain hosts, suggesting specific adaptations. The non-methanogenic lineage Nitrososphaeraceae (Thaumarchaeota) is frequently present in animal samples, although at low abundance, but may have also adapted to the gut environment. Host phylogeny, diet type, fibre content, and intestinal tract physiology are major drivers of the diversity and abundance of the archaeome in mammals. The overall abundance of archaea is more influenced by these factors than that of bacteria. Methanogens reducing methyl-compounds with H2 can represent an important fraction of the overall methanogens in many animals. Together with CO2-reducing methanogens, they are influenced by diet and composition of gut bacteria. Our results provide key elements toward our understanding of the ecology of archaea in the gut, an emerging and important field of investigation.
Collapse
Affiliation(s)
- Courtney M Thomas
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | | | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Unit Evolutionary Biology of the Microbial Cell, F-75015, Paris, France.
| |
Collapse
|
130
|
A systematic review of microbiome composition in osteoarthritis subjects. Osteoarthritis Cartilage 2022; 30:786-801. [PMID: 34958936 DOI: 10.1016/j.joca.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) started to be associated to shifted microbiota composition recently. This systematic review aims to elucidate if there is a common microbiota composition linked with OA between different studies. METHODS We screened PubMed, Scopus, Web of Science and Cochrane databases up to July 26th 2021 to identify original studies in which microbiome was assessed from OA individuals, both in human and laboratory animals' studies. Bacteria associated with OA were summarized to find common patterns between the studies. RESULTS We identified 37 original studies where the microbiota composition was assessed in OA subjects. We identified some bacteria (Clostridium, Streptococcus, Bacteroides and Firmicutes) that were reported to be upregulated in OA subjects, whereas Lactobacillus and Bifidobacterium longum were associated with improved OA outcomes. The heterogeneity of sampling and analysis methods, different taxonomical levels reported and the lack of healthy controls in several studies made it difficult to compare the studies and reach conclusions about a potential causal link. CONCLUSIONS The current study demonstrated that some bacteria were identified as regulators of OA. Future works following standardized methodologies with more proper controls are needed to elucidate our understanding of the role of the microbiota in OA pathogenesis and progress towards new treatments.
Collapse
|
131
|
Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H, Li W, Wang N, Lei G, Zeng C. Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. EBioMedicine 2022; 80:104055. [PMID: 35594658 PMCID: PMC9120231 DOI: 10.1016/j.ebiom.2022.104055] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidence suggests that dysbiosis in gut microbiota may contribute to the occurrence or development of several rheumatic diseases. Since gut microbiota dysbiosis is potentially modifiable, it has been postulated to be a promising preventive or therapeutic target for rheumatic diseases. However, the current understanding on the potential associations between gut microbiota and rheumatic diseases is still inadequate. Therefore, we aimed to synthesise the accumulating evidence for the relation of gut microbiota to rheumatic diseases. Methods The PubMed, Embase and Cochrane Library were searched from inception to March 11, 2022 to include observational studies evaluating the associations between gut microbiota and rheumatic diseases. Standardised mean difference (SMD) of α-diversity indices between rheumatic diseases and controls were estimated using random-effects model. β-diversity indices and relative abundance of gut microbes were summarised qualitatively. Findings Of the included 92 studies (11,998 participants), 68 provided data for α-diversity. Taken together as a whole, decreases in α-diversity indices were consistently found in rheumatic diseases (observed species: SMD = −0.36, [95%CI = −0.63, −0.09]; Chao1: SMD = −0.57, [95%CI = −0.88, −0.26]; Shannon index: SMD = −0.33, [95%CI = −0.48, −0.17]; Simpson index: SMD = −0.32, [95%CI = −0.49, −0.14]). However, when specific rheumatic diseases were examined, decreases were only observed in rheumatoid arthritis (observed species: SMD = −0.51, [95%CI = −0.78, −0.24]; Shannon index: SMD = −0.31, [95%CI = −0.49, −0.13]; Simpson index: SMD = −0.31, [95%CI = −0.54, −0.08]), systemic lupus erythematosus (Chao1: SMD = −1.60, [95%CI = −2.54, −0.66]; Shannon index: SMD = −0.63, [95%CI = −1.08, −0.18]), gout (Simpson index: SMD = −0.64, [95%CI = −1.07, −0.22]) and fibromyalgia (Simpson index: SMD = −0.28, [95%CI = −0.44, −0.11]), whereas an increase was observed in systemic sclerosis (Shannon index: SMD = 1.25, [95%CI = 0.09, 2.41]). Differences with statistical significance in β-diversity were consistently reported in ankylosing spondylitis and IgG4-related diseases. Although little evidence of disease specificity of gut microbes was found, shared alterations of the depletion of anti-inflammatory butyrate-producing microbe (i.e., Faecalibacterium) and the enrichment of pro-inflammatory microbe (i.e., Streptococcus) were observed in rheumatoid arthritis, Sjögren's syndrome and systemic lupus erythematosus. Interpretation Gut microbiota dysbiosis was associated with rheumatic diseases, principally with potentially non-specific, shared alterations of microbes. Funding National Natural Science Foundation of China (81930071, 81902265, 82072502 and U21A20352).
Collapse
Affiliation(s)
- Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jie Wei
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Weiya Zhang
- University of Nottingham, Nottingham, UK; Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Michael Doherty
- University of Nottingham, Nottingham, UK; Pain Centre Versus Arthritis UK, Nottingham, UK
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Haibin Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Wei Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
132
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
133
|
Xu T, Yang D, Liu K, Gao Q, Liu Z, Li G. Miya Improves Osteoarthritis Characteristics via the Gut-Muscle-Joint Axis According to Multi-Omics Analyses. Front Pharmacol 2022; 13:816891. [PMID: 35668932 PMCID: PMC9163738 DOI: 10.3389/fphar.2022.816891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The gut microbiota is associated with osteoarthritis (OA) progression. Miya (MY) is a product made from Clostridium butyricum, a member of gut microbiota. This study was conducted to investigate the effects of MY on OA and its underlying mechanisms. Methods: An OA rat model was established, and MY was used to treat the rats for 4 weeks. Knee joint samples from the rats were stained with hematoxylin-eosin, and fecal samples from the OA and OA+MY groups were subjected to 16S rDNA sequencing and metabolomic analysis. The contents of succinate dehydrogenase and muscle glycogen in the tibia muscle were determined, and related genes and proteins were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Results: Hematoxylin and eosin staining showed that treatment with MY alleviated the symptoms of OA. According to the sequencing results, MY significantly increased the Chao1, Shannon, and Pielou evenness values compared to those in the untreated group. At the genus level, the abundances of Prevotella, Ruminococcus, Desulfovibrio, Shigella, Helicobacter, and Streptococcus were higher in the OA group, whereas Lactobacillus, Oscillospira, Clostridium, and Coprococcus were enriched after MY treatment. Metabolomic analysis revealed 395 differentially expressed metabolites. Additionally, MY treatment significantly increased the succinate dehydrogenase and muscle glycogen contents in the muscle caused by OA (p > 0.05). Finally, AMPK, Tfam, Myod, Ldh, Chrna1, Chrnd, Rapsyn, and Agrin were significantly downregulated in the muscles of OA mice, whereas Lcad, Mcad, and IL-1β were upregulated; MY significantly reversed these trends induced by OA. Conclusions: MY may promote the repair of joint damage and protect against OA via the gut-muscle-joint axis.
Collapse
Affiliation(s)
- Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongchen Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| |
Collapse
|
134
|
Dai Z. A literature review on plant-based foods and dietary quality in knee osteoarthritis. Eur J Rheumatol 2022; 11. [PMID: 35535585 PMCID: PMC11184961 DOI: 10.5152/eurjrheum.2022.21134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/25/2022] [Indexed: 02/18/2024] Open
Abstract
This literature review summarizes the role of plant-based foods and diet quality in osteoarthritis, particularly knee osteoarthritis, in observational studies and clinical trials published during 2015- 2020. The included studies have suggested favorable results on reducing the prevalence, pain, and cartilage changes related to osteoarthritis and inflammatory and oxidation markers such as inter- leukin-1, interleukin-6, tumor necrosis factor, and lipid peroxidation. Due to the lack of large lon- gitudinal cohorts to study whole foods or diets concerning knee osteoarthritis, findings from the cross-sectional studies or clinical trials require further validation, particularly in well-designed clinical trials and a more extended follow-up period. Potential mechanisms on the role of plant-based foods in body weight, inflammation, and microbiome were explored to explain their protective associations with osteoarthritis. However, most evidence examining the relationship between the microbiome and osteoarthritis joint pain is conducted in preclinical animal studies, and few observational studies show a positive association between Streptococcus species and local joint inflammation in the knee. Given the close links of plant-based foods on obesity, inflammation, and microbiome, data on the role of whole foods or diets in the change in knee osteoarthritis pain through the lens of microbial composition can provide more certainty regarding the utilization of microbiome as a potential thera- peutic target.
Collapse
Affiliation(s)
- Zhaoli Dai
- Charles Perkins Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Australia
- College of Medicine & Public Health Flinders University, Australia
| |
Collapse
|
135
|
Chen Y, Wang X, Zhang C, Liu Z, Li C, Ren Z. Gut Microbiota and Bone Diseases: A Growing Partnership. Front Microbiol 2022; 13:877776. [PMID: 35602023 PMCID: PMC9121014 DOI: 10.3389/fmicb.2022.877776] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is key to human health and disease. Convincing studies have demonstrated that dysbiosis in the commensal gut microbiota is associated with intestinal and extra-intestinal diseases. Recent explorations have significantly contributed to the understanding of the relationship between gut microbiota and bone diseases (osteoporosis, osteoarthritis, rheumatoid arthritis, and bone cancer). Gut microbiota and its metabolites may become associated with the development and progression of bone disorders owing to their critical role in nutrient absorption, immunomodulation, and the gut-brain-bone axis (regulation hormones). In this work, we review the recent developments addressing the effect of gut microbiota modulation on skeletal diseases and explore a feasible preventive approach and therapy for bone diseases.
Collapse
Affiliation(s)
- Yu Chen
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Zhang
- Bone Tumour and Bone Disease Department II, Zhengzhou Orthopaedic Hospital, Zhengzhou, China
| | - Zhiyong Liu
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
136
|
Usman S, Razis AFA, Shaari K, Azmai MNA, Saad MZ, Isa NM, Nazarudin MF. Polystyrene microplastics induce gut microbiome and metabolome changes in Javanese medaka fish ( Oryzias javanicus Bleeker, 1854). Toxicol Rep 2022; 9:1369-1379. [PMID: 36518379 PMCID: PMC9742877 DOI: 10.1016/j.toxrep.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Microplastics (MPs) have become emerging pollutants of public health concern, due to their impact on aqua-terrestrial ecosystems and integration into the food web, with evidence of human exposure and unrevealed health implications. There is a paucity of information regarding the effects of MPs exposure on the gut system using metagenomic and metabolomic approaches. In this study, Javanese medaka fish was exposed to 5 µm beads of polystyrene microplastics (PS-MPs) suspensions, at concentrations of 100 μg/L (MP-LOW), 500 μg/L (MP-MED), and 1000 μg/L (MP-HIGH), for a duration of 21 days, and evaluated for gut microbiome and metabolome responses. The results revealed a significant reduction (p < 0.05) in richness and diversity of the gut microbiome in the MP-HIGH group, and identification of 7 bacterial genera as differential features by the Linear discriminant analysis Effect Size (LEfSe). The gut metabolic profile revealed upregulation of 9 metabolites related to energy metabolism, via tricarboxylic acid cycle (TCA), creatine pathway, and urea cycle, as determined by the pathway analysis. Furthermore, positive correlation was found between the genus Aeromonas and glucose, lactate, and creatine metabolites. The study revealed that PS-MPs exposure resulted in altered bacterial microbiome and metabolic disorder related to energy metabolism. It further provided additional data on gut bacterial genera and metabolites associated with MPs toxicity in aquatic organism, which will inevitably enable its future health risks assessment in animals and possibly humans.
Collapse
Affiliation(s)
- Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Zamri Saad
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurulfiza M. Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
137
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18:258-275. [PMID: 35165404 PMCID: PMC9050956 DOI: 10.1038/s41584-022-00749-9] [Citation(s) in RCA: 463] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alyssa Torres
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- San Diego VA Healthcare Service, San Diego, CA, USA.
| |
Collapse
|
138
|
Low L, Suleiman K, Shamdas M, Bassilious K, Poonit N, Rossiter AE, Acharjee A, Loman N, Murray PI, Wallace GR, Rauz S. Gut Dysbiosis in Ocular Mucous Membrane Pemphigoid. Front Cell Infect Microbiol 2022; 12:780354. [PMID: 35493740 PMCID: PMC9046938 DOI: 10.3389/fcimb.2022.780354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
Mucous Membrane Pemphigoid is an orphan multi-system autoimmune scarring disease involving mucosal sites, including the ocular surface (OcMMP) and gut. Loss of tolerance to epithelial basement membrane proteins and generation of autoreactive T cell and/or autoantibodies are central to the disease process. The gut microbiome plays a critical role in the development of the immune system. Alteration in the gut microbiome (gut dysbiosis) affects the generation of autoreactive T cells and B cell autoantibody repertoire in several autoimmune conditions. This study examines the relationship between gut microbiome diversity and ocular inflammation in patients with OcMMP by comparing OcMMP gut microbiome profiles with healthy controls. DNA was extracted from faecal samples (49 OcMMP patients, 40 healthy controls), amplified for the V4 region of the 16S rRNA gene and sequenced using Illumina Miseq platform. Sequencing reads were processed using the bioinformatics pipeline available in the mothur v.1.44.1 software. After adjusting for participant factors in the multivariable model (age, gender, BMI, diet, proton pump inhibitor use), OcMMP cohort was found to be associated with lower number of operational taxonomic units (OTUs) and Shannon Diversity Index when compared to healthy controls. Within the OcMMP cohort, the number of OTUs were found to be significantly correlated with both the bulbar conjunctival inflammation score (p=0.03) and the current use of systemic immunotherapy (p=0.02). The linear discriminant analysis effect size scores indicated that Streptococcus and Lachnoclostridium were enriched in OcMMP patients whilst Oxalobacter, Clostridia uncultured genus-level group (UCG) 014, Christensenellaceae R-7 group and butyrate-producing bacteria such as Ruminococcus, Lachnospiraceae, Coprococcus, Roseburia, Oscillospiraceae UCG 003, 005, NK4A214 group were enriched in healthy controls (Log10 LDA score < 2, FDR-adjusted p <0.05). In conclusion, OcMMP patients have gut dysbiosis correlating with bulbar conjunctival inflammation and the use of systemic immunotherapies. This provides a framework for future longitudinal deep phenotyping studies on the role of the gut microbiome in the pathogenesis of OcMMP.
Collapse
Affiliation(s)
- Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kusy Suleiman
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mohith Shamdas
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kerolos Bassilious
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Natraj Poonit
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Amanda E. Rossiter
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS), Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | - Nicholas Loman
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip I. Murray
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Graham R. Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
- *Correspondence: Saaeha Rauz,
| |
Collapse
|
139
|
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W, Ma J. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30:1107-1117. [PMID: 35391646 DOI: 10.1007/s10787-022-00984-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disorder that causes cartilage degradation and subchondral bone abnormalities. Nangibotide, also known as LR12, is a dodecapeptide with considerable anti-inflammatory properties, but its significance in OA is uncertain. The aim of the study was to determine whether nangibotide could attenuate the progression of OA, and elucidate the underlying mechanism. In vitro experiments showed that nangibotide strongly inhibited TNF-α-induced osteogenic reduction, significantly enhanced osteoblast proliferation and prevented apoptosis in MC3T3-E1 cells. Male C57BL/6 J mice aged 2 months were randomly allocated to three groups: sham, ACLT, and ACLT with nangibotide therapy. Nangibotide suppressed ACLT-induced cartilage degradation and MMP-13 expression. MicroCT analysis revealed that nangibotide attenuated in vivo subchondral bone loss induced by ACLT. Histomorphometry results showed that nangibotide attenuated ACLT-induced osteoblast inhibition; TUNEL assays and immunohistochemical staining of cleaved-caspase3 further confirmed the in vivo anti-apoptotic effect of nangibotide on osteoblasts. Furthermore, we found that nangibotide exerted protective effects by suppressing TGF-β signaling mediated by Smad2/3 to restore coupled bone remodeling in the subchondral bone. In conclusion, the findings suggest that nangibotide might exert a protective effect on the bone-cartilage unit and maybe an alternative treatment option for OA.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Song Xue
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Hongjie Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| |
Collapse
|
140
|
Lian WS, Wang FS, Chen YS, Tsai MH, Chao HR, Jahr H, Wu RW, Ko JY. Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines 2022; 10:biomedicines10040860. [PMID: 35453611 PMCID: PMC9030723 DOI: 10.3390/biomedicines10040860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
| | - How-Ran Chao
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: ; Tel.: +88-67-731-7123
| |
Collapse
|
141
|
Li W, Lai K, Chopra N, Zheng Z, Das A, Diwan AD. Gut-disc axis: A cause of intervertebral disc degeneration and low back pain? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:917-925. [PMID: 35286474 DOI: 10.1007/s00586-022-07152-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Low back pain (LBP), a widely prevalent and costly disease around the world, is mainly caused by intervertebral disc (IVD) degeneration (IDD). Although numerous factors may trigger this degenerative process, microbiome dysbiosis has recently been implicated as one of the likely causes. However, the exact relationship between the microbiome and IDD is not well understood. This review summarizes the potential mechanisms and discusses microbiome dysbiosis's possible influence on IDD and LBP. METHODS Prospective literature review. RESULTS Alterations in microbiome composition and host responses to the microbiota causing pathological bone development and involution, led to the concept of gut-bone marrow axis and gut-bone axis. Moreover, the concept of the gut-disc axis was also proposed to explain the microbiome's role in IDD and LBP. According to the existing evidence, the microbiome could be an important factor for inducing and aggravating IDD through changing or regulating the outside and inside microenvironment of the IVD. Three potential mechanisms by which the gut microbiota can induce IVD and cause LBP are: (1) translocation of the bacteria across the gut epithelial barrier and into the IVD, (2) regulation of the mucosal and systemic immune system, and (3) regulation of nutrient absorption and metabolites formation at the gut epithelium and its diffusion into the IVD. Furthermore, to investigate whether IVD is initiated by pathogenic bacteria and establish the correlation between the presence of certain microbial groups with the disease in question, microbiome diversity analysis based on16S rRNA data can be used to characterise stool/blood microbiota from IVD patients. CONCLUSION Future studies on microbiome, fungi and viruses in IDD is necessary to revolutionize our thinking about their possible role in the development of IVD diseases. Furthermore, we believe that inflammation inhibition and interruption of amplification of cascade reaction in IVD by targeting the gut and IVD microbiome is worthwhile for the treatment of IDD and LBP. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
Affiliation(s)
- Wentian Li
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
| | - Kaitao Lai
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Neha Chopra
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia
| | - Zhaomin Zheng
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia.
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia.
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
- Spine Service, St. George Private Hospital, Kogarah, NSW, 2217, Australia
| |
Collapse
|
142
|
Hao X, Zhang J, Shang X, Sun K, Zhou J, Liu J, Chi R, Xu T. Exercise modifies the disease-relevant gut microbial shifts in post-traumatic osteoarthritis rats. Bone Joint Res 2022; 11:214-225. [PMID: 35382556 PMCID: PMC9057523 DOI: 10.1302/2046-3758.114.bjr-2021-0192.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. METHODS A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed. RESULTS Eight-week treadmill-walking was effective at maintaining the integrity of cartilage-subchondral bone unit and reducing the elevated systematic inflammation factors and microbiome-derived metabolites. Furthermore, 16S ribosomal ribonucleic acid (rRNA) sequencing showed disease-relevant microbial shifts in PTOA animals, characterized by the decreased abundance of phylum TM7 and the increase of phylum Fusobacteria. At the genus level, the abundance of Lactobacillus, Turicibacter, Adlercreutzia, and Cetobacterium were increased in the PTOA animals, while the increase of Adlercreutzia and Cetobacterium was weakened as a response to exercise. The correlation analysis showed that genus Lactobacillus and Adlercreutzia were correlated to the structural OA phenotypes, while phylum Fusobacteria and genus Cetobacterium may contribute to the effects of exercise on the diminishment of serological inflammatory factors. CONCLUSION Exercise is effective at maintaining the integrity of cartilage-subchondral bone unit, and the exercise-induced modification of disease-relevant microbial shifts is potentially involved in the mechanisms of exercise-induced amelioration of PTOA. Cite this article: Bone Joint Res 2022;11(4):214-225.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan.,School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
143
|
Differential Effects of the Soluble Fiber Inulin in Reducing Adiposity and Altering Gut Microbiome in Aging Mice. J Nutr Biochem 2022; 105:108999. [PMID: 35346831 DOI: 10.1016/j.jnutbio.2022.108999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Inulin, a soluble dietary fiber, is thought to exert multiple beneficiary effects through promoting growth of bacteria that metabolize the fiber to short-chain fatty acids (SCFAs); however, the effect and efficacy of inulin in aging subjects is unknown. This study aims to systematically evaluate the capacity of SCFAs production and host response in mice of different ages. Male C57BL/6J mice across young (5 months), middle (11 months) and old (26 months) age were subjected to a control diet for two weeks, followed by 6 weeks of inulin-containing diet. Inulin-induced increase in fecal butyric acid levels was most prominent in middle-age group compared to other age groups. In addition, inulin-induced increase in fecal propionic acids showed age-dependent decline. Interestingly, the SCFA-producing Roseburia was most abundantly and persistently increased in the middle-age group. Furthermore, inulin intake significantly reduced Firmicutes to Bacteroidetes ratio, and several dysbiotic bacteria associated with pro-inflammatory state. Concomitantly, circulating levels of CXCL1, a chemoattractant for neutrophils, was reduced by inulin intake. Inulin decreased fat mass in all age groups, with middle-aged mice being most responsive to fat-reducing effects of inulin. Moreover, inulin significantly increased energy expenditure and voluntary wheel running in middle-aged mice, but not in old mice. Overall, our data suggest that the efficacy of inulin in altering the microbiome and SCFA production, and the subsequent metabolic response was diminished in old mice, and highlight the importance of including age as a variable in studies determining host-microbe response to diets.
Collapse
|
144
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
145
|
Jansen NEJ, Schiphof D, Oei E, Bosmans J, van Teeffelen J, Feleus A, Runhaar J, van Meurs J, Bierma-Zeinstra SMA, van Middelkoop M. Effectiveness and cost-effectiveness of a combined lifestyle intervention compared with usual care for patients with early-stage knee osteoarthritis who are overweight (LITE): protocol for a randomised controlled trial. BMJ Open 2022; 12:e059554. [PMID: 35246425 PMCID: PMC8900023 DOI: 10.1136/bmjopen-2021-059554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Obesity is the most important modifiable risk factor for knee osteoarthritis (KOA). Especially in an early stage of the disease, weight loss is important to prevent further clinical and structural progression. Since 2019, general practitioners (GPs) in the Netherlands can refer eligible patients to a combined lifestyle intervention (GLI) to promote physical activity, healthy nutrition and behavioural change. However, GPs scarcely refer patients with KOA to the GLI potentially due to a lack of evidence about the (cost-)effectiveness. The aim of this study is to determine the (cost-)effectiveness of the GLI for patients with early-stage KOA in primary care. METHODS AND ANALYSIS For this pragmatic, multi-centre randomised controlled trial, 234 participants (aged 45-70 years) with National Institute for Health and Care Excellence (NICE) guideline diagnosis of clinical KOA and a body mass index above 25 kg/m2 will be recruited using a range of online and offline strategies and from general practices in the Netherlands. Participants will receive nine 3-monthly questionnaires. In addition, participants will be invited for a physical examination, MRI assessment and blood collection at baseline and at 24-month follow-up. After the baseline assessment, participants are randomised to receive either the 24-month GLI programme in addition to usual care or usual care only. Primary outcomes are self-reported knee pain over 24 months, structural progression on MRI at 24 months, weight loss at 24 months, as well as societal costs and Quality-Adjusted Life-Years over 24-month follow-up. Analyses will be performed following the intention-to-treat principle using linear mixed-effects regression models. ETHICS AND DISSEMINATION Ethical approval was obtained through the Medical Ethical Committee of the Erasmus MC University Medical Center Rotterdam, The Netherlands (MEC-2020-0943). All participants will provide written informed consent. The results will be disseminated through publications in peer-reviewed journals, presentations at international conferences and among study participants and healthcare professionals. TRIAL REGISTRATION NUMBER Netherlands Trial Registry (NL9355).
Collapse
Affiliation(s)
- Nuria E J Jansen
- Department of General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dieuwke Schiphof
- Department of General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Edwin Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Judith Bosmans
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jolande van Teeffelen
- Dietician Practice in Primary Care, Diëtistenpraktijk HRC, Rotterdam, The Netherlands
| | - Anita Feleus
- Research Center Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - Jos Runhaar
- Department of General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sita M A Bierma-Zeinstra
- Department of General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopaedics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
146
|
Jia YJ, Li TY, Han P, Chen Y, Pan LJ, Jia CS. Effects of different courses of moxibustion treatment on intestinal flora and inflammation of a rat model of knee osteoarthritis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:173-181. [PMID: 35101368 DOI: 10.1016/j.joim.2022.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was done to determine the effects of different courses of moxibustion on a rat knee osteoarthritis (KOA) model, and explore the dose-effect relationship of moxibustion on KOA from the perspectives of intestinal flora and inflammatory factors. METHODS Wistar rats were randomly divided into five groups: normal, model, moxibustion for 2 weeks, moxibustion for 4 weeks and moxibustion for 6 weeks groups (n = 5 each group). A KOA rat model was induced by monosodium iodoacetate, and moxibustion intervention was performed at the acupoints "Dubi" (ST35) and "Zusanli" (ST36), once every other day. Pathologic changes in the cartilage of rat knee joints were assessed after intervention, and fecal samples were subjected to 16S rRNA high-throughput sequencing for microbial diversity analysis. RESULTS Damage to the knee articular cartilage was obvious in the model group, which also had increased levels of pro-inflammatory factors, decreased levels of anti-inflammatory factors, and intestinal flora disorders with decreased diversity. The degree of cartilage damage in the 4 and 6 weeks of moxibustion groups was significantly improved compared with the model group. The 4 and 6 weeks of moxibustion groups also demonstrated reduced levels of interleukin-1β and tumor necrosis factor-α and increased levels of interleukin-10 (P < 0.05). Both the abundance and diversity of the intestinal flora were increased, approaching those of the normal group. Abundances of probiotics Eubacterium coprostanoligenes group and Ruminococcaceae UCG-014 increased, while that of the pathogenic bacteria Lachnospiraceae NK4A136 group decreased (P < 0.05). Although the abundance of Lachnospiraceae NK4A136 group decreased in the 2 weeks of moxibustion group compared with the model group (P < 0.05), there was no statistically significant difference in serum inflammatory factors, flora species diversity or degree of pathological damage compared with the model group. CONCLUSION Moxibustion treatment led to significant improvements in the intestinal flora and inflammatory factors of rats with KOA. Moxibustion treatment of 4 and 6 weeks led to better outcomes than the 2-week course. Moxibustion for 4 and 6 weeks can regulate intestinal flora dysfunction with increased probiotics and reduced pathogenic bacteria, reduce pro-inflammatory factors and increase anti-inflammatory factors. No significant differences were seen between the effects of moxibustion for 4 weeks and 6 weeks.
Collapse
Affiliation(s)
- Ye-Juan Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Tian-Yu Li
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Peng Han
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Chen
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Jia Pan
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Chun-Sheng Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China.
| |
Collapse
|
147
|
Reduced Gut Microbiome Diversity in People With HIV Who Have Distal Neuropathic Pain. THE JOURNAL OF PAIN 2022; 23:318-325. [PMID: 34530155 PMCID: PMC9854399 DOI: 10.1016/j.jpain.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023]
Abstract
Gut dysbiosis, defined as pathogenic alterations in the distribution and abundance of different microbial species, is associated with neuropathic pain in a variety of clinical conditions, but this has not been explored in the context of neuropathy in people with HIV (PWH). We assessed gut microbial diversity and dysbiosis in PWH and people without HIV (PWoH), some of whom reported distal neuropathic pain (DNP). DNP was graded on a standardized, validated severity scale. The gut microbiome was characterized using 16S rRNA sequencing and diversity was assessed using phylogenetic tree construction. Songbird analysis (https://github.com/mortonjt/songbird) was used to produce a multinomial regression model predicting counts of specific microbial taxa through metadata covariate columns. Participants were 226 PWH and 101 PWoH, mean (SD) age 52.0 (13.5), 21.1% female, 54.7% men who have sex with men, 44.7% non-white. Among PWH, median (interquartile range, IQR) nadir and current CD4 were 174 (21, 302) and 618 (448, 822), respectively; 90% were virally suppressed on antiretroviral therapy. PWH and PWoH did not differ with respect to microbiome diversity as indexed by Faith's phylogenetic diversity (PD). More severe DNP was associated with lower alpha diversity as indexed by Faith's phylogenetic diversity in PWH (Spearman's ρ = .224, P = 0.0007), but not in PWoH (Spearman's ρ = .032, P = .748). These relationships were not confounded by demographics or disease factors. In addition, the log-ratio of features identified at the genus level as Blautia to Lachnospira was statistically significantly higher in PWH with DNP than in PWH without DNP (t-test, P = 1.01e-3). Furthermore, the log-ratio of Clostridium features to Lachnospira features also was higher in PWH with DNP than in those without (t-test, P = 6.24e-5). Our results, in combination with previous findings in other neuropathic pain conditions, suggest that gut dysbiosis, particularly reductions in diversity and relative increases in the ratios of Blautia and Clostridium to Lachnospira, may contribute to prevalent DNP in PWH. Two candidate pathways for these associations, involving microbial pro-inflammatory components and microbially-produced anti-inflammatory short chain fatty acids, are discussed. Future studies might test interventions to re-establish a healthy gut microbiota and determine if this prevents or improves DNP. PERSPECTIVE: The association of neuropathic pain in people with HIV with reduced gut microbial diversity and dysbiosis raises the possibility that re-establishing a healthy gut microbiota might ameliorate neuropathic pain in HIV by reducing proinflammatory and increasing anti-inflammatory microbial products.
Collapse
|
148
|
Wang X, Lu S, Fang Z, Wang H, Zhu J, Zhao J, Zhang H, Hong K, Lu W, Chen W. A recommended amount of hydrolyzed protein improves physiological function by regulating gut microbiota in aged mice. Food Res Int 2022; 154:110970. [DOI: 10.1016/j.foodres.2022.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
149
|
Loeser RF, Arbeeva L, Kelley K, Fodor AA, Sun S, Ulici V, Longobardi L, Cui Y, Stewart DA, Sumner SJ, Azcarate-Peril MA, Sartor RB, Carroll IM, Renner JB, Jordan JM, Nelson AE. Association of Increased Serum Lipopolysaccharide, But Not Microbial Dysbiosis, With Obesity-Related Osteoarthritis. Arthritis Rheumatol 2022; 74:227-236. [PMID: 34423918 PMCID: PMC8795472 DOI: 10.1002/art.41955] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test the hypothesis that an altered gut microbiota (dysbiosis) plays a role in obesity-associated osteoarthritis (OA). METHODS Stool and blood samples were collected from 92 participants with a body mass index (BMI) ≥30 kg/m2 , recruited from the Johnston County Osteoarthritis Project. OA patients (n = 50) had hand and knee OA (Kellgren/Lawrence [K/L] grade ≥2 or arthroplasty). Controls (n = 42) had no hand OA and a K/L grade of 0-1 for the knees. Compositional analysis of stool samples was carried out by 16S ribosomal RNA amplicon sequencing. Alpha- and beta-diversity and differences in taxa relative abundances were determined. Blood samples were used for multiplex cytokine analysis and measures of lipopolysaccharide (LPS) and LPS binding protein. Germ-free mice were gavaged with patient- or control-pooled fecal samples and fed a 40% fat, high-sucrose diet for 40 weeks. Knee OA was evaluated histologically. RESULTS On average, OA patients were slightly older than the controls, consisted of more women, and had a higher mean BMI, higher mean Western Ontario and McMaster Universities Osteoarthritis Index pain score, and higher mean K/L grade. There were no significant differences in α- or β-diversity or genus level composition between patients and controls. Patients had higher plasma levels of osteopontin (P = 0.01) and serum LPS (P < 0.0001) compared to controls. Mice transplanted with patient or control microbiota exhibited a significant difference in α-diversity (P = 0.02) and β-diversity, but no differences in OA severity were observed. CONCLUSION The lack of differences in the gut microbiota, but increased serum LPS levels, suggest the possibility that increased intestinal permeability allowing for greater absorption of LPS, rather than a dysbiotic microbiota, may contribute to the development of OA associated with obesity.
Collapse
Affiliation(s)
- Richard F. Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Liubov Arbeeva
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kathryn Kelley
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Anthony A. Fodor
- Dept. of Bioinformatics and Genomics, University of North Carolina-Charlotte, North Carolina
| | - Shan Sun
- Dept. of Bioinformatics and Genomics, University of North Carolina-Charlotte, North Carolina
| | - Veronica Ulici
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lara Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Yang Cui
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Susan J. Sumner
- Department of Nutrition, University of North Carolina, Chapel Hill, NC
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - R. Balfour Sartor
- Division of Gastroenterology and Hepatology and Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ian M. Carroll
- Department of Nutrition, University of North Carolina, Chapel Hill, NC
| | - Jordan B. Renner
- Department of Radiology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joanne M. Jordan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amanda E. Nelson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
150
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|