101
|
Le Roy A, Prébet T, Castellano R, Goubard A, Riccardi F, Fauriat C, Granjeaud S, Benyamine A, Castanier C, Orlanducci F, Ben Amara A, Pont F, Fournié JJ, Collette Y, Mege JL, Vey N, Olive D. Immunomodulatory Drugs Exert Anti-Leukemia Effects in Acute Myeloid Leukemia by Direct and Immunostimulatory Activities. Front Immunol 2018; 9:977. [PMID: 29780393 PMCID: PMC5945824 DOI: 10.3389/fimmu.2018.00977] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are anticancer drugs with immunomodulatory, anti-angiogenesis, anti-proliferative, and pro-apoptotic properties. IMiDs are currently used for the treatment of multiple myeloma, myelodysplastic syndrome, and B-cell lymphoma; however, little is known about efficacy in acute myeloid leukemia (AML). We proposed in this study to investigate the relevance of IMiDs therapy for AML treatment. We evaluated the effect of IMiDs on primary AML blasts (n = 24), and the impact in natural killer (NK) cell-mediated immunosurveillance of AML. Using primary AML cells and an immunodeficient mouse leukemia xenograft model, we showed that IMiDs induce AML cell death in vitro and impair leukemia progression in vivo. In addition, treatment of AML blasts with IMiDs resulted in enhanced allogeneic NK cell anti-leukemia reactivity. Treatment by pomalidomide of AML blasts enhanced lysis, degranulation, and cytokine production by primary allogeneic NK cells. Furthermore, the treatment with lenalidomide of patients with myeloid malignancies resulted in NK cell phenotypic changes similar to those observed in vitro. IMiDs increased CD56 and decreased NKp30, NKp46, and KIR2D expression on NK cells. Finally, AML blasts treatment with IMiDs induced phenotypic alterations including downregulation of HLA-class I. The effect of pomalidomide was not correlated with cereblon expression and A/G polymorphism in AML cells. Our data revealed, a yet unobserved, dual effects on AML affecting both AML survival and their sensitivity to NK immunotherapy using IMiDs. Our study encourages continuing investigation for the use of IMiDs in AML, especially in combination with conventional therapy or immunotherapy strategies.
Collapse
Affiliation(s)
- Aude Le Roy
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Thomas Prébet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, United States
| | - Rémy Castellano
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Armelle Goubard
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Riccardi
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- CiBi Platform, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Audrey Benyamine
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Céline Castanier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Frédéric Pont
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Yves Collette
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and infections (MEPHI), IHU Méditerranée Infection, Marseille, France
| | - Norbert Vey
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
102
|
Dependence of innate lymphoid cell 1 development on NKp46. PLoS Biol 2018; 16:e2004867. [PMID: 29702643 PMCID: PMC5922978 DOI: 10.1371/journal.pbio.2004867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
NKp46, a natural killer (NK) cell–activating receptor, is involved in NK cell cytotoxicity against virus-infected cells or tumor cells. However, the role of NKp46 in other NKp46+ non-NK innate lymphoid cell (ILC) populations has not yet been characterized. Here, an NKp46 deficiency model of natural cytotoxicity receptor 1 (Ncr1)gfp/gfp and Ncr1gfp/+ mice, i.e., homozygous and heterozygous knockout (KO), was used to explore the role of NKp46 in regulating the development of the NKp46+ ILCs. Surprisingly, our studies demonstrated that homozygous NKp46 deficiency resulted in a nearly complete depletion of the ILC1 subset (ILC1) of group 1 ILCs, and heterozygote KO decreased the number of cells in the ILC1 subset. Moreover, transplantation studies confirmed that ILC1 development depends on NKp46 and that the dependency is cell intrinsic. Interestingly, however, the cell depletion specifically occurred in the ILC1 subset but not in the other ILCs, including ILC2s, ILC3s, and NK cells. Thus, our studies reveal that NKp46 selectively participates in the regulation of ILC1 development. Group 1 innate lymphoid cells (ILCs) comprise two subsets: natural killer (NK) cells and ILC1s. Although NK cells and ILC1s are functionally distinct, a factor that regulates one subset but not the other has not been identified. In the current study, we discovered that NKp46, a marker expressed by both NK cells and ILC1s, is critical for the development of ILC1s but not NK cells. In mice lacking NKp46, and in wild-type (WT) mice depleted of immune cells by irradiation and then transplanted with bone marrow (BM) cells lacking NKp46, ILC1s that express cell surface receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) were almost completely absent in all organs or tissues examined, including liver, spleen, BM, and small intestine (SI). In contrast, the cell number and signature cytokine expression of all other ILC subsets—namely NK cells, ILC2s, and ILC3s—were not significantly affected. Collectively, our findings provide new evidence supporting an essential role for NKp46 in the development of ILC1s.
Collapse
|
103
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
104
|
Besson L, Charrier E, Karlin L, Allatif O, Marçais A, Rouzaire P, Belmont L, Attal M, Lombard C, Salles G, Walzer T, Viel S. One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy. Front Immunol 2018; 9:704. [PMID: 29706958 PMCID: PMC5908898 DOI: 10.3389/fimmu.2018.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib–lenalidomide–dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.
Collapse
Affiliation(s)
- Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Emily Charrier
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Lionel Karlin
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Paul Rouzaire
- Service d'Immunologie, CHU de Clermont-Ferrand, équipe ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - Lucie Belmont
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Christine Lombard
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Gilles Salles
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| |
Collapse
|
105
|
Abumaree MH, Bahattab E, Alsadoun A, Al Dosaimani A, Abomaray FM, Khatlani T, Kalionis B, El-Muzaini MF, Alawad AO, AlAskar AS. Characterization of the interaction between human decidua parietalis mesenchymal stem/stromal cells and natural killer cells. Stem Cell Res Ther 2018; 9:102. [PMID: 29650045 PMCID: PMC5898063 DOI: 10.1186/s13287-018-0844-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Human decidua parietalis mesenchymal stem/multipotent stromal cells (DPMSCs) have unique phenotypic and functional properties that make them promising candidates for cell-based therapy. Here, we investigated DPMSC interaction with natural killer (NK) cells, and the effects of this interaction on NK cell phenotypic characteristics and functional activities. Methods DPMSCs isolated from the decidua parietalis of human fetal membranes were cultured with interleukin (IL)-2-activated and IL-2-unactivated NK cells isolated from healthy human peripheral blood. NK cell proliferation and cytolytic activities were then examined using functional assays. NK cell expression of receptors mediating the cytolytic activity against DPMSCs, and the mechanism underlying this effect on DPMSCs, were also examined using flow cytometry and light microscopy, respectively. Results DPMSCs stimulated IL-2-induced proliferation of resting NK cells and the proliferation of activated NK cells. Moreover, IL-2-activated NK cells, but not freshly isolated NK cells, efficiently lysed DPMSCs. The induction of this NK cell cytolytic activity against DPMSCs was mediated by the activating NK cell receptors NKG2D, CD69, NKp30, and NKp44. However, DPMSCs showed a direct induction of NK cell cytolytic activity through CD69. We also found that DPMSCs expressed the ligands for these activating NK cell receptors including Nectin-2, ULBP-2, MICA, and MICB. Although DPMSCs expressed HLA class I molecules, they were susceptible to lysis by NK cells, suggesting that HLA class I antigens do not play a significant role in NK cell cytolytic action. In addition, DPMSCs did not inhibit NK cell cytolytic activity against cancer cells. Importantly, DPMSCs significantly increased NK expression of inflammatory molecules with anticancer activities. Conclusions We conclude that DPMSCs have potential for therapeutic application in cancer therapy, but not in transplantation or immunological diseases.
Collapse
Affiliation(s)
- M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A Alsadoun
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A Al Dosaimani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia
| | - F M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - M F El-Muzaini
- Department of Obstetrics and Gynaecology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia
| | - A O Alawad
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
106
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
107
|
Bálint Š, Lopes FB, Davis DM. A nanoscale reorganization of the IL-15 receptor is triggered by NKG2D in a ligand-dependent manner. Sci Signal 2018; 11:11/525/eaal3606. [PMID: 29636390 DOI: 10.1126/scisignal.aal3606] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural killer group 2D (NKG2D), an activating receptor on natural killer (NK) cells and a subset of T cells, recognizes stress-inducible proteins, including MICA and ULBP2, which are present on infected or transformed cells. Whether each NKG2D ligand (NKG2DL) has a distinct biological role is not clear. Using superresolution microscopy, we found that NKG2D is constitutively arranged in nanoclusters at the surface of human primary NK cells. Nanoclusters of NKG2D became smaller upon ligation with MICA but became larger upon activation by ULBP2. In addition, ULBP2 induced the reorganization of nanoclusters of the cytokine receptor subunit for both interleukin-2 (IL-2) and IL-15 (IL-2/IL-15Rβ), such that these cytokine receptor subunits coalesced with nanoclusters of NKG2D. Functionally, the response of NK cells activated by ULBP2 was augmented by an interaction between ULBP2-bound NKG2D and IL-15R ligated by IL-15 (trans-presented by IL-15Rα-coated surfaces). These data suggest that NKG2DLs are not equivalent in their capacity to activate NKG2D and establish a previously unknown paradigm in how ligand-induced changes to the nanoscale organization of the cell surface can affect immune responses.
Collapse
Affiliation(s)
- Štefan Bálint
- Manchester Collaborative Centre for Inflammation Research, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Filipa B Lopes
- Manchester Collaborative Centre for Inflammation Research, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
108
|
Murad JM, Graber DJ, Sentman CL. Advances in the use of natural receptor- or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Pract Res Clin Haematol 2018; 31:176-183. [PMID: 29909918 DOI: 10.1016/j.beha.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptors (CAR)-T cell therapy has recently made promising advances towards treatment of B-cell malignancies. This approach makes use of an antibody-derived single chain variable fragment (scFv)-based CAR to target the CD19 antigen. Currently scFvs are the most common strategy for creation of CARs, but tumor cells can also be targeted using non-antibody based approaches with designs focused on the interaction between natural receptors and their ligands. This emerging strategy has been used in unique ways to target multiple tumor types, including solid and haematological malignancies. In this review, we will highlight the performance of receptor-ligand combinations as designs for CARs to treat cancer, with a particular focus on haematologic malignancies.
Collapse
Affiliation(s)
- Joana M Murad
- Celdara Medical LLC, Lebanon, NH, 16 Cavendish Ct Suite 240, Lebanon, NH 03766, USA.
| | - David J Graber
- Center for Synthetic Immunity and Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03765, USA.
| | - Charles L Sentman
- Center for Synthetic Immunity and Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03765, USA.
| |
Collapse
|
109
|
Bowen KE, Mathew SO, Borgmann K, Ghorpade A, Mathew PA. A novel ligand on astrocytes interacts with natural cytotoxicity receptor NKp44 regulating immune response mediated by NK cells. PLoS One 2018; 13:e0193008. [PMID: 29447242 PMCID: PMC5814005 DOI: 10.1371/journal.pone.0193008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV–infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.
Collapse
Affiliation(s)
- Kelly E Bowen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
110
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Immunological impact of Wharton's Jelly mesenchymal stromal cells and natural killer cell co-culture. Mol Cell Biochem 2018; 447:111-124. [PMID: 29380244 DOI: 10.1007/s11010-018-3297-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Due to their easier isolation, multilineage potential, and immunomodulatory capacity, Wharton's Jelly-derived mesenchymal stromal cells (WJ-MSCs) exhibit promising efficacy in the field of regenerative medicine and immunotherapy. Characterization of WJ-MSCs-natural killer (NK) cells crosstalk is required for ameliorating the medicinal value of WJ-MSCs. Here, we revealed that the outcome of WJ-MSCs-NK cells crosstalk varied according to the type of cytokines (IL-2, IL-12, IL-15 and IL-21) utilized to activate NK cells. Differently activated NK cells exerted distinct cytotoxicities against WJ-MSCs causing their probable death. Cell surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, CD226, CD314, CD335, CD336 and CD337) governing the interaction between NK cells and their targets, exhibited altered expression profiles following the co-culture with WJ-MSCs. Although partly inhibited NK cell proliferation, WJ-MSCs enhanced activated NK-cell-mediated secretion of IFN-γ and TNF-α. Moreover, WJ-MSCs reinforced NK cells' degranulation as well as secretion of perforin and granzymes. On the other hand, WJ-MSCs displayed only slight increase in ROS generation but significant decrease in A1 and C1 serpins expression following co-culture with activated NK cells. Altogether, our results highlight that WJ-MSCs-NK cells interaction may affect both cell type features and, therefore, their therapeutic properties.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
111
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Immunomodulatory effects of foreskin mesenchymal stromal cells on natural killer cells. J Cell Physiol 2018; 233:5243-5254. [PMID: 29194614 DOI: 10.1002/jcp.26305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Foreskin-mesenchymal stromal cells (FSK-MSCs) are immune-privileged thus making them valuable immunotherapeutic cell product. Characterization of the relationship between FSK-MSCs and natural killer (NK) cells is essential to improve cell-based therapy. In the present study, we studied for the first time FSK-MSCs-NK interaction and showed that the result of such cross talk was robustly dependent on the type of cytokines (IL-2, IL-12, IL-15, and IL-21) employed to activate NK cells. Distinctly activated-NK cells showed uneven cytotoxicity against FSK-MSCs, triggering their death in fine. The expression of different cell-surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, KIRs) ensuring such interaction was altered following co-culture of both populations. Despite their partial negative effect on NK cell proliferation, FSK-MSCs boosted the capacity of activated NK-cells to secrete IFN-γ and TNF-α. Moreover, FSK-MSCs enhanced degranulation of NK cells, reinforced secretion of perforin and granzymes, while only modestly increased ROS production. On the other hand, FSK-MSCs-mediated expression of C1 and B9 serpins was significantly lowered in the presence of activated NK cells. Altogether, our results highlight major immunological changes following FSK-MSCs-NK interaction. Understanding these outcomes will therefore enhance the value of the therapeutic strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
112
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal 2018; 12:673-688. [PMID: 29350342 DOI: 10.1007/s12079-018-0448-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are multipotent progenitor cells that have shown promise for several different therapeutic applications. As they are able to modulate the function of several types of immune cells, BM-MSCs are highly important in the field of cell-based immunotherapy. Understanding BM-MSC-natural killer (NK) cell interactions is crucial for improving their therapeutic efficiency. Here, we observed that the type of NK cell-activating cytokine (e.g., IL-2, IL-12, IL-15 and IL-21) strongly influenced the outcomes of their interactions with BM-MSCs. The expression patterns of the ligands (CD112, CD155, ULPB-3) and receptors (LAIR, NCR) mediating the cross-talk between BM-MSCs and NK cells were critically modulated following co-culture. BM-MSCs partially impaired NK cell proliferation but up-regulated their secretion of IFN-γ and TNF-α. As they are cytotoxic, activated NK cells induced the killing of BM-MSCs. Indeed, BM-MSCs triggered the degranulation of NK cells and increased their release of perforin and granzymes. Interestingly, activated NK cells induced ROS generation within BM-MSCs that caused their decreased viability and reduced expression of serpin B9. Collectively, our observations reveal that BM-MSC-NK cell interactions may impact the immunobiology of both cell types. The therapeutic potential of BM-MSCs will be significantly improved once these issues are well characterized.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
113
|
Han W, Ni Q, Liu K, Yao Y, Zhao D, Liu X, Chen Y. Decreased CD122 on CD56 dim NK associated with its impairment in asymptomatic chronic HBV carriers with high levels of HBV DNA, HBsAg and HBeAg. Life Sci 2018; 195:53-60. [PMID: 29307521 DOI: 10.1016/j.lfs.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
AIMS NK cells play important roles in inhibiting HBV replication and preventing HBV infection. However, NK-cell dysfunction has not been fully studied in asymptomatic chronic HBV carriers (ASC). This study aims to assess decreased expression of CD122 associated with impaired NK cells and the restoration of NK cells with IL-2 and IL-15 stimulation. MAIN METHODS The experiments were performed by flow cytometer, cytotoxicity assay, ELISA and western blotting. KEY FINDINGS The reduced CD122 on CD56+ NK cells and CD56dim NK cells is associated with high levels of HBV DNA, HBsAg or HBeAg in ASCs, in which CD56dim NK-cell impairment is observed. Moreover, decreased IFN-γ and degranulation and low cytotoxicity by CD56dim NK cells after CD122 blockade were revealed. IL-2 and/or IL-15 can restore impaired CD56dim NK cells, together with increased p-STAT5, which can be reversed by CD122 blockade. Additionally, IL-2 or IL-15 can enhance IFN-α2-activated CD56dim NK-cell immune responses via up-regulating interferon alpha and beta receptor subunit 2 (IFNAR2). SIGNIFICANCE Down-regulated CD122 on CD56dim NK cell in ASCs with massive viral antigens and high viremia is associated with its impairment, which can be restored by IL-2 and/or IL-15, or combined with IFN-α2.
Collapse
Affiliation(s)
- Wenzheng Han
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qingchun Road, Hangzhou 310003, China
| | - Qin Ni
- State Key Laboratory for Infectious Diseases Diagnosis and Treatment, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Kezhou Liu
- State Key Laboratory for Infectious Diseases Diagnosis and Treatment, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yunliang Yao
- Program in Molecular & Translational Medicine (PMTM), Huzhou University, Huzhou 313000, China
| | - Dejian Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qingchun Road, Hangzhou 310003, China
| | - Xia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qingchun Road, Hangzhou 310003, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
114
|
Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol 2017; 326:86-93. [PMID: 29221689 DOI: 10.1016/j.cellimm.2017.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) exist in almost all tissues with the capability to differentiate into several different cell types and hold great promise in tissue repairs in a cell replacement manner. The study of the bidirectional regulation between MSCs and immune response has ushered an age of rethinking of tissue regeneration in the process of stem cell-based tissue repairs. By sensing damaged signals, both endogenous and exogenous MSCs migrate to the damaged site where they involve in the reconstitution of the immune microenvironment and empower tissue stem/progenitor cells and other resident cells, whereby facilitate tissue repairs. This MSC-based therapeutic manner is conferred as cell empowerment. In this process, MSCs have been found to exert extensive immunosuppression on both innate and adaptive immune response, while such regulation needs to be licensed by inflammation. More importantly, the immunoregulation of MSCs is highly plastic, especially in the context of pathological microenvironment. Understanding the immunoregulatory properties of MSCs is necessary for appropriate application of MSCs. Here we review the current studies on the crosstalk of MSCs and immune response in disease pathogenesis and therapy.
Collapse
|
115
|
Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, Rojo F, Albanell J, López-Botet M. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Front Immunol 2017; 8:1544. [PMID: 29181007 PMCID: PMC5694168 DOI: 10.3389/fimmu.2017.01544] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Sonia Servitja
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ignasi Tusquets
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - María Martínez-García
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | | | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Univ. Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
116
|
Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 2017; 8:24031-24044. [PMID: 28199990 PMCID: PMC5410361 DOI: 10.18632/oncotarget.15234] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells play a critical role against tumor cells in hematological malignancies. Their activating receptors are essential in tumor cell killing. In Multiple Myeloma (MM) patients, NK cell differentiation, activation and cytotoxic potential are strongly impaired leading to MM escape from immune surveillance in tissues and bone marrow. Mechanisms used by MM to affect NK cell functions are mediated by the release of soluble factors, the expression of activating and inhibitory NK cell ligands, and the expression of immune check-point inhibitors. Lenalidomide represents an efficient clinical approach in MM treatment to improve patients' survival. Lenalidomide does not only promotes tumor apoptosis, but also stimulates T and NK cells, thereby facilitating NK-mediated tumor recognition and killing. This occurs since Lenalidomide acts on several critical points: stimulates T cell proliferation and cytokine secretion; decreases the expression of the immune check-point inhibitor Programmed Death-1 (PD-1) on both T and NK cells in MM patients; decreases the expression of both PD-1 and PD-L1 on MM cells; promotes MM cell death and abrogates MM/stromal microenvironment cross-talk, a process known to promote the MM cell survival and proliferation. This leads to the inhibition of the negative signal induced by PD-1/PD-L1 axis on NK cells, restoring NK cell cytotoxic functions. Given the importance of an effective immune response to counteract the MM progression and the promising approaches using anti-PD-1/PD-L1 strategies, we will discuss in this review how Lenalidomide could represent an adequate approach to re-establish the recognition against MM by exhausted NK cell.
Collapse
|
117
|
Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis. Immunology 2017; 152:13-24. [PMID: 28543817 DOI: 10.1111/imm.12762] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus(DM) is a major risk factor for the development of active pulmonary tuberculosis (TB), with development of DM pandemic in countries where TB is also endemic. Understanding the impact of DM on TB and the determinants of co-morbidity is essential in responding to this growing public health problem with improved therapeutic approaches. Despite the clinical and public health significance posed by the dual burden of TB and DM, little is known about the immunological and biochemical mechanisms of susceptibility. One possible mechanism is that an impaired immune response in patients with DM facilitates either primary infection with Mycobacterium tuberculosis or reactivation of latent TB. Diabetes is associated with immune dysfunction and alterations in the components of the immune system, including altered levels of specific cytokines and chemokines. Some effects of DM on adaptive immunity that are potentially relevant to TB defence have been identified in humans. In this review, we summarize current findings regarding the alterations in the innate and adaptive immune responses and immunological mechanisms of susceptibility of patients with DM to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Pavan Kumar Nathella
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
118
|
Messaoudene M, Frazao A, Gavlovsky PJ, Toubert A, Dulphy N, Caignard A. Patient's Natural Killer Cells in the Era of Targeted Therapies: Role for Tumor Killers. Front Immunol 2017; 8:683. [PMID: 28659921 PMCID: PMC5466965 DOI: 10.3389/fimmu.2017.00683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are potent antitumor effectors, involved in hematological malignancies and solid tumor immunosurveillance. They infiltrate various solid tumors, and their numbers are correlated with good outcome. The function of NK cells extends their lytic capacities toward tumor cells expressing stress-induced ligands, through secretion of immunoregulatory cytokines, and interactions with other immune cells. Altered NK cell function due to tumor immune escape is frequent in advanced tumors; however, strategies to release the function of NK infiltrating tumors are emerging. Recent therapies targeting specific oncogenic mutations improved the treatment of cancer patients, but patients often relapse. The actual development consists in combined therapeutic strategies including agents targeting the proliferation of tumor cells and others restorating functional antitumor immune effectors for efficient and durable efficacy of anticancer treatment. In that context, we discuss the recent results of the literature to propose hypotheses concerning the potential use of NK cells, potent antitumor cytotoxic effectors, to design novel antitumor strategies.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Pierre Jean Gavlovsky
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| |
Collapse
|
119
|
Frazao A, Colombo M, Fourmentraux-Neves E, Messaoudene M, Rusakiewicz S, Zitvogel L, Vivier E, Vély F, Faure F, Dréno B, Benlalam H, Bouquet F, Savina A, Pasmant E, Toubert A, Avril MF, Caignard A. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib. Cancer Immunol Res 2017; 5:582-593. [PMID: 28576831 DOI: 10.1158/2326-6066.cir-16-0380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF-mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | - Marina Colombo
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | | | - Brigitte Dréno
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Houssem Benlalam
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | | | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Toubert
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | - Anne Caignard
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France.
| |
Collapse
|
120
|
da Silva RF, Yoshida A, Cardozo DM, Jales RM, Paust S, Derchain S, Guimarães F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18050856. [PMID: 28513532 PMCID: PMC5454809 DOI: 10.3390/ijms18050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Adriana Yoshida
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | | | | | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophie Derchain
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | - Fernando Guimarães
- Women´s Hospital "Professor Doutor José Aristodemo Pinotti"-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas, 13083-881 Campinas, Brazil.
| |
Collapse
|
121
|
Meazza R, Falco M, Marcenaro S, Loiacono F, Canevali P, Bellora F, Tuberosa C, Locatelli F, Micalizzi C, Moretta A, Mingari MC, Moretta L, Aricò M, Bottino C, Pende D. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients. Eur J Immunol 2017; 47:1051-1061. [PMID: 28386908 DOI: 10.1002/eji.201646885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
Abstract
X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48- KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48- targets, such as mature DCs. Self-iNKR- NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect.
Collapse
Affiliation(s)
- Raffaella Meazza
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Michela Falco
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefania Marcenaro
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Canevali
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Claudia Tuberosa
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Franco Locatelli
- Dipartimento di Oncoematologia Pediatrica, IRCCS Ospedale Bambino Gesù, Rome, Italy.,Università di Pavia, Pavia, Italy
| | - Concetta Micalizzi
- Dipartimento di Oncoematologia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Maria C Mingari
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Dipartimento dei Laboratori, Area di Ricerca di Immunologia, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | | | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Daniela Pende
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
122
|
Jabir NR, Firoz CK, Ahmed F, Kamal MA, Hindawi S, Damanhouri GA, Almehdar HA, Tabrez S. Reduction in CD16/CD56 and CD16/CD3/CD56 Natural Killer Cells in Coronary Artery Disease. Immunol Invest 2017; 46:526-535. [DOI: 10.1080/08820139.2017.1306866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nasimudeen R. Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Chelapram K. Firoz
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Hindawi
- Department of Haematology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein A. Almehdar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
123
|
Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F, Deenick EK, Lazarov T, Gineau L, Wang Y, Farina A, Chansel M, Lorenzo L, Piperoglou C, Ma CS, Nitschke P, Belkadi A, Itan Y, Boisson B, Jabot-Hanin F, Picard C, Bustamante J, Eidenschenk C, Boucherit S, Aladjidi N, Lacombe D, Barat P, Qasim W, Hurst JA, Pollard AJ, Uhlig HH, Fieschi C, Michon J, Bermudez VP, Abel L, de Villartay JP, Geissmann F, Tangye SG, Hurwitz J, Vivier E, Casanova JL, Smogorzewska A, Jouanguy E. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 2017; 127:1991-2006. [PMID: 28414293 DOI: 10.1172/jci90727] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.
Collapse
|
124
|
Cagliani J, Grande D, Molmenti EP, Miller EJ, Rilo HL. Immunomodulation by Mesenchymal Stromal Cells and Their Clinical Applications. JOURNAL OF STEM CELL AND REGENERATIVE BIOLOGY 2017; 3:10.15436/2471-0598.17.022. [PMID: 29104965 PMCID: PMC5667922 DOI: 10.15436/2471-0598.17.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that can be isolated and expanded from various sources. MSCs modulate the function of immune cells, including T and B lymphocytes, dendritic cells, and natural killer cells. An understanding of the interaction between MSCs and the inflammatory microenvironment will provide critical information in revealing the precise in vivo mechanisms involved in MSCs-mediated therapeutic effects, and for designing more practical protocols for the clinical use of these cells. In this review we describe the current knowledge of the unique biological properties of MSCs, the immunosuppressive effects on immune-competent cells and the paracrine role of soluble factors. A summary of the participation of MSCs in preclinical and clinical studies in treating autoimmune diseases and other diseases is described. We also discuss the current challenges of their use and their potential roles in cell therapies.
Collapse
Affiliation(s)
- Joaquin Cagliani
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health System, Manhasset, NY, USA
| | - Daniel Grande
- The Feinstein Institute for Medical Research, Orthopedic Research Laboratory, Northwell Health System, Manhasset, N Y, USA
| | - Ernesto P Molmenti
- Transplantation of Surgery, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| | - Edmund J. Miller
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
| | - Horacio L.R. Rilo
- Pancreas Disease Center, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
125
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
126
|
Qu M, Yuan X, Liu D, Ma Y, Zhu J, Cui J, Yu M, Li C, Guo D. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control During Acute Hepatitis B Virus Infection in Mice. Stem Cells Dev 2017; 26:818-827. [PMID: 28318408 DOI: 10.1089/scd.2016.0348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used as therapeutic tools not only for their ability to differentiate toward different cells, but also for their unique immunomodulatory properties. However, it is still unknown how MSCs may affect immunity during hepatitis B virus (HBV) infection. This study was designed to explore the effect of bone marrow-derived MSCs (BM-MSCs) on hepatic natural killer (NK) cells in a mouse model of acute HBV infection. Mice were injected with 1 × 106 BM-MSCs, which stained with chloromethyl derivatives of fluorescein diacetate fluorescent probe, 24 h before hydrodynamic injection of viral DNA (pHBV1.3) through the tail vein. In vivo imaging system revealed that BM-MSCs were accumulated in the injured liver, and they attenuated immune-mediated liver injury during HBV infection, as shown by lower alanine aminotransferase levels, reduced proinflammatory cytokine production, and decreased inflammatory cell infiltration in the liver. Importantly, administration of BM-MSCs restrained the increased expression of natural-killer group 2, member D (NKG2D), an important receptor required for NK cell activation in the liver from HBV-infected mice. BM-MSCs also reduced NKG2D expression on NK cells and suppressed the cytotoxicity of NK cells in vitro. Furthermore, BM-MSC-derived transforming growth factor-β1 suppressed NKG2D expression on NK cells. As a consequence, BM-MSC treatment enhanced HBV gene expression and replication in vivo. These results demonstrate that adoptive transfer of BM-MSCs influences innate immunity and limits immune-mediated liver injury during acute HBV infection by suppressing NK cell activity. Meanwhile, the effect of BM-MSCs on prolonging virus clearance needs to be considered in the future.
Collapse
Affiliation(s)
- Mengmeng Qu
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Xu Yuan
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Dan Liu
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Yuhong Ma
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Jun Zhu
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Jun Cui
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Mengxue Yu
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Changyong Li
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China
| | - Deyin Guo
- 1 School of Basic Medical Sciences, Wuhan University , Wuhan, China .,2 School of Basic Medical Sciences (Shenzhen), Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
127
|
Analysis of killer cell immunoglobulin-like receptors (KIRs) and their HLA ligand genes polymorphisms in Iranian patients with systemic sclerosis. Clin Rheumatol 2017; 36:853-862. [PMID: 28120169 DOI: 10.1007/s10067-016-3526-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Genetic factors have a great role in the pathogenesis of autoimmune diseases by cooperating with environmental stimuli. Killer immunoglobulin-like receptors (KIRs) are cell surface proteins on NK cells whose association with major histocompatibility complex-I regulates their killing function. The aim of this study was to provide information on the possible association between KIR and human leukocyte antigen (HLA) genes with systemic sclerosis disease in Iranian population. A total of 279 systemic sclerosis patients and 451 healthy controls were enrolled in this case-control study in order to determine the presence or absence of 19 KIR genes and 6 specific HLA class I ligands. DNA was analyzed by polymerase chain reaction using the specific sequence primer method (PCR-SSP). Among 11 discovered KIR genotypes, 6 genotypes showed a considerable role and 4 genotypes could preclude the risk of systemic sclerosis (SSc) disease. The gene-gene interactions were also analyzed, and significant confounding effects were seen between involved genes in these two combinations: "KIR3DL1; HLA-BW4-Thr80" and "KIR3DL1 -HLA-BW4-A1." None of single KIR genes showed significant effect on the risk of SSc. We conclude that there is an important relationship between KIR genes and their HLA ligands with incidence rate of systemic sclerosis in Iranian population. The powerful role of a number of discovered KIR/HLA compounds such as activating KIR genotype 3 and HLA-BW4-A1 confirmed the provocative hypothesis of the interplay between activating or inhibitory KIR genes with HLA ligands as a critical index of systemic sclerosis predisposition.
Collapse
|
128
|
Gandoglia I, Ivaldi F, Carrega P, Armentani E, Ferlazzo G, Mancardi G, Kerlero de Rosbo N, Uccelli A, Laroni A. In vitro VLA-4 blockade results in an impaired NK cell-mediated immune surveillance against melanoma. Immunol Lett 2016; 181:109-115. [PMID: 27919749 DOI: 10.1016/j.imlet.2016.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Natalizumab (NTZ) is a monoclonal antibody targeting the α4β1 integrin (CD49d/CD29), very late antigen-4 (VLA-4), which is approved for treatment of relapsing-remitting multiple sclerosis (RR-MS). A possible association between NTZ treatment and a higher risk of melanoma is under debate. Natural Killer (NK) cells, which express VLA-4, represent an innate barrier limiting spreading of melanoma under steady state conditions. Indeed, because of their expression of activating receptors, they are very efficient in recognizing and killing melanoma cells without the need of a previous priming. For this reason, we aimed at assessing whether NK-cell functions might be impaired by sustained exposure to NTZ. To investigate this possibility we isolated NK cells from healthy donors and tested their cytotoxic and migratory functions against primary melanoma cells derived from subcutaneous and lymph node metastases. Flow cytometry analysis demonstrated expression of CD49d on both freshly isolated NK cells and activated NK cells. Moreover, VLA-4 and its receptor, vascular cell adhesion protein-1 (VCAM-1) were similarly expressed on freshly isolated NK cells. However, upon a short exposure to NTZ, expression of VLA-4 on NK cells decreased. Analysis of NK receptor expression upon exposure of NK cells from three healthy donors to NTZ indicated that DNAM-1 and NKp46 are apparently decreased, while NKG2A is increased. The degranulation of NK cells towards melanoma cells, which express both VLA-4 and VCAM-1, was not affected when NTZ was added to the co-culture or when both NK cells and melanoma cells were each pre-exposed to NTZ for over 12h. In contrast, degranulation was significantly inhibited after 48h of pre-incubation indicating that NTZ can influence NK-cell degranulation towards melanoma cells only after a prolonged exposure. Using a migration chamber assay, we observed that the migration of NK cells towards melanoma cells was dependent upon the concentration of melanoma cells in the lower chamber, and that it was significantly reduced in presence of NTZ. Our results show that upon exposure to NTZ both cytolytic activity and migration toward melanoma cells were affected, suggesting that binding of NTZ to NK cells affects pathways involved in these NK-cell functions. We analyzed the expression of CD49d on NK cells from MS patients treated with NTZ and observed that it decreases with time of treatment. These data suggest that blockade of VLA-4 on NK-cell surface alters some key functions involved in the immune surveillance toward melanoma by NK cells and may provide a mechanistic explanation for the reported occurrence of melanoma in MS patients treated with NTZ.
Collapse
Affiliation(s)
- Ilaria Gandoglia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Federico Ivaldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Paolo Carrega
- Laboratory of Clinical and Experimental Immunology, Giannina Gaslini Institute, Genoa, Italy
| | - Eric Armentani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gianluigi Mancardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy.
| | - Alice Laroni
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| |
Collapse
|
129
|
Holubova M, Miklikova M, Leba M, Georgiev D, Jindra P, Caprnda M, Ciccocioppo R, Kruzliak P, Lysak D. Cryopreserved NK cells in the treatment of haematological malignancies: preclinical study. J Cancer Res Clin Oncol 2016; 142:2561-2567. [PMID: 27614454 DOI: 10.1007/s00432-016-2247-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Leukaemia is an aggressive cancer of haematopoiesis. Despite increasing treatment success, the relapse rate is still high. Natural killer (NK) cells play a key role in the immune response to malignancies; thus, it is conceivable that NK cell-based immunotherapy may control relapses, while extending the disease-free survival. In our study, we investigated whether cryopreserved NK cells are able to kill the leukaemic K562 cell line, the necessity of IL-2 co-application and the association of activation marker expression (NKp44, NKG2D and CD25) with cytotoxic potential. MATERIALS AND METHODS K562 cells were added to NK cell cultures in different ratios, i.e. 1:5, 1:10 and 1:20 (K562/NK), immediately after thawing NK cells or after 3-6-12-24 h of re-cultivation with or without IL-2. RESULTS Our results demonstrated the ability of cryopreserved NK cells to kill K562 in all ratios, times and culture conditions. The number of dead K562 cells depended on the number of NK cells and on the presence of IL-2. NK cells cytotoxic potential decreased gradually in the culture without IL-2. In contrast, NK cell-mediated cytotoxicity remained the same during the entire re-culture period after IL-2 re-application. CONCLUSION Our study proved the efficacy of using cryopreserved ready-for-use NK cells in relapse treatment and the need for simultaneous administration of IL-2.
Collapse
Affiliation(s)
- Monika Holubova
- Department of Haematology and Oncology, Medical School and Teaching Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
- Department of Haematology and Oncology, Faculty Hospital in Pilsen, Charles University in Prague, Alej Svobody 80, 304 60, Pilsen, Czech Republic.
| | - Michaela Miklikova
- Department of Haematology and Oncology, Medical School and Teaching Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Martin Leba
- New Technologies for the Information Society European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Daniel Georgiev
- New Technologies for the Information Society European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
| | - Pavel Jindra
- Czech National Bone Marrow Donor Registry (CS-2), Pilsen, Czech Republic
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Rachele Ciccocioppo
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, 612 42, Brno, Czech Republic.
| | - Daniel Lysak
- Department of Haematology and Oncology, Medical School and Teaching Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
130
|
Ocular toxoplasmosis: susceptibility in respect to the genes encoding the KIR receptors and their HLA class I ligands. Sci Rep 2016; 6:36632. [PMID: 27827450 PMCID: PMC5101474 DOI: 10.1038/srep36632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the influence of the genes encoding the KIR receptors and their HLA ligands in the susceptibility of ocular toxoplasmosis. A total of 297 patients serologically-diagnosed with toxoplasmosis were selected and stratified according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping was performed by PCR-SSOP. Statistical analyses were conducted using the Chi-square test, and odds ratio with a 95% confidence interval was also calculated to evaluate the risk association. The activating KIR3DS1 gene was associated with increased susceptibility for ocular toxoplasmosis. The activating KIR together with their HLA ligands (KIR3DS1-Bw4-80Ile and KIR2DS1+/C2++ KIR3DS1+/Bw4-80Ile+) were associated with increased susceptibility for ocular toxoplasmosis and its clinical manifestations. KIR-HLA inhibitory pairs -KIR2DL3/2DL3-C1/C1 and KIR2DL3/2DL3-C1- were associated with decreased susceptibility for ocular toxoplasmosis and its clinical forms, while the KIR3DS1−/KIR3DL1+/Bw4-80Ile+ combination was associated as a protective factor against the development of ocular toxoplasmosis and, in particular, against recurrent manifestations. Our data demonstrate that activating and inhibitory KIR genes may influence the development of ocular toxoplasmosis.
Collapse
|
131
|
Mesenchymal Stem Cells Regulate the Innate and Adaptive Immune Responses Dampening Arthritis Progression. Stem Cells Int 2016; 2016:3162743. [PMID: 27847522 PMCID: PMC5101398 DOI: 10.1155/2016/3162743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to immunomodulate cells from both the innate and the adaptive immune systems promoting an anti-inflammatory environment. During the last decade, MSCs have been intensively studied in vitro and in vivo in experimental animal model of autoimmune and inflammatory disorders. Based on these studies, MSCs are currently widely used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) characterized by complex deregulation of the immune systems. However, the therapeutic properties of MSCs in arthritis are still controverted. These controversies might be due to the diversity of MSC sources and isolation protocols used, the time, the route and dose of MSC administration, the variety of the mechanisms involved in the MSCs suppressive effects, and the complexity of arthritis pathogenesis. In this review, we discuss the role of the interactions between MSCs and the different immune cells associated with arthritis pathogenesis and the possible means described in the literature that could enhance MSCs therapeutic potential counteracting arthritis development and progression.
Collapse
|
132
|
Yin T, Wang G, He S, Shen G, Su C, Zhang Y, Wei X, Ye T, Li L, Yang S, Li D, Guo F, Mo Z, Wan Y, Ai P, Zhou X, Liu Y, Wang Y, Wei Y. Malignant Pleural Effusion and ascites Induce Epithelial-Mesenchymal Transition and Cancer Stem-like Cell Properties via the Vascular Endothelial Growth Factor (VEGF)/Phosphatidylinositol 3-Kinase (PI3K)/Akt/Mechanistic Target of Rapamycin (mTOR) Pathway. J Biol Chem 2016; 291:26750-26761. [PMID: 27756837 DOI: 10.1074/jbc.m116.753236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Indexed: 02/05/2023] Open
Abstract
Malignant pleural effusion (PE) and ascites, common clinical manifestations in advanced cancer patients, are associated with a poor prognosis. However, the biological characteristics of malignant PE and ascites are not clarified. Here we report that malignant PE and ascites can induce a frequent epithelial-mesenchymal transition program and endow tumor cells with stem cell properties with high efficiency, which promotes tumor growth, chemoresistance, and immune evasion. We determine that this epithelial-mesenchymal transition process is mainly dependent on VEGF, one initiator of the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway. From the clinical observation, we define a therapeutic option with VEGF antibody for malignant PE and ascites. Taken together, our findings clarify a novel biological characteristic of malignant PE and ascites in cancer progression and provide a promising and available strategy for cancer patients with recurrent/refractory malignant PE and ascites.
Collapse
Affiliation(s)
- Tao Yin
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Guoping Wang
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Sisi He
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Guobo Shen
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chao Su
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yan Zhang
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiawei Wei
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tinghong Ye
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ling Li
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Shengyong Yang
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dan Li
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Fuchun Guo
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zeming Mo
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yang Wan
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ping Ai
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiaojuan Zhou
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yantong Liu
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yongsheng Wang
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yuquan Wei
- From the Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
133
|
Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood 2016; 128:2616-2623. [PMID: 27697774 DOI: 10.1182/blood-2016-07-730564] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
The present review describes the biology of human leukocyte antigen haplotype mismatched ("haploidentical") transplantation, its translation to clinical practice to cure leukemia, and the results of current transplantation protocols. The 1990s saw what had been major drawbacks of haploidentical transplantation, ie, very strong host-versus-graft and graft-versus-host alloresponses, which led respectively to rejection and graft-versus-host disease (GVHD), being overcome through transplantation of a "mega-dose" of T cell-depleted peripheral blood hematopoietic progenitor cells and no posttransplant pharmacologic immunosuppression. The absence of posttransplant immunosuppression was an opportunity to discover natural killer cell alloreactions that eradicated acute myeloid leukemia and improved survival. Furthermore, it also unveiled the benefits of transplantation from mother donors, a likely consequence of the mother-to-child interaction during pregnancy. More recent transplantation protocols use unmanipulated (without ex vivo T-cell depletion) haploidentical grafts combined with enhanced posttransplant immunosuppression to help prevent GVHD. Unmanipulated grafts substantially extended the use of haploidentical transplantation with results than even rival those of matched hematopoietic transplantation. In T cell-depleted haploidentical transplantation, recent advances were made by the adoptive transfer of regulatory and conventional T cells.
Collapse
|
134
|
Elhaik Goldman S, Moshkovits I, Shemesh A, Filiba A, Tsirulsky Y, Vronov E, Shagan M, Apte RN, Benharroch DA, Karo-Atar D, Dagan R, Munitz A, Mizrachi Nebenzahl Y, Porgador A. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation. PLoS One 2016; 11:e0160779. [PMID: 27580126 PMCID: PMC5007051 DOI: 10.1371/journal.pone.0160779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023] Open
Abstract
The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Itay Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Filiba
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yevgeny Tsirulsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Elena Vronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - D aniel Benharroch
- Soroka University Medical Center, Department of Pathology, Bear Sheva, Israel
| | - Danielle Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ron Dagan
- Faculty of Health Science, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
- * E-mail: ;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail: ;
| |
Collapse
|
135
|
He L, Zhu HY, Qin SC, Li Y, Miao Y, Liang JH, Xia Y, Wang Y, Wu YJ, Wang L, Fan L, Li JY, Xu W. Low natural killer (NK) cell counts in peripheral blood adversely affect clinical outcome of patients with follicular lymphoma. Blood Cancer J 2016; 6:e457. [PMID: 27518240 PMCID: PMC5022180 DOI: 10.1038/bcj.2016.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- L He
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - H-Y Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - S-C Qin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Y Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Y Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - J-H Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Y Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Y Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Y-J Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - L Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - L Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - J-Y Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - W Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
136
|
Carrega P, Campana S, Bonaccorsi I, Ferlazzo G. The Yin and Yang of Innate Lymphoid Cells in Cancer. Immunol Lett 2016; 179:29-35. [PMID: 27296768 DOI: 10.1016/j.imlet.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 12/30/2022]
Abstract
The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes.
Collapse
Affiliation(s)
- Paolo Carrega
- Istituto G. Gaslini, Genova 16148, Italy; Cell Factory UniMe, University of Messina, 98125, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Guido Ferlazzo
- Cell Factory UniMe, University of Messina, 98125, Italy; Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy; Cell Therapy Program, Azienda Ospedaliera Universitaria Policlinico Gaetano Martino, Messina 98125, Italy.
| |
Collapse
|
137
|
Gacerez AT, Arellano B, Sentman CL. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy. J Cell Physiol 2016; 231:2590-8. [PMID: 27163336 DOI: 10.1002/jcp.25419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albert T Gacerez
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Benjamine Arellano
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| |
Collapse
|
138
|
Claus M, Wingert S, Watzl C. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans. Open Biol 2016; 6:rsob.160010. [PMID: 27249817 PMCID: PMC4892432 DOI: 10.1098/rsob.160010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/24/2016] [Indexed: 01/23/2023] Open
Abstract
SLAM-related receptors (SRRs) are important modulators of immune cell function. While most SRRs are homophilic, 2B4 (CD244) interacts with CD48, a GPI-anchored protein expressed on many haematopoietic cells. Here we show that natural killer (NK) cell-expressed 2B4 not only binds in trans to CD48 on neighbouring cells but also interacts in cis with CD48 on the same cell. 2B4 uses the same binding site to interact with CD48 in cis and in trans and structural flexibility of 2B4 is necessary for the cis interaction. Furthermore, the cis interaction is sufficient to induce basal phosphorylation of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in trans. As a consequence, stimulation-dependent phosphorylation of 2B4 upon binding to CD48 positive target cells is reduced. Interfering with the cis interaction therefore enhanced the lysis of CD48-expressing tumour cells. These data show that the density of 2B4 and CD48 on both the NK cell and the potential target cell modulates NK cell activity.
Collapse
Affiliation(s)
- Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| |
Collapse
|
139
|
Ruggeri L, Urbani E, André P, Mancusi A, Tosti A, Topini F, Bléry M, Animobono L, Romagné F, Wagtmann N, Velardi A. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 2016; 101:626-33. [PMID: 26721894 PMCID: PMC5004363 DOI: 10.3324/haematol.2015.135301] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
Natural killer cells are key cells of the innate immune system. Natural killer cell receptor repertoires are diversified by a stochastic expression of killer-cell-immunoglobulin-like receptors and lectin-like receptors such as NKG2 receptors. All individuals harbor a subset of natural killer cells expressing NKG2A, the inhibitory checkpoint receptor for HLA-E. Most neoplastic and normal hematopoietic cells express HLA-E, the inhibitory ligand of NKG2A. A novel anti-human NKG2A antibody induced tumor cell death, suggesting that the antibody could be useful in the treatment of cancers expressing HLA-E. We found that immunodeficient mice, co-infused with human primary leukemia or Epstein-Barr virus cell lines and NKG2A(+) natural killer cells, pre-treated with anti-human NKG2A, were rescued from disease progression. Human NKG2A(+) natural killer cells reconstituted in immunodeficient mice after transplantation of human CD34(+) cells. These natural killer cells are able to kill engrafted human primary leukemia or Epstein-Barr virus cell lines by lysis after intraperitoneal administration of anti-human NKG2A. Thus, this anti-NKG2A may exploit the anti-leukemic action of the wave of NKG2A(+) natural killer cells recovering after hematopoietic stem cell transplants or adoptive therapy with natural killer cell infusions from matched or mismatched family donors after chemotherapy for acute leukemia, without the need to search for a natural killer cell alloreactive donor.
Collapse
Affiliation(s)
- Loredana Ruggeri
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Elena Urbani
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | - Antonella Mancusi
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Antonella Tosti
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | - Fabiana Topini
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | - Lucia Animobono
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| | | | | | - Andrea Velardi
- Division of Hematology and Clinical Immunology and Bone Marrow Transplantation Program, Department of Medicine, University of Perugia, Italy
| |
Collapse
|
140
|
Li J, Sharkey CC, Wun B, Liesveld JL, King MR. Genetic engineering of platelets to neutralize circulating tumor cells. J Control Release 2016; 228:38-47. [PMID: 26921521 PMCID: PMC4828270 DOI: 10.1016/j.jconrel.2016.02.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis.
Collapse
Affiliation(s)
- Jiahe Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Charles C Sharkey
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Brittany Wun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jane L Liesveld
- Department of Medicine, Hematology/Oncology (SMD), University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
141
|
Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, Choi J, Chan T, Okada H, Lotze M, Grandi P, Amankulor N. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol 2016; 18:1402-12. [PMID: 27116977 DOI: 10.1093/neuonc/now061] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/20/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Diffuse gliomas are poorly immunogenic, fatal brain tumors. The basis for insufficient antitumor immunity in diffuse gliomas is unknown. Gain-of-function mutations in isocitrate dehydrogenases (IDH1 and IDH2) promote diffuse glioma formation through epigenetic reprogramming of a number of genes, including immune-related genes. Here, we identify epigenetic dysregulation of natural killer (NK) cell ligand genes as significant contributors to immune escape in glioma. METHODS We analyzed the database of The Cancer Genome Atlas for immune gene expression patterns in IDH mutant or wild-type gliomas and identified differentially expressed immune genes. NKG2D ligand expression levels and NK cell-mediated lysis were measured in IDH mutant and wild-type patient-derived glioma stem cells and genetically engineered astrocytes. Finally, we assessed the impact of hypomethylating agent 5-aza-2'deoxycytodine (decitabine) as a potential NK cell sensitizing agent in IDH mutant cells. RESULTS IDH mutant glioma stemlike cell lines exhibited significantly lower expression of NKG2D ligands compared with IDH wild-type cells. Consistent with these findings, IDH mutant glioma cells and astrocytes are resistant to NK cell-mediated lysis. Decitabine increases NKG2D ligand expression and restores NK-mediated lysis of IDH mutant cells in an NKG2D-dependent manner. CONCLUSIONS IDH mutant glioma cells acquire resistance to NK cells through epigenetic silencing of NKG2D ligands ULBP1 and ULBP3. Decitabine-mediated hypomethylation restores ULBP1 and ULBP3 expression in IDH mutant glioma cells and may provide a clinically useful method to sensitize IDH mutant gliomas to NK cell-mediated immune surveillance in patients with IDH mutated diffuse gliomas.
Collapse
Affiliation(s)
- Xiaoran Zhang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Aparana Rao
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Paola Sette
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Christopher Deibert
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Alexander Pomerantz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Wi Jin Kim
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Gary Kohanbash
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Yigang Chang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Yongseok Park
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Johnathan Engh
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Jaehyuk Choi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Timothy Chan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Hideho Okada
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Michael Lotze
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Paola Grandi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Nduka Amankulor
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| |
Collapse
|
142
|
Messaoudene M, Fregni G, Enot D, Jacquelot N, Neves E, Germaud N, Garchon HJ, Boukouaci W, Tamouza R, Chanal J, Avril MF, Toubert A, Zitvogel L, Rusakiewicz S, Caignard A. NKp30 isoforms and NKp46 transcripts in metastatic melanoma patients: Unique NKp30 pattern in rare melanoma patients with favorable evolution. Oncoimmunology 2016; 5:e1154251. [PMID: 28123867 DOI: 10.1080/2162402x.2016.1154251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 01/26/2023] Open
Abstract
Given the NK cell-based immunosurveillance of melanoma, we investigated the prognostic value of NKp46 transcript and NKp30 isoform (NKp30A, NKp30B and NKp30C) profiling in blood of 187 melanoma patients including 13 long survivors (LS), metastatic patients that have controlled the disease. Compared to healthy volunteers (HV), patients had reduced amounts of transcripts of the three NKp30 isoforms (NKp30 A, B and C) but similar ratios between NKp30 isoforms (ΔAB, ΔAC, ΔBC). Stratification of patients according to disease stage showed higher NKp30C and lower NKp46 transcripts in stage IV patients. Furthermore, patients with previous history of conventional chemotherapy displayed reduced NKp30A transcripts. The expression levels of NKp30 isoforms failed to predict survival from sampling of patients, while NKp46 expression predicted melanoma outcome. LS patients displayed elevated NKp30A levels, accordingly high ΔAB and ΔBC ratios, and a unique pattern of rare allelic variants of NKp30 SNPs. Moreover, NK cells from LS displayed correlated NKp30/NKp46 membrane expression, high spontaneous and NKp30- or NKp46-triggered degranulation. These data outline the impact of NKp30 and NKp46 transcripts on melanoma evolution and identify unique genetic features of NKp30 associated with higher NK activation in rare LS melanoma patients that control a metastatic disease.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Giulia Fregni
- Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne , Lausanne, Switzerland
| | - David Enot
- U1015 INSERM-CIC, Institut Gustave Roussy , Villejuif, France
| | - Nicolas Jacquelot
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - Emmanuelle Neves
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Nathalie Germaud
- Inserm U1173 and University of Versailles Saint-Quentin, Montigny-le-Bretonneux, France; APHP, Ambroise Paré Hospital, Division of Genetics, Boulogne-Billancourt, France
| | - Henri Jean Garchon
- Inserm U1173 and University of Versailles Saint-Quentin, Montigny-le-Bretonneux, France; APHP, Ambroise Paré Hospital, Division of Genetics, Boulogne-Billancourt, France
| | - Wahid Boukouaci
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Ryad Tamouza
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Johan Chanal
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes , Paris, France
| | - Marie-Françoise Avril
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Antoine Toubert
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Laurence Zitvogel
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, Villejuif, France
| | | | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| |
Collapse
|
143
|
Ban Y, Zhao Y, Liu F, Dong B, Kong B, Qu X. Effect of Indoleamine 2,3-Dioxygenase Expressed in HTR-8/SVneo Cells on Decidual NK Cell Cytotoxicity. Am J Reprod Immunol 2016; 75:519-28. [PMID: 26782048 DOI: 10.1111/aji.12481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
PROBLEM To study the effect of indoleamine 2,3-dioxygenase (IDO) expressed in HTR-8/SVneo cells on NKG2D and NKp46 expression and cytotoxicity of decidual NK (dNK) and peripheral NK (pNK) cells. METHOD OF STUDY CD56(+) dNK and pNK cells purified were cultured with HTR-8/SVneo cell conditioned medium (CM), 1-MT+HTR-8/SVneo cell CM, and complete RPMI 1640 medium (negative control) in vitro. The mRNA and protein expression of NKG2D and NKp46 in NK cells were then assessed by qRT-PCR and flow cytometry, respectively. Their cytotoxicity was evaluated with LDH assays, and TNF-α secretion was analyzed by ELISA. RESULTS For dNK cells, the mRNA and protein expression of NKp46 as well as NKG2D did not differ significantly among the three groups (P > 0.05), whereas for pNK cells, the expression level was significantly decreased in HTR-8/SVneo cell CM group than the other two groups (P < 0.01). Peripheral NK cells cultured with HTR-8/SVneo cell CM showed reduced cytotoxicity and TNF-α secretion than the other two groups (P < 0.01), although there were no significant differences among three groups for dNK cells (P > 0.05). CONCLUSION IDO expressed by HTR-8/SVneo cells can down-regulate NKp46 and NKG2D expression and reduce cytotoxicity in pNK cells, and may contribute to keep dNK cytotoxicity at a low level, suggesting an important role for IDO in the maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Fen Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Baihua Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
144
|
Wagner S, Wittekindt C, Reuschenbach M, Hennig B, Thevarajah M, Würdemann N, Prigge ES, von Knebel Doeberitz M, Dreyer T, Gattenlöhner S, Peter Klussmann J. CD56-positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. Int J Cancer 2016; 138:2263-73. [DOI: 10.1002/ijc.29962] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Steffen Wagner
- Department of Otorhinolaryngology; Head and Neck Surgery, University of Giessen; Giessen Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology; Head and Neck Surgery, University of Giessen; Giessen Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology; University of Heidelberg and Clinical Cooperation Unit, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Ben Hennig
- Institute of Pathology, University of Giessen; Giessen Germany
| | - Mauran Thevarajah
- Department of Otorhinolaryngology; Head and Neck Surgery, University of Giessen; Giessen Germany
| | - Nora Würdemann
- Department of Otorhinolaryngology; Head and Neck Surgery, University of Giessen; Giessen Germany
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology; University of Heidelberg and Clinical Cooperation Unit, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology; University of Heidelberg and Clinical Cooperation Unit, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Thomas Dreyer
- Institute of Pathology, University of Giessen; Giessen Germany
| | | | - Jens Peter Klussmann
- Department of Otorhinolaryngology; Head and Neck Surgery, University of Giessen; Giessen Germany
| |
Collapse
|
145
|
Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium. J Immunol Res 2016; 2016:4683607. [PMID: 26881264 PMCID: PMC4736366 DOI: 10.1155/2016/4683607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.
Collapse
|
146
|
Vasilyeva EF, Kushner SG, Factor MI, Omelchenko MA, Bogdanova ED, Petrakova LN, Brusov OS. The cellular factors of innate immunity in nonpsychotic patients at high risk for schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:60-65. [DOI: 10.17116/jnevro201611610160-65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
147
|
Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology 2015; 146:369-78. [PMID: 26235210 DOI: 10.1111/imm.12516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor-ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy.
Collapse
Affiliation(s)
- Peng Xiong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Wei Sang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
148
|
NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun 2015; 6:8280. [PMID: 26395069 DOI: 10.1038/ncomms9280] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/06/2015] [Indexed: 02/08/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are a common finding in non-small cell lung cancer (NSCLC) and are predictors of favourable clinical outcome. Here we show that NCR(+) innate lymphoid cell (ILC)-3 are present in the lymphoid infiltrate of human NSCLC and are mainly localized at the edge of tumour-associated TLSs. This intra-tumoral lymphocyte subset is endowed with lymphoid tissue-inducing properties and, on activation, produces IL-22, TNF-α, IL-8 and IL-2, and activates endothelial cells. Tumour NCR(+)ILC3 may interact with both lung tumour cells and tumour-associated fibroblasts, resulting in the release of cytokines primarily on engagement of the NKp44-activating receptor. In patients, NCR(+)ILC3 are present in significantly higher amounts in stage I/II NSCLC than in more advanced tumour stages and their presence correlate with the density of intratumoral TLSs. Our results indicate that NCR(+)ILC3 accumulate in human NSCLC tissue and might contribute to the formation of protective tumour-associated TLSs.
Collapse
|
149
|
Glasner A, Simic H, Miklić K, Roth Z, Berhani O, Khalaila I, Jonjic S, Mandelboim O. Expression, Function, and Molecular Properties of the Killer Receptor Ncr1-Noé. THE JOURNAL OF IMMUNOLOGY 2015; 195:3959-69. [PMID: 26371250 DOI: 10.4049/jimmunol.1501234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023]
Abstract
NK cells kill various cells using activating receptors, such as the natural cytotoxicity receptors (NCRs). NKp46 is a major NCR and is the only NCR expressed in mice (denoted Ncr1). Using Ncr1-deficient mice (Ncr1(gfp/pfp)) we demonstrated that Ncr1 controls various pathologies, and that in its absence Ncr1-related functions are impaired. In 2012, another Ncr1-related mouse was generated, named Noé, in which a random mutation, W32R, in position 32, impaired the Ncr1-Noé cell surface expression. Interestingly, in the Noé mice, Ncr1-dependent deficiencies were not observed. Additionally, the Noé-NK cells were hyperactivated, probably due to increased Helios expression, and the Noé mice demonstrate increased clearance of influenza and murine CMV. In contrast, in the Ncr1(gfp/pfp) mice infection with influenza was lethal and we show in the present study no difference in murine CMV infection between Ncr1(gfp/pfp) and wild-type (WT) mice. Because the foremost difference between the Noé and Ncr1(gfp/gfp) mice is the presence of a mutated Ncr1-Noé protein, we studied its properties. We show that Ncr1-Noé and various other Ncr1 mutants in position 32 can be expressed on the surface, albeit slowly and unstably, and that ligand recognition and function of the various Ncr1-Noé is similar to the WT Ncr1. We further show that the glycosylation pattern of Ncr1-Noé is aberrant, that the Ncr1-Noé proteins accumulate in the endoplasmic reticulum, and that the expression of Ncr1-Noé proteins, but not WT Ncr1, leads to increased Helios expression. Thus, we suggest that the NK hyperactivated phenotype observed in the Noé mice might result from the presence of the Ncr1-Noé protein.
Collapse
Affiliation(s)
- Ariella Glasner
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Hrvoje Simic
- Department of Histology and Embryology Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Karmela Miklić
- Department of Histology and Embryology Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ziv Roth
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Orit Berhani
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Isam Khalaila
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; and
| | - Stipan Jonjic
- Department of Histology and Embryology Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
150
|
Lettau M, Kabelitz D, Janssen O. Lysosome-Related Effector Vesicles in T Lymphocytes and NK Cells. Scand J Immunol 2015; 82:235-43. [DOI: 10.1111/sji.12337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Affiliation(s)
- M. Lettau
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| | - D. Kabelitz
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| | - O. Janssen
- Institute of Immunology; University Hospital Schleswig-Holstein Campus Kiel; Kiel Germany
| |
Collapse
|