101
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
102
|
The Wilms' tumor suppressor Wt1 regulates Coronin 1B expression in the epicardium. Exp Cell Res 2013; 319:1365-81. [PMID: 23562652 DOI: 10.1016/j.yexcr.2013.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/17/2023]
Abstract
Coronin 1B has been shown to be critical for cell motility and various actin-dependent processes. To understand its role more extensively, the expression and transcriptional regulation of Coro1b gene during mouse development were explored. Coronin 1B is ubiquitously expressed in the whole embryo but nevertheless shows distinct expression pattern in developing heart. In addition to the localization in endocardium, Coronin 1B is specifically expressed in the endocardial cushion and epicardium where cardiac EMT processes take place as the heart develops. Promoter deletion analysis identified the positions between -1038 and -681 is important for Coro1b basal promoter activity. In addition to a correlation of Coronin 1B localization with Wt1 expression in the epicardium, we also identified putative Wt1 binding sequences within Coro1b promoter. Direct binding of Wt1 to GC-rich sequences within the Coro1b promoter is required for the regulation of Coro1b gene expression. In accordance with the motility defect found in Coronin 1B-knockdown cells, a modest decrease in expression of Coronin 1B in the remaining epicardium of Wt1(EGFPCre/EGFPCre) mutant embryos was observed. These findings seem to shed light on the role of Wt1 during cell migration and suggest that, at least in part, this involves transcriptional control of Coro1b gene expression.
Collapse
|
103
|
ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and Fas/CD95 activation in vivo. J Neurosci 2013; 33:2205-16. [PMID: 23365256 DOI: 10.1523/jneurosci.2635-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The transcription factor p53 mediates neuronal death in a variety of stress-related and neurodegenerative conditions. The proapoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However, whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is currently unknown. To address this, we asked whether ASPP1/2 contribute to the death of retinal ganglion cells (RGCs) using in vivo models of acute optic nerve damage in mice and rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced RGC death is attenuated in p53 heterozygote and null mice. We demonstrate that ASPP1/2 proteins are abundantly expressed by injured RGCs, and that short interfering (si)RNA-based ASPP1 or ASPP2 knockdown promotes robust RGC survival. Comparative gene expression analysis revealed that siASPP-mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA), Fas/CD95, and Noxa depends on p53 transcriptional activity. Furthermore, siRNA against PUMA or Fas/CD95 confers neuroprotection, demonstrating a functional role for these p53 targets in RGC death. Our study demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs and provides evidence that blockade of the ASPP-p53 pathway is beneficial for central neuron survival after axonal injury.
Collapse
|
104
|
Quadrato G, Di Giovanni S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell Mol Life Sci 2013; 70:993-1007. [PMID: 22899311 PMCID: PMC11113138 DOI: 10.1007/s00018-012-1099-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
105
|
Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression. Cell Death Dis 2013; 4:e484. [PMID: 23392172 PMCID: PMC3734841 DOI: 10.1038/cddis.2013.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of p53 in neurodegenerative diseases is essentially associated with neuronal death. Recently an alternative point of view is emerging, as altered p53 conformation and impaired protein function have been found in fibroblasts and blood cells derived from Alzheimer's disease patients. Here, using stable transfected SH-SY5Y cells overexpressing APP751wt (SY5Y-APP) we demonstrated that the expression of an unfolded p53 conformation compromised neuronal functionality. In particular, these cells showed (i) augmented expression of amyloid precursor protein (APP) and its metabolites, including the C-terminal fragments C99 and C83 and β-amyloid peptide (ii) high levels of oxidative markers, such as 4-hydroxy-2-nonenal Michael-adducts and 3-nitro-tyrosine and (iii) altered p53 conformation, mainly due to nitration of its tyrosine residues. The consequences of high-unfolded p53 expression resulted in loss of p53 pro-apoptotic activity, and reduction of growth-associated protein 43 (GAP-43) mRNA and protein levels. The role of unfolded p53 in cell death resistance and lack of GAP-43 transcription was demonstrated by ZnCl2 treatment. Zinc supplementation reverted p53 wild-type tertiary structure, increased cells sensitivity to acute cytotoxic injury and GAP-43 levels in SY5Y-APP clone.
Collapse
|
106
|
p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury. J Neurosci 2013; 32:13956-70. [PMID: 23035104 DOI: 10.1523/jneurosci.1925-12.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.
Collapse
|
107
|
Xu J, Jin W, Wu X, Wu X, Li A, Ke K, Cao J, Liu X, Tan X, Fu H, Gao Y, Gao Z. Up-regulation of Che-1 relates to neuronal apoptosis after traumatic brain injury in adult rats. Cell Mol Neurobiol 2013; 33:85-97. [PMID: 23007641 PMCID: PMC11497880 DOI: 10.1007/s10571-012-9874-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
Che-1, a recently identified apoptosis related protein, affects the fate of various cell types when under stress. One attractive biological function of Che-1 is promoting the transcription of p53 after DNA damage; besides, it can also regulate cell cycle via interacting with retinoblastoma protein. Although previous evidence has showed its anti-apoptotic role in cancer cells, some studies point out that Che-1 might play an opposite role in central nervous system (CNS). However, the function of Che-1 in CNS is still with limited acquaintance. To investigate whether Che-1 is involved in CNS lesion, we performed a traumatic brain injury model in adult rats. Up-regulation of Che-1 was observed in the peritrauma brain cortex by performing western blotting and immunohistochemistry. Terminal deoxynucleotidyl transferase deoxy-UTP nick-end labeling and 4',6-diamidino-2-phenylindole staining suggested that Che-1 was involved in neuronal apoptosis after brain injury. We also investigated co-localization of Che-1 and active-caspase-3 in the ipsilateral brain cortex. In addition, the expression patterns of p53, Bax and PCNA were parallel with that of Che-1. Besides this, neurotrophin receptor-interacting MAGE homolog was found to be associated with Che-1 after brain trauma. Based on our data, we suggested that Che-1 might play an important role in neuronal apoptosis following TBI; and might provide a basis for the further study on its role in regulating the expression of p53 and cell cycle re-entry in traumatic brain injury.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Affiliated Mental and Health Center of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Wei Jin
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Xinmin Wu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Xiaohong Wu
- Department of Psychiatry, Affiliated Mental and Health Center of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Jianhua Cao
- Department of Psychiatry, Affiliated Mental and Health Center of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Xiaojuan Liu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Xiang Tan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Hongran Fu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| | - Zhiwei Gao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province People’s Republic of China
| |
Collapse
|
108
|
NAGANUMA Y, ICHII O, OTSUKA S, HASHIMOTO Y, KON Y. Analysis of TdT-Mediated dUTP Nick End Labeling (TUNEL)-Positive Cells Associated with Cardiac Myogenesis in Mouse Embryo. J Vet Med Sci 2013; 75:283-90. [DOI: 10.1292/jvms.12-0339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuki NAGANUMA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Osamu ICHII
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Saori OTSUKA
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Yoshiharu HASHIMOTO
- Office for Faculty Development and Teaching Enriched Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Yasuhiro KON
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| |
Collapse
|
109
|
Global effect of inauhzin on human p53-responsive transcriptome. PLoS One 2012; 7:e52172. [PMID: 23284922 PMCID: PMC3528779 DOI: 10.1371/journal.pone.0052172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/15/2012] [Indexed: 12/19/2022] Open
Abstract
Background Previously, we reported that Inauhzin (INZ) induces p53 activity and suppresses tumor growth by inhibiting Sirt1. However, it remains unknown whether INZ may globally affect p53-dependent gene expression or not. Herein, we have conducted microarray and real-time PCR analyses of gene expression to determine the global effect of INZ on human p53-responsive transcriptome. Methodology/Principal Findings In this study, we conducted microarray analysis followed by PCR validation of general gene expression in HCT116p53+/+ and HCT116p53−/− cells treated with or without INZ. Microarray data showed that 324 genes were up-regulated by ≥2.3-fold and 266 genes were down-regulated by ≥2-fold in response to INZ treatment in a p53-dependent manner. GO analysis for these genes further revealed that INZ affects several biological processes, including apoptosis (GO:0006915), cell cycle (GO:0007049), immune system process (GO:0002376), and cell adhesion (GO:0007155), which are in line with p53 functions in cells. Also, pathway and STRING analyses of these genes indicated that the p53-signaling pathway is the most significant pathway responsive to INZ treatment as predicted, since a number of these p53 target genes have been previously reported and some of them were validated by RT-qPCR. Finally, among the 9 tested and highly expressed genes, ACBD4, APOBEC3C, and FLJ14327 could be novel p53 target genes, for they were up-regulated by INZ in HCT116p53+/+ cells, but not in HCT116p53−/− cells. Conclusions/Significance From our whole genome microarray analysis followed by validation with RT-qPCR, we found that INZ can indeed induce the expression of p53 target genes at a larger scale or globally. Our findings not only verify that INZ indeed activates the p53 signaling pathway, but also provide useful information for identifying novel INZ and/or p53 targets. The global effect of INZ on human p53-responsive transcriptome could also be instrumental to the future design of INZ clinical trials.
Collapse
|
110
|
Fonseca MB, Nunes AF, Morgado AL, Solá S, Rodrigues CMP. TAp63γ demethylation regulates protein stability and cellular distribution during neural stem cell differentiation. PLoS One 2012; 7:e52417. [PMID: 23251711 PMCID: PMC3522631 DOI: 10.1371/journal.pone.0052417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022] Open
Abstract
p63 is a close relative of the p53 tumor suppressor and transcription factor that modulates cell fate. The full-length isoform of p63, containing a transactivation (TA) domain (TAp63) is an essential proapoptotic protein in neural development. The role of p63 in epithelial development is also well established; however, its precise function during neural differentiation remains largely controversial. Recently, it has been demonstrated that several conserved elements of apoptosis are also integral components of cellular differentiation; p53 directly interacts with key regulators of neurogenesis. The aim of this study was to evaluate the role of p63 during mouse neural stem cell (NSC) differentiation and test whether the histone H3 lysine 27-specific demethylase JMJD3 interacts with p63 to redirect NSCs to neurogenesis. Our results showed that JMJD3 and TAp63γ are coordinately regulated to establish neural-specific gene expression programs in NSCs undergoing differentiation. JMJD3 overexpression increased TAp63γ levels in a demethylase activity-dependent manner. Importantly, overexpression of TAp63γ increased β-III tubulin whereas downregulation of TAp63γ by specific p63 siRNA decreased β-III tubulin. Immunoprecipitation assays demonstrated direct interaction between TAp63γ and JMJD3, and modulation of TAp63γ methylation status by JMJD3-demethylase activity. Importantly, the demethylase activity of JMJD3 influenced TAp63γ protein stabilization and cellular distribution, as well as TAp63γ-regulated neurogenesis. These findings clarify the role of p63 in adult neural progenitor cells and reveal TAp63γ as a direct target for JMJD3-mediated neuronal commitment.
Collapse
Affiliation(s)
- Maria B. Fonseca
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana F. Nunes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana L. Morgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
111
|
Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, Shen A. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell 2012; 23:4506-14. [PMID: 23051735 PMCID: PMC3510013 DOI: 10.1091/mbc.e12-05-0362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SCYL1BP1 is a new regulator of the p53 pathway, which is required for neurite outgrowth and regeneration. SCYL1BP1 suppresses neurite outgrowth by directly inducing Mdm2 transcription and consequently p53 inhibition, suggesting that it might be a novel transcriptional regulator for regulating neurite outgrowth and regeneration. SCY1-like 1–binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing a protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is required for neurite outgrowth and regeneration. Here we present evidence that SCYL1BP1 inhibits nerve growth factor–mediated neurite outgrowth in PC12 cells and affects morphogenesis of primary cortical neurons by strongly decreasing the p53 protein level in vitro, all of which depends on SCYL1BP1's transcriptional activator domain. Exogenous p53 rescues neurite outgrowth and neuronal morphogenesis defects caused by SCYL1BP1. Furthermore, SCYL1BP1 can directly induce Mdm2 transcription, whereas inhibiting the function of Mdm2 by specific small interfering RNAs results in partial rescue of neurite outgrowth and neuronal morphogenesis defects induced by SCYL1BP1. In vivo experiments show that SCYL1BP1 can also depress axonal regeneration, whereas inhibiting the function of SCYL1BP1 by specific short hairpin RNA enhances it. Taken together, these data strongly suggested that SCYL1BP1 is a novel transcriptional activator in neurite outgrowth by directly modulating the Mdm2/p53-dependent pathway, which might play an important role in CNS development and axonal regeneration after injury.
Collapse
Affiliation(s)
- Yonghua Liu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | | | | | | | | | | | | |
Collapse
|
112
|
Solá S, Morgado AL, Rodrigues CMP. Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:2160-6. [PMID: 23041071 DOI: 10.1016/j.bbagen.2012.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells. SCOPE OF REVIEW This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome. MAJOR CONCLUSIONS Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision. GENERAL SIGNIFICANCE A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.
Collapse
Affiliation(s)
- Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences, Lisbon, Portugal.
| | | | | |
Collapse
|
113
|
Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012; 46:316-31. [PMID: 22752662 DOI: 10.1007/s12035-012-8289-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023]
Abstract
Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.
Collapse
|
114
|
Ferreira LMR, Floriddia EM, Quadrato G, Di Giovanni S. Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems. Mol Neurobiol 2012; 46:227-41. [DOI: 10.1007/s12035-012-8290-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/07/2012] [Indexed: 12/22/2022]
|
115
|
Patodia S, Raivich G. Downstream effector molecules in successful peripheral nerve regeneration. Cell Tissue Res 2012; 349:15-26. [PMID: 22580509 DOI: 10.1007/s00441-012-1416-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/16/2022]
Abstract
The robust axon regeneration that occurs following peripheral nerve injury is driven by transcriptional activation of the regeneration program and by the expression of a wide range of downstream effector molecules from neuropeptides and neurotrophic factors to adhesion molecules and cytoskeletal adaptor proteins. These regeneration-associated effector molecules regulate the actin-tubulin machinery of growth-cones, integrate intracellular signalling and stimulatory and inhibitory signals from the local environment and translate them into axon elongation. In addition to the neuronally derived molecules, an important transcriptional component is found in locally activated Schwann cells and macrophages, which release a number of cytokines, growth factors and neurotrophins that support neuronal survival and axonal regeneration and that might provide directional guidance cues towards appropriate peripheral targets. This review aims to provide a comprehensive up-to-date account of the transcriptional regulation and functional role of these effector molecules and of the information that they can give us with regard to the organisation of the regeneration program.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London, Chenies Mews 86-96, London, WC1E 6HX, UK
| | | |
Collapse
|
116
|
de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF. SIRT2 as a Therapeutic Target for Age-Related Disorders. Front Pharmacol 2012; 3:82. [PMID: 22563317 PMCID: PMC3342661 DOI: 10.3389/fphar.2012.00082] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/14/2012] [Indexed: 12/27/2022] Open
Abstract
Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.
Collapse
|
117
|
Lanni C, Racchi M, Memo M, Govoni S, Uberti D. p53 at the crossroads between cancer and neurodegeneration. Free Radic Biol Med 2012; 52:1727-33. [PMID: 22387179 DOI: 10.1016/j.freeradbiomed.2012.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Aging, dementia, and cancer share a critical set of altered cellular functions in response to DNA damage, genotoxic stress, and other insults. Recent data suggest that the molecular machinery involved in maintaining neural function in neurodegenerative disease may be shared with oncogenic pathways. Cancer and neurodegenerative diseases may be influenced by common signaling pathways regulating the balance of cell survival versus death, a decision often governed by checkpoint proteins. This paper focuses on one such protein, p53, which represents one of the most extensively studied proteins because of its role in cancer prevention and which, furthermore, has been recently shown to be involved in aging and Alzheimer disease (AD). The contribution of a conformational change in p53 to aging and neurodegenerative processes has yet to be elucidated. In this review we discuss the multiple functions of p53 and how these correlate between cancer and neurodegeneration, focusing on various factors that may have a role in regulating p53 activity. The observation that aging and AD interfere with proteins controlling duplication and cell cycle may lead to the speculation that, in senescent neurons, aberrations in proteins generally dealing with cell cycle control and apoptosis could affect neuronal plasticity and functioning rather than cell duplication.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
118
|
Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality. Rejuvenation Res 2012; 15:381-94. [PMID: 22533364 DOI: 10.1089/rej.2011.1257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Recently we have shown that the human life span is influenced jointly by many common single-nucleotide polymorphisms (SNPs), each with a small individual effect. Here we investigate further the polygenic influence on life span and discuss its possible biological mechanisms. First we identified six sets of prolongevity SNP alleles in the Framingham Heart Study 550K SNPs data, using six different statistical procedures (normal linear, Cox, and logistic regressions; generalized estimation equation; mixed model; gene frequency method). We then estimated joint effects of these SNPs on human survival. We found that alleles in each set show significant additive influence on life span. Twenty-seven SNPs comprised the overlapping set of SNPs that influenced life span, regardless of the statistical procedure. The majority of these SNPs (74%) were within genes, compared to 40% of SNPs in the original 550K set. We then performed a review of current literature on functions of genes closest to these 27 SNPs. The review showed that the respective genes are largely involved in aging, cancer, and brain disorders. We concluded that polygenic effects can explain a substantial portion of genetic influence on life span. Composition of the set of prolongevity alleles depends on the statistical procedure used for the allele selection. At the same time, there is a core set of longevity alleles that are selected with all statistical procedures. Functional relevance of respective genes to aging and major diseases supports causal relationships between the identified SNPs and life span. The fact that genes found in our and other genetic association studies of aging/longevity have similar functions indicates high chances of true positive associations for corresponding genetic variants.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Center for Population Health and Aging, Duke University, Durham, NC 27708-0408, USA.
| | | | | | | |
Collapse
|
119
|
Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2012; 71:1186-211. [PMID: 21674813 DOI: 10.1002/dneu.20934] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute and the Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | |
Collapse
|
120
|
Patodia S, Raivich G. Role of transcription factors in peripheral nerve regeneration. Front Mol Neurosci 2012; 5:8. [PMID: 22363260 PMCID: PMC3277281 DOI: 10.3389/fnmol.2012.00008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/24/2012] [Indexed: 11/13/2022] Open
Abstract
Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London London, UK
| | | |
Collapse
|
121
|
Liu CM, Hur EM, Zhou FQ. Coordinating Gene Expression and Axon Assembly to Control Axon Growth: Potential Role of GSK3 Signaling. Front Mol Neurosci 2012; 5:3. [PMID: 22347166 PMCID: PMC3272657 DOI: 10.3389/fnmol.2012.00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/09/2012] [Indexed: 12/23/2022] Open
Abstract
Axon growth requires the coordinated regulation of gene expression in the neuronal soma, local protein translation in the axon, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3) signaling has recently been shown to play key roles in the regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. We review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.
Collapse
Affiliation(s)
- Chang-Mei Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
122
|
Di Giovanni S, Rathore K. p53-Dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res 2012; 349:87-95. [PMID: 22271139 DOI: 10.1007/s00441-011-1292-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/17/2011] [Indexed: 12/13/2022]
Abstract
The tumor suppressor p53 is a multifunctional sensor of a number of cellular signals and pathways essential for cell biology, including DNA damage, cell cycle regulation, apoptosis, angiogenesis and cell metabolism. In the last few years, a novel role for p53 in neurobiology has emerged, which includes a role in the regulation of neurite outgrowth and axonal regeneration. p53 integrates a number of extracellular signals that involve neurotrophins and axon guidance cues to modulate the cytoskeletal response associated with neurite outgrowth at both the transcriptional and post-translational level. Here, we review our current knowledge of this topic and speculate about future research directions that involve p53 and related molecular pathways and that might advance our understanding of neurite outgrowth and axonal regeneration at the molecular level.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Hertie Institute for Clinical and Brain Research, University of Tübingen, Otfried-Mueller-Strasse 27, 72076 Tübingen, Germany.
| | | |
Collapse
|
123
|
Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci 2012; 4:60. [PMID: 22294979 PMCID: PMC3257844 DOI: 10.3389/fnmol.2011.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital Boston Boston, MA, USA
| |
Collapse
|
124
|
Quadrato G, Di Giovanni S. Gatekeeper between quiescence and differentiation: p53 in axonal outgrowth and neurogenesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206596 DOI: 10.1016/b978-0-12-398309-1.00005-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor and tumor suppressor gene p53 regulates a wide range of cellular processes including DNA damage/repair, cell cycle progression, apoptosis, and cell metabolism. In the past several years, a specific novel role for p53 in neuronal biology has emerged. p53 orchestrates the polarity of self-renewing divisions in neural stem cells both during embryonic development and in adulthood and coordinates the timing for cell fate specification. In postmitotic neurons, p53 regulates neurite outgrowth and postinjury axonal regeneration via neurotrophin-dependent and -independent signaling by both transcriptional and posttranslational control of growth cone remodeling. This review provides an insight into the molecular mechanisms upstream and downstream p53 both during neural development and following axonal injury. Their understanding may provide therapeutic targets to enhance neuroregeneration following nervous system injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
125
|
Yang G, Qu X, Zhang J, Zhao W, Wang H. Sema3F downregulates p53 expression leading to axonal growth cone collapse in primary hippocampal neurons. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:634-41. [PMID: 22977659 PMCID: PMC3438774 DOI: pmid/22977659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022]
Abstract
Hippocampal nerve growth is regulated by the coordinated action of numerous external stimuli, including positively acting neurotrophin-derived growth cues and restrictive semaphorin cues, however the underlying cellular mechanisms remain largely unclear. We examined the potential cellular mechanism of Semaphorin3F (Sema3F) in cultured primary hippocampal neurons. We show that Sema3F can down-regulate p53 expression in primary hippocampal neurons, thereby contributing to growth cone collapse. Sema3F suppressed p53-induced pathways, which we show to be required to maintain growth cone structure. Sema3F-induced growth cone collapse was partially reversed by overexpression of p53, which promoted growth cone extension. Inhibition of p53 function by inhibitor, siRNAs, induced axonal growth cone collapse, whereas p53 over-expression led to larger growth cones in cultured primary hippocampal neurons.These data reveal a novel mechanism by which Sema3F can induce hippocampal neuron growth cone collapse and provide evidence for an intracellular mechanism for cross talk between positive and negative axon growth cues.
Collapse
Affiliation(s)
- Guanglu Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | |
Collapse
|
126
|
Ye T, Fu AK, Ip NY. Cyclin-Dependent Kinase 5 in Axon Growth and Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398309-1.00006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
127
|
Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol 2011; 235:162-73. [PMID: 22227059 DOI: 10.1016/j.expneurol.2011.12.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 11/24/2022]
Abstract
Previous studies indicate that peripheral nerve conditioning lesions significantly enhance central axonal regeneration via modulation of cAMP-mediated mechanisms. To gain insight into the nature and temporal dependence of neural mechanisms underlying conditioning lesion effects on central axonal regeneration, we compared the efficacy of peripheral sciatic nerve crush lesions to cAMP elevations (in lumbar dorsal root ganglia) on central sensory axonal regeneration when administered either before or after cervical spinal cord lesions. We found significantly greater effects of conditioning lesions compared to cAMP elevations on central axonal regeneration when combined with cellular grafts at the lesion site and viral neurotrophin delivery; further, these effects persisted whether conditioning lesions were applied prior to or shortly after spinal cord injury. Indeed, conditioning lesions recruited extensively greater sets of genetic mechanisms of possible relevance to axonal regeneration compared to cAMP administration, and sustained these changes for significantly greater time periods through the post-lesion period. We conclude that cAMP-mediated mechanisms account for only a portion of the potency of conditioning lesions on central axonal regeneration, and that recruitment of broader genetic mechanisms can extend the effect and duration of cellular events that support axonal growth.
Collapse
Affiliation(s)
- Armin Blesch
- Spinal Cord Injury Center, University Hospital Heidelberg, 69118 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Axon regeneration is a fundamental problem facing neuroscientists and clinicians. Failure of axon regeneration is caused by both extrinsic and intrinsic mechanisms. New techniques to examine gene expression such as Next Generation Sequencing of the Transcriptome (RNA-Seq) drastically increase our knowledge of both gene expression complexity (RNA isoforms) and gene expression regulation. By utilizing RNA-Seq, gene expression can now be defined at the level of isoforms, an essential step for understanding the mechanisms governing cell identity, growth and ultimately cellular responses to injury and disease.
Collapse
Affiliation(s)
- Jessica K Lerch
- The Miami Project to Cure Paralysis, The University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
129
|
Kiryu-Seo S, Kiyama H. The nuclear events guiding successful nerve regeneration. Front Mol Neurosci 2011; 4:53. [PMID: 22180737 PMCID: PMC3235624 DOI: 10.3389/fnmol.2011.00053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022] Open
Abstract
Peripheral nervous system (PNS) neurons survive and regenerate after nerve injury, whereas central nervous system (CNS) neurons lack the capacity to do so. The inability of the CNS to regenerate presumably results from a lack of intrinsic growth activity and a permissive environment. To achieve CNS regeneration, we can learn from successful nerve regeneration in the PNS. Neurons in the PNS elicit dynamic changes in gene expression in response to permissive environmental cues following nerve injury. To switch gene expression on and off in injured neurons, transcription factors and their networks should be carefully orchestrated according to the regeneration program. This is the so-called "intrinsic power of axonal growth." There is an increasing repertoire of candidate transcription factors induced by nerve injury. Some of them potentiate the survival and axonal regeneration of damaged neurons in vivo; however, our knowledge of transcriptional events in injured neurons is still limited. How do these transcription factors communicate with each other? How does the transcriptional machinery regulate the wide variety of regeneration-associated genes (RAGs) in the properly coordinated manner? In this review, we describe our current understanding of the injury-inducible transcriptional factors that enhance the intrinsic growth capacity, and propose a potential role for specificity protein 1 (Sp1), which provides a platform to recruit injury-inducible transcription factors, in simultaneous gene regulation. Finally, we discuss an additional mechanism that is involved in epigenetic modifications in damaged neurons. A comprehensive understanding of the nuclear events in injured neurons will provide clues to clinical interventions for successful nerve regeneration.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | | |
Collapse
|
130
|
Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, Lei S, Ghribi O, Liu QY. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease. Neurobiol Dis 2011; 45:902-12. [PMID: 22186421 DOI: 10.1016/j.nbd.2011.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022] Open
Abstract
Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Rugao Liu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
132
|
van Kesteren RE, Mason MRJ, Macgillavry HD, Smit AB, Verhaagen J. A gene network perspective on axonal regeneration. Front Mol Neurosci 2011; 4:46. [PMID: 22125511 PMCID: PMC3222109 DOI: 10.3389/fnmol.2011.00046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 01/12/2023] Open
Abstract
The regenerative capacity of injured neurons in the central nervous system is limited due to the absence of a robust neuron-intrinsic injury-induced gene response that supports axon regeneration. In peripheral neurons axotomy induces a large cohort of regeneration-associated genes (RAGs). The forced expression of some of these RAGs in injured neurons has some beneficial effect on axon regeneration, but the reported effects are rather small. Transcription factors (TFs) provide a promising class of RAGs. TFs are hubs in the regeneration-associated gene network, and potentially control the coordinate expression of many RAGs simultaneously. Here we discuss the use of combined experimental and computational methods to identify novel regeneration-associated TFs with a key role in initiating and maintaining the RAG-response in injured neurons. We propose that a relatively small number of hub TFs with multiple functional connections in the RAG network might provide attractive new targets for gene-based and/or pharmacological approaches to promote axon regeneration in the central nervous system.
Collapse
Affiliation(s)
- Ronald E van Kesteren
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
133
|
Jebelli JD, Hooper C, Garden GA, Pocock JM. Emerging roles of p53 in glial cell function in health and disease. Glia 2011; 60:515-25. [PMID: 22105777 DOI: 10.1002/glia.22268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Joseph D Jebelli
- Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
134
|
Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Mol Psychiatry 2011; 16:1105-16. [PMID: 21502952 DOI: 10.1038/mp.2011.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in the DTNBP1 gene (encoding the protein dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. Previous studies have indicated that dysbindin-1 functions in the regulation of synaptic activity. Recently, dysbindin-1 has also been documented to be involved in neuronal development. In this study, we identified necdin as a binding partner of dysbindin-1 using a yeast two-hybrid screen. Dysbindin-1 recruits necdin to the cytoplasm, thereby attenuating the repressive effects of necdin on p53 transcriptional activity. Knockdown of dysbindin-1, like knockdown of p53, greatly decreases the expressions of the p53 target genes coronin 1b and rab13, which are required for neurite outgrowth. Moreover, overexpression of p53 restores the neurite outgrowth blocked by dysbindin-1 knockdown. In brains of dysbindin-1 null mice (the sandy strain), p21, Coronin 1b and Rab13 levels are reduced. Furthermore, primary cultured cortical neurons from sandy mice display neurite outgrowth defects when compared with those from wild-type mice. Thus, our data provide evidence that dysbindin-1 has an important role in neurite outgrowth through its regulation of p53's transcriptional activity.
Collapse
|
135
|
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. NEURODEGENER DIS 2011; 9:68-80. [PMID: 22042001 DOI: 10.1159/000329999] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/09/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and apoptosis (thus also establishing its importance in cancer development), numerous reports have demonstrated additional functions of p53 in various cells. In particular, p53 appears to have important functions as it relates to neurodegeneration and synaptic plasticity. OBJECTIVE In this review, we will address p53 functions as it relates to various neurodegenerative diseases, mainly its implications in the development of HIV-associated neurocognitive disorders. CONCLUSION p53 plays a pivotal role in the development of neurodegenerative diseases through its interaction with cellular factors, viral factors, and/or small RNAs that have the ability to promote the development of these diseases. Hence, inhibition of p53 may present an ideal target to restore neuronal functions.
Collapse
Affiliation(s)
- J Robert Chang
- Molecular Studies of Neurodegenerative Diseases Laboratory, Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
136
|
Maruoka H, Sasaya H, Sugihara K, Shimoke K, Ikeuchi T. Low-molecular-weight compounds having neurotrophic activity in cultured PC12 cells and neurons. J Biochem 2011; 150:473-5. [PMID: 21908547 DOI: 10.1093/jb/mvr113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated that some low-molecular-weight compounds mimic neurotrophic factors inducing neurite outgrowth and neuroprotection. Carnosic acid (CA) promotes neurite outgrowth through the activation of Nrf2 in PC12 cells. CA also protects neurons via the keap/Nrf2 transcriptional pathway from oxidative stress. Forskolin-induced neurite outgrowth is mediated by activation of the PKA signalling pathway and this PKA-mediated neurite outgrowth is achieved by the expression of nur77 in PC12 cells. In addition, forskolin at its low concentration is closely related to the cAMP-induced protective function against L-DOPA-induced cytotoxicity in PC12 cells. A HDAC inhibitor trichostatin A (TSA) increases neurite length via p53 acetylation in rat cultured cerebellar granule neurons and in cerebral cortical neurons, and also protects neurons against glutathione depletion-induced oxidative stress. Recently, it was revealed that Nrf2 and p53 bind to CBP/p300 directly, and Nur77 is acetylated in vivo and in vitro by CBP/p300. Acetylation of Nrf2, p53 and Nur77 by CBP/p300 may constitute a novel similar regulatory mechanism for low-molecular-weight compounds with neurotrophic activities.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Materials and Bioengineering and Strategic Research Base, Kansai University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
137
|
Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. ACTA ACUST UNITED AC 2011; 134:2134-48. [PMID: 21705428 DOI: 10.1093/brain/awr142] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Axonal regeneration and related functional recovery following axonal injury in the adult central nervous system are extremely limited, due to a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. As opposed to what occurs during nervous system development, a weak proregenerative gene expression programme contributes to the limited intrinsic capacity of adult injured central nervous system axons to regenerate. Here we show, in an optic nerve crush model of axonal injury, that adenoviral (cytomegalovirus promoter) overexpression of the acetyltransferase p300, which is regulated during retinal ganglion cell maturation and repressed in the adult, can promote axonal regeneration of the optic nerve beyond 0.5 mm. p300 acetylates histone H3 and the proregenerative transcription factors p53 and CCAAT-enhancer binding proteins in retinal ganglia cells. In addition, it directly occupies and acetylates the promoters of the growth-associated protein-43, coronin 1 b and Sprr1a and drives the gene expression programme of several regeneration-associated genes. On the contrary, overall increase in cellular acetylation using the histone deacetylase inhibitor trichostatin A, enhances retinal ganglion cell survival but not axonal regeneration after optic nerve crush. Therefore, p300 targets both the epigenome and transcription to unlock a post-injury silent gene expression programme that would support axonal regeneration.
Collapse
Affiliation(s)
- Perrine Gaub
- Centre for Neurology, Laboratory for NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Mueller Strasse 27, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
138
|
Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CMP. miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011; 6:e21396. [PMID: 21857907 PMCID: PMC3153928 DOI: 10.1371/journal.pone.0021396] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/26/2011] [Indexed: 01/03/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) participate in the regulation of several biological processes, including cell differentiation. Recently, miR-34a has been implicated in the differentiation of monocyte-derived dendritic cells, human erythroleukemia cells, and mouse embryonic stem cells. In addition, members of the miR-34 family have been identified as direct p53 targets. However, the function of miR-34a in the control of the differentiation program of specific neural cell types remains largely unknown. Here, we investigated the role of miR-34a in regulating mouse neural stem (NS) cell differentiation. Methodology/Principal Findings miR-34a overexpression increased postmitotic neurons and neurite elongation of mouse NS cells, whereas anti-miR-34a had the opposite effect. SIRT1 was identified as a target of miR-34a, which may mediate the effect of miR-34a on neurite elongation. In addition, acetylation of p53 (Lys 379) and p53-DNA binding activity were increased and cell death unchanged after miR-34a overexpression, thus reinforcing the role of p53 during neural differentiation. Interestingly, in conditions where SIRT1 was activated by pharmacologic treatment with resveratrol, miR-34a promoted astrocytic differentiation, through a SIRT1-independent mechanism. Conclusions Our results provide new insight into the molecular mechanisms by which miR-34a modulates neural differentiation, suggesting that miR-34a is required for proper neuronal differentiation, in part, by targeting SIRT1 and modulating p53 activity.
Collapse
Affiliation(s)
- Márcia M Aranha
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
139
|
Moore DL, Apara A, Goldberg JL. Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 2011; 47:233-43. [PMID: 21635952 DOI: 10.1016/j.mcn.2011.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/25/2023] Open
Abstract
The Krüppel-like family of transcription factors (KLFs) have been widely studied in proliferating cells, though very little is known about their role in post-mitotic cells, such as neurons. We have recently found that the KLFs play a role in regulating intrinsic axon growth ability in retinal ganglion cells (RGCs), a type of central nervous system (CNS) neuron. Previous KLF studies in other cell types suggest that there may be cell-type specific KLF expression patterns, and that their relative expression allows them to compete for binding sites, or to act redundantly to compensate for another's function. With at least 15 of 17 KLF family members expressed in neurons, it will be important for us to determine how this complex family functions to regulate the intricate gene programs of axon growth and regeneration. By further characterizing the mechanisms of the KLF family in the nervous system, we may better understand how they regulate neurite growth and axon regeneration.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
140
|
Solá S, Xavier JM, Santos DM, Aranha MM, Morgado AL, Jepsen K, Rodrigues CMP. p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. PLoS One 2011; 6:e18421. [PMID: 21483786 PMCID: PMC3069089 DOI: 10.1371/journal.pone.0018421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/02/2011] [Indexed: 12/15/2022] Open
Abstract
Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis.
Collapse
Affiliation(s)
- Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
141
|
Haeusgen W, Herdegen T, Waetzig V. MKK7γ1 reverses nerve growth factor signals: proliferation and cell death instead of neuritogenesis and protection. Cell Signal 2011; 23:1281-90. [PMID: 21406225 DOI: 10.1016/j.cellsig.2011.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/03/2011] [Indexed: 12/31/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.
Collapse
Affiliation(s)
- Wiebke Haeusgen
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Hospitalstrasse 4, 24105 Kiel, Germany
| | | | | |
Collapse
|
142
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
143
|
Regulation of cell differentiation by the DNA damage response. Trends Cell Biol 2011; 21:312-9. [PMID: 21354798 DOI: 10.1016/j.tcb.2011.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
When faced with DNA double-strand breaks (DSBs), vertebrate cells activate DNA damage response (DDR) programs that preserve genome integrity and suppress malignant transformation. Three established outcomes of the DDR include transient cell cycle arrest coupled with DNA repair, apoptosis, or senescence. However, recent studies in normal and cancer precursor or stem cells suggest that a fourth potential outcome, cell differentiation, is under the influence of DDR programs. Here we review and discuss the emerging evidence that supports the linkage of signaling from DSBs to the regulation of differentiation, including some of the molecular mechanisms driving this under-appreciated DDR outcome. We also consider the physiologic and pathologic consequences of defects in DDR signaling on cell differentiation and malignant transformation.
Collapse
|
144
|
Gibbs KM, Chittur SV, Szaro BG. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur J Neurosci 2010; 33:9-25. [PMID: 21059114 DOI: 10.1111/j.1460-9568.2010.07477.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Throughout the vertebrate subphylum, the regenerative potential of central nervous system axons is greatest in embryonic stages and declines as development progresses. For example, Xenopus laevis can functionally recover from complete transection of the spinal cord as a tadpole but is unable to do so after metamorphosing into a frog. Neurons of the reticular formation and raphe nucleus are among those that regenerate axons most reliably in tadpole and that lose this ability after metamorphosis. To identify molecular factors associated with the success and failure of spinal cord axon regeneration, we pharmacologically manipulated thyroid hormone (TH) levels using methimazole or triiodothyronine, to either keep tadpoles in a permanently larval state or induce precocious metamorphosis, respectively. Following complete spinal cord transection, serotonergic axons crossed the lesion site and tadpole swimming ability was restored when metamorphosis was inhibited, but these events failed to occur when metamorphosis was prematurely induced. Thus, the metamorphic events controlled by TH led directly to the loss of regenerative potential. Microarray analysis identified changes in hindbrain gene expression that accompanied regeneration-permissive and -inhibitory conditions, including many genes in the permissive condition that have been previously associated with axon outgrowth and neuroprotection. These data demonstrate that changes in gene expression occur within regenerating neurons in response to axotomy under regeneration-permissive conditions in which normal development has been suspended, and they identify candidate genes for future studies of how central nervous system axons can successfully regenerate in some vertebrates.
Collapse
Affiliation(s)
- Kurt M Gibbs
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | |
Collapse
|
145
|
Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, Graessmann A, Ogryzko V, Pishvaian M, Albanese C, Avantaggiati ML. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol 2010; 225:394-405. [PMID: 20589832 DOI: 10.1002/jcp.22285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53.
Collapse
Affiliation(s)
- Ricardo E Perez
- Department of Oncology, School of Medicine, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis 2010; 1:e79. [PMID: 21368852 PMCID: PMC3035899 DOI: 10.1038/cddis.2010.55] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p53 tumor suppressor is a multifunctional protein, which regulates cell cycle, differentiation, DNA repair and apoptosis. Experimental seizures up-regulate p53 in the brain, and acute seizure-induced neuronal death can be reduced by genetic deletion or pharmacologic inhibition of p53. However, few long-term functional consequences of p53 deficiency have been explored. Here, we investigated the development of epilepsy triggered by status epilepticus in wild-type and p53-deficient mice. Analysis of electroencephalogram (EEG) recordings during status epilepticus induced by intra-amygdala kainic acid (KA) showed that seizures lasted significantly longer in p53-deficient mice compared with wild-type animals. Nevertheless, neuronal death in the hippocampal CA3 subfield and the neocortex was significantly reduced at 72 h in p53-deficient mice. Long-term continuous EEG telemetry recordings after status epilepticus determined that the sum duration of spontaneous seizures was significantly longer in p53-deficient compared with wild-type mice. Hippocampal damage and neuropeptide Y distribution at the end of chronic recordings was found to be similar between p53-deficient and wild-type mice. The present study identifies protracted KA-induced electrographic status as a novel outcome of p53 deficiency and shows that the absence of p53 leads to an exacerbated epileptic phenotype. Accordingly, targeting p53 to protect against status epilepticus or related neurologic insults may be offset by deleterious consequences of reduced p53 function during epileptogenesis or in chronic epilepsy.
Collapse
|
147
|
Sun CN, Chuang HC, Wang JY, Chen SY, Cheng YY, Lee CF, Chern Y. The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member. Dev Neurobiol 2010; 70:604-21. [PMID: 20506231 DOI: 10.1002/dneu.20802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor. We previously reported that the C terminus of the A2AR binds to translin-associated protein X (TRAX) and modulates nerve growth factor (NGF)-evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX-dependent manner. Importantly, suppression of a TRAX-interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear-retained KIF2A variant (NLS-KIF2A) did not rescue the impaired neurite outgrowth as did the wild-type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A.
Collapse
Affiliation(s)
- Chung-Nan Sun
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
148
|
Zhang L, Yan L, Zhang Y, Wu NH, Shen YF. Role of acetylated p53 in regulating the expression of map2 in retinoic acid-induced P19 cells. ACTA ACUST UNITED AC 2010; 25:71-5. [PMID: 20598227 DOI: 10.1016/s1001-9294(10)60025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2 (MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid (RA). METHODS Neuronal differentiation of P19 cells was initiated with 4-day RA treatment. Immunofluorescence, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells. Real-time PCR-based chromatin immunoprecipitation assay (ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter. RESULTS The expression of MAP2 was markedly increased in RA-induced P19 cells. The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment, compared with the cells without RA treatment (control). p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity. p300/CBP associated factor (PCAF) was found induced in RA-treated cells and enriched in the nucleus, which might contribute to the acetylation of p53 in the regulation of map2 gene. CONCLUSIONS Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells. PCAF is possibly involved in this process by mediating the acetylation of p53.
Collapse
Affiliation(s)
- Li Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
149
|
Role of calpain-mediated p53 truncation in semaphorin 3A-induced axonal growth regulation. Proc Natl Acad Sci U S A 2010; 107:13883-7. [PMID: 20643936 DOI: 10.1073/pnas.1008652107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurite outgrowth represents a critical stage in the correct development of neuronal circuitries, and is dependent on the complex regulation of actin filament and microtubule dynamics by intrinsic as well as extrinsic signals. Previous studies have implicated the tumor suppressor factor, p53, in the regulation of axonal outgrowth through a nontranscriptional effect involving local regulation of the Rho kinase signaling pathway that controls these dynamics. In the present study, we first showed that semaphorin 3A-induced growth cone collapse in cultured hippocampal neurons was associated with the partial truncation of phosphorylated p53, and that both effects were prevented by calpain inhibition with either m-calpain-specific siRNA or inhibitors. We further determined that semaphorin 3A-mediated calpain activation and growth cone collapse were associated with m-calpain phosphorylation and prevented by inhibition of MAPK, ERK, or p38. In vitro studies confirmed that p53 and especially phosphorylated p53 were partially truncated by calpain. Thus, our results indicate that semaphorin 3A-mediated growth cone collapse is mediated in part by m-calpain activation, possibly through MAPK-mediated phosphorylation, and the resulting truncation of phosphorylated p53, leading to Rho kinase activation and cytoskeletal reorganization. They provide a pathway by which extrinsic signals regulate axonal growth through activation of m-calpain and p53 truncation.
Collapse
|
150
|
Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 2010; 116:71-80. [PMID: 20404136 DOI: 10.1182/blood-2010-01-261628] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The survival of most patients with acute myelogenous leukemia (AML) remains poor, and novel therapeutic approaches are needed to improve outcomes. Given that the fraction of AML with mutated p53 is small ( approximately 10%), it appears rational to study MDM2 inhibitors as therapy for AML. Here, we report results of a detailed characterization of sensitivity and resistance to treatment ex vivo with the MDM2 inhibitor MI219 in AML blasts from 109 patients. In line with previous observations, all AML cases with mutated p53 were resistant to MI219. Importantly, approximately 30% of AML cases with unmutated p53 also demonstrated primary resistance to MI219. Analysis of potential mechanisms associated with MI219 resistance in AML blasts with wild-type p53 uncovered distinct molecular defects, including low or absent p53 protein induction after MDM2 inhibitor treatment or external irradiation. Furthermore, a separate subset of resistant blasts displayed robust p53 protein induction after MI219 treatment, indicative of defective p53 protein function or defects in the apoptotic p53 network. Finally, analysis of very sensitive AML cases uncovered a strong and significant association with mutated Flt3 status (Flt3-ITD), which for the first time identified a clinically high-risk group of AML that may particularly benefit from MDM2 inhibitor treatment.
Collapse
|