101
|
Pellegrini S, Palumbo S, Iofrida C, Melissari E, Rota G, Mariotti V, Anastasio T, Manfrinati A, Rumiati R, Lotto L, Sarlo M, Pietrini P. Genetically-Driven Enhancement of Dopaminergic Transmission Affects Moral Acceptability in Females but Not in Males: A Pilot Study. Front Behav Neurosci 2017; 11:156. [PMID: 28900390 PMCID: PMC5581873 DOI: 10.3389/fnbeh.2017.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Moral behavior has been a key topic of debate for philosophy and psychology for a long time. In recent years, thanks to the development of novel methodologies in cognitive sciences, the question of how we make moral choices has expanded to the study of neurobiological correlates that subtend the mental processes involved in moral behavior. For instance, in vivo brain imaging studies have shown that distinct patterns of brain neural activity, associated with emotional response and cognitive processes, are involved in moral judgment. Moreover, while it is well-known that responses to the same moral dilemmas differ across individuals, to what extent this variability may be rooted in genetics still remains to be understood. As dopamine is a key modulator of neural processes underlying executive functions, we questioned whether genetic polymorphisms associated with decision-making and dopaminergic neurotransmission modulation would contribute to the observed variability in moral judgment. To this aim, we genotyped five genetic variants of the dopaminergic pathway [rs1800955 in the dopamine receptor D4 (DRD4) gene, DRD4 48 bp variable number of tandem repeat (VNTR), solute carrier family 6 member 3 (SLC6A3) 40 bp VNTR, rs4680 in the catechol-O-methyl transferase (COMT) gene, and rs1800497 in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene] in 200 subjects, who were requested to answer 56 moral dilemmas. As these variants are all located in genes belonging to the dopaminergic pathway, they were combined in multilocus genetic profiles for the association analysis. While no individual variant showed any significant effects on moral dilemma responses, the multilocus genetic profile analysis revealed a significant gender-specific influence on human moral acceptability. Specifically, those genotype combinations that improve dopaminergic signaling selectively increased moral acceptability in females, by making their responses to moral dilemmas more similar to those provided by males. As females usually give more emotionally-based answers and engage the "emotional brain" more than males, our results, though preliminary and therefore in need of replication in independent samples, suggest that this increase in dopamine availability enhances the cognitive and reduces the emotional components of moral decision-making in females, thus favoring a more rationally-driven decision process.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Sara Palumbo
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of PisaPisa, Italy
| | | | - Erika Melissari
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of PisaPisa, Italy
| | - Giuseppina Rota
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria PisanaPisa, Italy
| | - Veronica Mariotti
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Teresa Anastasio
- Department of Experimental and Clinical Medicine, University of PisaPisa, Italy
| | - Andrea Manfrinati
- Applied Research Division for Cognitive and Psychological Science, European Institute of OncologyMilan, Italy
| | - Rino Rumiati
- Department of Developmental Psychology and Socialization and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | - Lorella Lotto
- Department of Developmental Psychology and Socialization and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | - Michela Sarlo
- Department of General Psychology and Center for Cognitive Neuroscience, University of PadovaPadova, Italy
| | | |
Collapse
|
102
|
Eum S, Lee AM, Bishop JR. Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757066 PMCID: PMC5067149 DOI: 10.31887/dcns.2016.18.3/jbishop] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimizing antipsychotic pharmacotherapy is often challenging due to significant variability in effectiveness and tolerability. Genetic factors influencing pharmacokinetics and pharmacodynamics may contribute to some of this variability. Research studies have characterized these pharmacogenetic relationships, and some genetic markers are now available as clinical tests. These advances in pharmacogenetics research and test availability have great potential to improve clinical outcomes and quality of life in psychiatric patients. For clinicians considering using pharmacogenetics, it is important to understand the clinical implications and also the limitations of markers included in currently available tests. This review focuses on pharmacokinetic and pharmacodynamic gene variants that are currently available in commercial genetic testing panels. Associations of these variants with clinical efficacy and adverse effects, as well as other clinical implications, in antipsychotic pharmacotherapy are discussed.
Collapse
Affiliation(s)
- Seenae Eum
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam M Lee
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey R Bishop
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; College of Medicine, Department of Psychiatry; University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
103
|
Hirasawa-Fujita M, Bly MJ, Ellingrod VL, Dalack GW, Domino EF. Genetic Variation of the Mu Opioid Receptor (OPRM1) and Dopamine D2 Receptor (DRD2) is Related to Smoking Differences in Patients with Schizophrenia but not Bipolar Disorder. CLINICAL SCHIZOPHRENIA & RELATED PSYCHOSES 2017; 11:39-48. [PMID: 28548579 PMCID: PMC4366347 DOI: 10.3371/1935-1232-11.1.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is not known why mentally ill persons smoke excessively. Inasmuch as endogenous opioid and dopaminergic systems are involved in smoking reinforcement, it is important to study mu opioid receptor (OPRM1) A118G (rs1799971), dopamine D2 receptor (DRD2) Taq1A (rs1800497) genotypes, and sex differences among patients with schizophrenia or bipolar disorder. Smokers and nonsmokers with schizophrenia (n=177) and bipolar disorder (n=113) were recruited and genotyped. They were classified into three groups: current smoker, former smoker, and never smoker by tobacco smoking status self-report. The number of cigarettes smoked per day was used as the major tobacco smoking parameter. In patients with schizophrenia, tobacco smoking prevalence was greater in males than in females as expected, but women had greater daily cigarette consumption (p<0.01). Subjects with schizophrenia who had the OPRM1 *G genotype smoked more cigarettes per day than the AA allele carriers with schizophrenia (p<0.05). DRD2 Taq1A genotype differences had no effect on the number of cigarettes smoked per day. However, female smokers with schizophrenia who were GG homozygous of the DRD2 receptor smoked more than the *A male smokers with schizophrenia (p<0.05). In bipolar patients, there were no OPRM1 and DRD2 Taq1A genotype differences in smoking status. There also were no sex differences for smoking behavior among the bipolar patients. The results of this study indicate that single nucleotide polymorphism (SNP) of the less functional mu opioid receptor increases tobacco smoking in patients with schizophrenia. Alteration of DRD2 receptor function also increased smoking behavior in females with schizophrenia.
Collapse
|
104
|
Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, Kalin NH, Goldman D. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biol Psychiatry 2017; 82:165-175. [PMID: 28283186 PMCID: PMC5505787 DOI: 10.1016/j.biopsych.2016.12.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022]
Abstract
Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri.
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, University of New Mexico, Albuquerque, New Mexico; Departments of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, New Mexico; Electronic and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Andreas Heinz
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; Neuroscience Training Program (NHK, RK, PHR, DPMT, MEE), University of Wisconsin, Madison, Wisconsin; Wisconsin National Primate Research Center (NHK, MEE), Madison, Wisconsin
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
105
|
Zastrozhin MS, Brodyansky VM, Skryabin VY, Grishina EA, Ivashchenko DV, Ryzhikova KA, Savchenko LM, Kibitov AO, Bryun EA, Sychev DA. Pharmacodynamic genetic polymorphisms affect adverse drug reactions of haloperidol in patients with alcohol-use disorder. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:209-215. [PMID: 28744152 PMCID: PMC5511016 DOI: 10.2147/pgpm.s140700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Antipsychotic action of haloperidol is due to blockade of D2 receptors in the mesolimbic dopamine pathway, while the adverse drug reactions are associated with striatal D2 receptor blockade. Contradictory data concerning the effects of genetic polymorphisms of genes encoding these receptors and associated structures (catechol-O-methyltransferase [COMT], glycine transporter and gene encoding the density of D2 receptors on the neuronal membrane) are described. Objective The objectives of this study were to evaluate the correlation between DRD2, SLC6A3 (DAT) and COMT genetic polymorphisms and to investigate their effect on the development of adverse drug reactions in patients with alcohol-use disorder who received haloperidol. Patients and methods The study included 64 male patients (average age 41.38 ± 10.14 years, median age 40 years, lower quintile [LQ] 35 years, upper quintile [UQ] 49 years). Bio-Rad CFX Manager™ software and “SNP-Screen” sets of “Syntol” (Russia) were used to determine polymorphisms rs4680, rs1800497, rs1124493, rs2242592, rs2298826 and rs2863170. In every “SNP-Screen” set, two allele-specific hybridizations were used, which allowed to determine two alleles of studied polymorphism separately on two fluorescence channels. Results Results of this study detected a statistically significant difference in the adverse drug reaction intensity in patients receiving haloperidol with genotypes 9/10 and 10/10 of polymorphic marker SLC6A3 rs28363170. In patients receiving haloperidol in tablets, the increases in the UKU Side-Effect Rating Scale (UKU) score of 9.96 ± 2.24 (10/10) versus 13 ± 2.37 (9/10; p < 0.001) and in the Simpson-Angus Scale (SAS) score of 5.04 ± 1.59 (10/10) versus 6.41 ± 1.33 (9/10; p = 0.006) were revealed. Conclusion Polymorphism of the SCL6A3 gene can affect the safety of haloperidol, and this should be taken into account during the choice of drug and its dosage regimen.
Collapse
Affiliation(s)
- Mikhail Sergeevich Zastrozhin
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Center for the Prevention of Dependent Behavior, Moscow, Russia
| | - Vadim Markovich Brodyansky
- Federal Medical Research Centre of Psychiatry and Addictology, Laboratory of Molecular Genetics, Moscow, Russia
| | - Valentin Yurievich Skryabin
- Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Department of Addictology, Moscow, Russia
| | - Elena Anatolievna Grishina
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Dmitry Vladimirovich Ivashchenko
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Kristina Anatolievna Ryzhikova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Research Centre, Moscow, Russia
| | - Ludmila Mikhaylovna Savchenko
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Olegovich Kibitov
- Federal Medical Research Centre of Psychiatry and Addictology, Laboratory of Molecular Genetics, Moscow, Russia
| | - Evgeny Alekseevich Bryun
- Department of Addictology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Research and Practical Centre on Addictions of the Moscow Department of Healthcare, Department of Addictology, Moscow, Russia
| | - Dmitry Alekseevich Sychev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Department of Clinical Pharmacology and Therapy, Moscow, Russia
| |
Collapse
|
106
|
Horstmann A. It wasn't me; it was my brain – Obesity-associated characteristics of brain circuits governing decision-making. Physiol Behav 2017; 176:125-133. [DOI: 10.1016/j.physbeh.2017.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
|
107
|
Variation on the dopamine D2 receptor gene (DRD2) is associated with basal ganglia-to-frontal structural connectivity. Neuroimage 2017; 155:473-479. [DOI: 10.1016/j.neuroimage.2017.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
|
108
|
Abstract
Aripiprazole was the first antipsychotic developed to possess agonist properties at dopamine D2 autoreceptors, a groundbreaking strategy that presented a new vista for schizophrenia drug discovery. The dopamine D2 receptor is the crucial target of all extant antipsychotics, and all developed prior to aripiprazole were D2 receptor antagonists. Extensive blockade of these receptors, however, typically produces extrapyramidal (movement) side effects, which plagued first-generation antipsychotics, such as haloperidol. Second-generation antipsychotics, such as clozapine, with unique polypharmacology and D2 receptor binding kinetics, have significantly lower risk of movement side effects but can cause myriad additional ones, such as severe weight gain and metabolic dysfunction. Aripiprazole's polypharmacology, characterized by its unique agonist activity at dopamine D2 and D3 and serotonin 5-HT1A receptors, as well as antagonist activity at serotonin 5-HT2A receptors, translates to successful reduction of positive, negative, and cognitive symptoms of schizophrenia, while also mitigating risk of weight gain and movement side effects. New observations, however, link aripiprazole to compulsive behaviors in a small group of patients, an unusual side effect for antipsychotics. In this review, we discuss the chemical synthesis, pharmacology, pharmacogenomics, drug metabolism, and adverse events of aripiprazole, and we present a current understanding of aripiprazole's neurotherapeutic mechanisms, as well as the history and importance of aripiprazole to neuroscience.
Collapse
Affiliation(s)
- Austen B. Casey
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Clinton E. Canal
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
109
|
Nuntamool N, Ngamsamut N, Vanwong N, Puangpetch A, Chamnanphon M, Hongkaew Y, Limsila P, Suthisisang C, Wilffert B, Sukasem C. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents. Basic Clin Pharmacol Toxicol 2017; 121:316-324. [PMID: 28470827 DOI: 10.1111/bcpt.12803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to evaluate the association of pharmacogenomic factors and clinical outcome in autistic children and adolescents who were treated with risperidone for long periods. Eighty-two autistic subjects diagnosed with DSM-IV and who were treated with risperidone for more than 1 year were recruited. Pharmacogenomics and clinical outcome (CGI-I, aggressive, overactivity and repetitive score) were evaluated. Almost all patients showed stable symptoms on aggressive behaviour (89.02%), overactivity (71.95%), repetitive (70.89%) behaviour and all clinical symptoms (81.71%). Only 4.48% of patients showed minimally worse CGI-I score. Patients in the non-stable symptom group had DRD2 Taq1A non-wild-type (TT and CT) frequencies higher than the clinically stable group (p = 0.04), whereas other gene polymorphisms showed no significant association. Haplotype ACCTCAT (rs6311, rs1045642, rs1128503, rs1800497, rs4436578, rs1799978, rs6280) showed a significant association with non-stable clinical outcome (χ2 = 6.642, p = 0.010). Risperidone levels showed no association with any clinical outcome. On the other hand, risperidone dose, 9-OH risperidone levels and prolactin levels were significantly higher in the non-stable compared to the stable symptom group (p = 0.013, p = 0.044, p = 0.030). Increased appetite was the most common adverse drug reaction and associated with higher body-weight, whereas it was not significantly associated with genetic variations and non-genetic information. In conclusion, risperidone showed efficacy to control autism, especially aggressive symptoms in long-term treatment. However, Taq1A T - carrier of dopamine 2 receptor gene - is associated with non-stable response in risperidone-treated patients. This study supports pharmacogenomics testing for personalized therapy with risperidone in autistic children and adolescents.
Collapse
Affiliation(s)
- Nopphadol Nuntamool
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattawat Ngamsamut
- Department of Mental Health Services, Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Ministry of Public Health, Samut Prakarn, Thailand
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Monpat Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Penkhae Limsila
- Department of Mental Health Services, Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Ministry of Public Health, Samut Prakarn, Thailand
| | | | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| |
Collapse
|
110
|
Qadeer MI, Amar A, Mann JJ, Hasnain S. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan. PLoS One 2017; 12:e0173571. [PMID: 28582390 PMCID: PMC5459412 DOI: 10.1371/journal.pone.0173571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Genetic factors contribute to antisocial and criminal behavior. Dopamine transporter DAT-1 (SLC6A3) and DRD2 gene for the dopamine-2 receptor are dopaminergic system genes that regulate dopamine reuptake and signaling, and may be part of the pathogenesis of psychiatric disorders including antisocial behaviors and traits. No previous studies have analyzed DAT-1 and DRD2 polymorphisms in convicted murderers, particularly from Indian subcontinent. In this study we investigated the association of 40 bp VNTR polymorphism of DAT-1 and Taq1 variant of DRD2 gene (rs1800479) with criminal behavior and self-reported aggression in 729 subjects, including 370 men in Pakistani prisons convicted of first degree murder(s) and 359 control men without any history of violence or criminal tendency. The 9R allele of DAT-1 VNTR polymorphism was more prevalent in convicted murderers compared with control samples, for either one or two risk alleles (OR = 1.49 and 3.99 respectively, P = 0.003). This potential association of DAT-1 9R allele polymorphism with murderer phenotype was confirmed assuming different genetic models of inheritance. However, no genetic association was found for DRD2 Taq1 polymorphism. In addition, a combined haplotype (9R-A2) of DAT-1 and DRD2 genes was associated with this murderer phenotype. Further, 9R allele of DAT-1 was also associated with response to verbal abuse and parental marital complications, but not with other measures pertinent to self-reported aggression. These results suggest that 9R allele, which may influence levels of intra-synaptic dopamine in the brain, may contribute to criminal tendency in this sample of violent murderers of Pakistani origin. Future studies are needed to replicate this finding in other populations of murderers and see if this finding extends to other forms of violence and lesser degrees of aggression.
Collapse
Affiliation(s)
- Muhammad Imran Qadeer
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- * E-mail:
| | - Ali Amar
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - J. John Mann
- New York State Psychiatric Institute, NY and Department of Psychiatry, Columbia University, New York, United States of America
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- The Women University Multan, Multan, Pakistan
| |
Collapse
|
111
|
Bueno C, Trarbach EB, Bronstein MD, Glezer A. Cabergoline and prolactinomas: lack of association between DRD2 polymorphisms and response to treatment. Pituitary 2017; 20:295-300. [PMID: 27848079 DOI: 10.1007/s11102-016-0776-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND About 80% of prolactinomas respond to dopamine agonists (DA) with hormonal normalization and tumor shrinkage. Mechanisms of DA resistance include reduction of dopamine receptor subtype 2 (DRD2) expression, short and long isoform ratio and post-receptor mechanisms. It was suggested that polymorphisms in the gene encoding dopamine receptor subtype 2 gene (DRD2) could be associated with variable effectiveness of cabergoline (CAB). OBJECTIVE To assess the influence of DRD2 polymorphisms in responsiveness of CAB treatment in patients with prolactinoma. STUDY DESIGN AND PATIENTS Cross-sectional retrospective case-control study analyzing the frequency of five DRD2 polymorphisms in 148 patients with prolactinoma and 349 healthy subjects. The association of genetic variants and clinical characteristics with CAB responsiveness was performed in 118 patients (mean age at diagnosis 29 years; range 11-61 years) with hormonal evaluation. Patients with prolactin (PRL) normalization were considered as responders. RESULTS No association in genotypes and allele proportions was found comparing patients and controls. On pharmacogenetic study, 118 patients on CAB were included and 20% were non-responders. No association was found between clinical characteristics (gender, age, PRL level and tumor size at diagnosis) and polymorphisms of DRD2 with CAB responsiveness. Otherwise, there was association between polymorphisms rs1076560 (allele A) and rs1800497 (allele T) and the presence of macroadenomas. CONCLUSION No correlation was found between DRD2 polymorphisms and CAB responsiveness in patients with prolactinoma. More data are necessary in order to assess the influence of DRD2 genotyping on DA treatment response.
Collapse
Affiliation(s)
- Cbf Bueno
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of São Paulo Medical School, São Paulo, Brazil.
| | - E B Trarbach
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of São Paulo Medical School, São Paulo, Brazil
| | - M D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of São Paulo Medical School, São Paulo, Brazil
| | - A Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
112
|
Cameron JD, Chaput JP, Sjödin AM, Goldfield GS. Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games. Annu Rev Nutr 2017; 37:183-205. [PMID: 28564556 DOI: 10.1146/annurev-nutr-071816-064855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Collapse
Affiliation(s)
- Jameason D Cameron
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Gary S Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| |
Collapse
|
113
|
Richter A, Barman A, Wüstenberg T, Soch J, Schanze D, Deibele A, Behnisch G, Assmann A, Klein M, Zenker M, Seidenbecher C, Schott BH. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor. Front Psychol 2017; 8:654. [PMID: 28507526 PMCID: PMC5410587 DOI: 10.3389/fpsyg.2017.00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory.
Collapse
Affiliation(s)
- Anni Richter
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany
| | - Joram Soch
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Anna Deibele
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Anne Assmann
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany
| | - Marieke Klein
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
114
|
New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain. J Neurosci 2017; 37:4982-4991. [PMID: 28416594 DOI: 10.1523/jneurosci.3155-16.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [11C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [11C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase since striatal dopamine hyperstimulation is associated with psychosis and schizophrenia. Here, using PET with [11C]raclopride, we identified in the AKT1 gene a new variable number tandem repeat (VNTR) marker associated with baseline striatal dopamine D2/D3 receptor availability and with methylphenidate-induced striatal dopamine increases in healthy volunteers. Our results confirm the involvement of the AKT1 gene in modulating striatal dopamine signaling in the human brain. Future studies are needed to assess the association of this new VNTR AKT1 variant in schizophrenia and drug-induced psychoses.
Collapse
|
115
|
Smith CT, Dang LC, Buckholtz JW, Tetreault AM, Cowan RL, Kessler RM, Zald DH. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum. Transl Psychiatry 2017; 7:e1091. [PMID: 28398340 PMCID: PMC5416688 DOI: 10.1038/tp.2017.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BPND), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BPND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BPND of the high-affinity D2 receptor tracer 18F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BPND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BPND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.
Collapse
Affiliation(s)
- C T Smith
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - L C Dang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - J W Buckholtz
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - A M Tetreault
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - R L Cowan
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R M Kessler
- Department of Radiology, UAB School of Medicine, Birmingham, AL, USA
| | - D H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
116
|
Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory. Transl Psychiatry 2017; 7:e1107. [PMID: 28440817 PMCID: PMC5416697 DOI: 10.1038/tp.2017.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 11/16/2022] Open
Abstract
Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.
Collapse
|
117
|
Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior. Trends Cogn Sci 2017; 21:372-384. [PMID: 28372879 DOI: 10.1016/j.tics.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
Recent work highlights the importance of genetic variants that influence brain structure and function in conferring risk for polygenic obesity. The neurotransmitter dopamine (DA) has a pivotal role in energy balance by integrating metabolic signals with circuits supporting cognitive, perceptual, and appetitive functions that guide feeding. It has also been established that diet and obesity alter DA signaling, leading to compulsive-like feeding and neurocognitive impairments. This raises the possibility that genetic variants that influence DA signaling and adaptation confer risk for overeating and cognitive decline. Here, we consider the role of two common gene variants, FTO and TaqIA rs1800497 in driving gene × environment interactions promoting obesity, metabolic dysfunction, and cognitive change via their influence on DA receptor subtype 2 (DRD2) signaling.
Collapse
Affiliation(s)
- Xue Sun
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA CNRS UMR 8251, Paris, France; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA; The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
118
|
Schwab-Reese LM, Parker EA, Peek-Asa C. Interactions of adolescent social experiences and dopamine genes to predict physical intimate partner violence perpetration. PLoS One 2017; 12:e0172840. [PMID: 28264032 PMCID: PMC5338787 DOI: 10.1371/journal.pone.0172840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/08/2017] [Indexed: 12/05/2022] Open
Abstract
Objectives We examined the interactions between three dopamine gene alleles (DAT1, DRD2, DRD4) previously associated with violent behavior and two components of the adolescent environment (exposure to violence, school social environment) to predict adulthood physical intimate partner violence (IPV) perpetration among white men and women. Methods We used data from Wave IV of the National Longitudinal Study of Adolescent to Adult Health, a cohort study following individuals from adolescence to adulthood. Based on the prior literature, we categorized participants as at risk for each of the three dopamine genes using this coding scheme: two 10-R alleles for DAT1; at least one A-1 allele for DRD2; at least one 7-R or 8-R allele for DRD4. Adolescent exposure to violence and school social environment was measured in 1994 and 1995 when participants were in high school or middle school. Intimate partner violence perpetration was measured in 2008 when participants were 24 to 32 years old. We used simple and multivariable logistic regression models, including interactions of genes and the adolescent environments for the analysis. Results Presence of risk alleles was not independently associated with IPV perpetration but increasing exposure to violence and disconnection from the school social environment was associated with physical IPV perpetration. The effects of these adolescent experiences on physical IPV perpetration varied by dopamine risk allele status. Among individuals with non-risk dopamine alleles, increased exposure to violence during adolescence and perception of disconnection from the school environment were significantly associated with increased odds of physical IPV perpetration, but individuals with high risk alleles, overall, did not experience the same increase. Conclusion Our results suggested the effects of adolescent environment on adulthood physical IPV perpetration varied by genetic factors. This analysis did not find a direct link between risk alleles and violence, but contributes to growing research indicating that if genetic factors contribute to perpetration, this relationship is likely complicated and the result of interactions with other factors.
Collapse
Affiliation(s)
- Laura M. Schwab-Reese
- Department of Community & Behavioral Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Edith A. Parker
- Department of Community & Behavioral Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Corinne Peek-Asa
- Department of Occupational & Environmental, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
119
|
Garcia-Garcia M, Via M, Zarnowiec K, SanMiguel I, Escera C, Clemente IC. COMT and DRD2/ANKK-1 gene-gene interaction account for resetting of gamma neural oscillations to auditory stimulus-driven attention. PLoS One 2017; 12:e0172362. [PMID: 28222164 PMCID: PMC5319755 DOI: 10.1371/journal.pone.0172362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Attention capture by potentially relevant environmental stimuli is critical for human survival, yet it varies considerably among individuals. A large series of studies has suggested that attention capture may depend on the cognitive balance between maintenance and manipulation of mental representations and the flexible switch between goal-directed representations and potentially relevant stimuli outside the focus of attention; a balance that seems modulated by a prefrontostriatal dopamine pathway. Here, we examined inter-individual differences in the cognitive control of attention through studying the effects of two single nucleotide polymorphisms regulating dopamine at the prefrontal cortex and the striatum (i.e., COMTMet108/158Val and ANKK1/DRD2TaqIA) on stimulus-driven attention capture. Healthy adult participants (N = 40) were assigned to different groups according to the combination of the polymorphisms COMTMet108/158Val and ANKK1/DRD2TaqIA, and were instructed to perform on a well-established distraction protocol. Performance in individuals with a balance between prefrontal dopamine display and striatal receptor density was slowed down by the occurrence of unexpected distracting events, while those with a rather unbalanced dopamine activity were able maintain task performance with no time delay, yet at the expense of a slightly lower accuracy. This advantage, associated to their distinct genetic profiles, was paralleled by an electrophysiological mechanism of phase-resetting of gamma neural oscillation to the novel, distracting events. Taken together, the current results suggest that the epistatic interaction between COMTVal108/158Met and ANKK1/DRD2 TaqIa genetic polymorphisms lies at the basis of stimulus-driven attention capture.
Collapse
Affiliation(s)
- Manuel Garcia-Garcia
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Marc Via
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Katarzyna Zarnowiec
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Carles Escera
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- * E-mail:
| | - Immaculada C. Clemente
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| |
Collapse
|
120
|
A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int J Obes (Lond) 2016; 40 Suppl 1:S12-21. [PMID: 27001642 PMCID: PMC4819757 DOI: 10.1038/ijo.2016.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Addiction to a wide range of substances of abuse has been suggested to reflect a ‘Reward Deficiency Syndrome'. That is, drugs are said to stimulate the reward mechanisms so intensely that, to compensate, the population of dopamine D2 receptors (DD2R) declines. The result is that an increased intake is necessary to experience the same degree of reward. Without an additional intake, cravings and withdrawal symptoms result. A suggestion is that food addiction, in a similar manner to drugs of abuse, decrease DD2R. The role of DD2R in obesity was therefore examined by examining the association between body mass index (BMI) and the Taq1A polymorphism, as the A1 allele is associated with a 30–40% lower number of DD2R, and is a risk factor for drug addiction. If a lower density of DD2R is indicative of physical addiction, it was argued that if food addiction occurs, those with the A1 allele should have a higher BMI. A systematic review found 33 studies that compared the BMI of those who did and did not have the A1 allele. A meta-analysis of the studies compared those with (A1/A1 and A1/A2) or without (A2/A2) the A1 allele; no difference in BMI was found (standardized mean difference 0.004 (s.e. 0.021), variance 0.000, Z=0.196, P<0.845). It was concluded that there was no support for a reward deficiency theory of food addiction. In contrast, there are several reports that those with the A1 allele are less able to benefit from an intervention that aimed to reduce weight, possibly a reflection of increased impulsivity.
Collapse
|
121
|
The dopamine-related polymorphisms BDNF, COMT, DRD2, DRD3, and DRD4 are not linked with changes in CSF dopamine levels and frequency of HIV infection. J Neural Transm (Vienna) 2016; 124:501-509. [PMID: 27909828 DOI: 10.1007/s00702-016-1659-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
We showed previously that higher levels in CSF dopamine in HIV patients are associated with the presence of the dopamine transporter (DAT) 10/10-repeat allele which was also detected more frequently in HIV-infected individuals compared to uninfected subjects. In the current study, we investigated further whether other genetic dopamine (DA)-related polymorphisms may be related with changes in CSF DA levels and frequency of HIV infection in HIV-infected subjects. Specifically, we studied genetic polymorphisms of brain-derived neurotrophic factor, catechol-O-methyltransferase, and dopamine receptors DRD2, DRD3, and DRD4 genetic polymorphisms in uninfected and HIV-infected people in two different ethnical groups, a German cohort (Caucasian, 72 individuals with HIV infection and 22 individuals without HIV infection) and a South African cohort (Xhosan, 54 individuals with HIV infection and 19 individuals without HIV infection). We correlated the polymorphisms with CSF DA levels, HIV dementia score, CD4+ T cell counts, and HIV viral load. None of the investigated DA-related polymorphisms was associated with altered CSF DA levels, CD4+ T cell count, viral load, and HIV dementia score. The respective allele frequencies were equally distributed between HIV-infected patients and controls. Our findings do not show any influence of the studied genetic polymorphisms on CSF DA levels and HIV infection. This is in contrast to what we found previously for the DAT 3'UTR VNTR and highlights the specific role of the DAT VNTR in HIV infection and disease.
Collapse
|
122
|
Zhang S, Zhang J. The Association of DRD2 with Insight Problem Solving. Front Psychol 2016; 7:1865. [PMID: 27933030 PMCID: PMC5121534 DOI: 10.3389/fpsyg.2016.01865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/10/2016] [Indexed: 11/15/2022] Open
Abstract
Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| |
Collapse
|
123
|
Criscitelli K, Avena NM. The neurobiological and behavioral overlaps of nicotine and food addiction. Prev Med 2016; 92:82-89. [PMID: 27509870 DOI: 10.1016/j.ypmed.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Both cigarette smoking and obesity are significant public health concerns and are associated with increased risk of early mortality. It is well established that the mesolimbic dopamine pathway is an important component of the reward system within the brain and is implicated in the development of addiction. Indeed, nicotine and highly palatable foods are capable of altering dopamine release within this system, engendering addictive like responses in susceptible individuals. Although additional research is warranted, findings from animal and human literature have elucidated many of neuroadaptions that occur from exposure to nicotine and highly palatable foods, leading to a greater understanding of the underlying mechanisms contributing to these aberrant behaviors. In this review we present the findings taken from preclinical and clinical literature of the known effects of exposure to nicotine and highly palatable foods on the reward related circuitry within the brain. Further, we compare the neurobiological and behavioral overlaps between nicotine, highly palatable foods and obesity. Lastly, we examine the stigma associated with smoking, obesity and food addiction, and the consequences stigma has on the overall health and wellbeing of an individual.
Collapse
Affiliation(s)
- Kristen Criscitelli
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
124
|
Mostafavi M, Hardy P, Arnold LE. Varenicline in Autism: Theory and Case Report of Clinical and Biochemical Changes. J Child Adolesc Psychopharmacol 2016; 26:792-797. [PMID: 27123827 DOI: 10.1089/cap.2015.0230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore the potential benefits of varenicline (CHANTIX®), a highly specific partial agonist of neuronal α4β2 nicotinic acetylcholine receptors (nAChR), for autistic symptoms, and present resulting biochemical changes in light of dopamine-related genotype. METHODS The clinical and biochemical changes exhibited by a 19-year-old severely autistic man following the use of low-dose varenicline in an ABA experiment of nature, and his genotype, were extracted from chart review. Clinical outcome was measured by the Ohio Autism Clinical Impression Scale and 12 relevant urine and saliva metabolites were measured by Neuroscience Laboratory. RESULTS With varenicline, this patient improved clinically and autonomic biochemical indicators in saliva and urine normalized, including dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), epinephrine, norepinephrine, taurine, and histamine levels. In addition, with varenicline, the dopamine D1 receptor (DRD1) antibody titer as well as the percent of baseline calmodulin-dependent protein kinase II (CaM KII) activity dropped significantly. When varenicline stopped, he deteriorated; when it was resumed, he again improved. Doses of 0.5, 1, and 2 mg daily were tried before settling on a dose of 1.5 mg daily. He has remained on varenicline for over a year with no noticeable side effects. CONCLUSION This report is, to the best of our knowledge, only the second to demonstrate positive effects of varenicline in autism, the first to show it in a severe case, and the first to show normalization of biochemical parameters related to genotype. As with the previous report, these encouraging results warrant further controlled research before clinical recommendations can be made.
Collapse
Affiliation(s)
| | - Paul Hardy
- 2 Hardy Healthcare, PLLC , Peterborough, New Hampshire
| | - L Eugene Arnold
- 3 Department of Psychiatry, Nisonger Center, Ohio State University , Columbus, Ohio
| |
Collapse
|
125
|
Candidate gene study reveals DRD1 and DRD2 as putative interacting risk factors for youth depression. Psychiatry Res 2016; 244:71-7. [PMID: 27472173 DOI: 10.1016/j.psychres.2016.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022]
Abstract
Alterations in the monoaminergic neurotransmission systems are suspected to be involved in the etiology of neuropsychiatric disorders, including depression. The role of these pathways in the risk of developing depressive symptoms during childhood or adolescence is still not completely clear. This study sought to identify putative genetic factors in genes of serotonergic and dopaminergic systems modulating the level of manifestation of depressive symptoms in children and adolescents. We analyzed 170 single nucleotide polymorphisms (SNPs) in 21 candidate dopaminergic and serotonergic genes in a non-clinical sample of 410 Costa Rican participants of ages between 7 and 18 years, assessing the severity of depressive symptoms through the Child Depression Inventory (CDI). Genotypic and haplotypic associations, as well as epistatic effects, were examined. A significant interaction effect was detected between rs1039089 in conjunction with rs877138 located upstream of the dopamine D1 receptor (DRD1) and the dopamine D2 receptor (DRD2) genes respectively, although no evidence was found for any single variant or haplotype related to a differential liability. This newly described genetic interaction among putative regulatory regions of dopamine receptors could affect the level of manifestation of depressive symptoms through an imbalance of D1-D2 heteromers and modulation of cognitive processes.
Collapse
|
126
|
Trifilieff P, Ducrocq F, van der Veldt S, Martinez D. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior. Semin Nucl Med 2016; 47:64-74. [PMID: 27987559 DOI: 10.1053/j.semnuclmed.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use.
Collapse
Affiliation(s)
- Pierre Trifilieff
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France.
| | - Fabien Ducrocq
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France
| | - Suzanne van der Veldt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Diana Martinez
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical College, New York, NY.
| |
Collapse
|
127
|
Zeuner KE, Acewicz A, Knutzen A, Dressler D, Lohmann K, Witt K. Dopamine DRD2 polymorphism (DRD2/ANNK1-Taq1A) is not a significant risk factor in writer’s cramp. J Neurogenet 2016; 30:276-279. [DOI: 10.1080/01677063.2016.1238916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Albert Acewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Arne Knutzen
- Department of Neurology, University of Kiel, Germany
| | - Dirk Dressler
- Department of Neurology, Movement Disorders Section, Hannover Medical School, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Karsten Witt
- Department of Neurology, University of Kiel, Germany
| |
Collapse
|
128
|
Miura I, Zhang JP, Hagi K, Lencz T, Kane JM, Yabe H, Malhotra AK, Correll CU. Variants in the DRD2 locus and antipsychotic-related prolactin levels: A meta-analysis. Psychoneuroendocrinology 2016; 72:1-10. [PMID: 27333159 PMCID: PMC10443951 DOI: 10.1016/j.psyneuen.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Although dopamine D2 receptor antagonists lead to dose-dependent prolactin (PRL) elevations proportionate to their D2 affinity, considerable inter-individual differences exist. We conducted a meta-analytic review of associations between genetic variations in the dopamine D2 receptor gene (DRD2) and PRL levels in antipsychotic-treated subjects. METHODS Systematic literature search (5/8/2015) was performed to find published studies of pharmacogenetic associations between two DRD2 variants, Taq1A (rs1800497) and -141C Ins/Del (rs1799732), and PRL levels during antipsychotic treatment (excluding aripiprazole). Patients were included independent of age or diagnosis. Random effects models were used and Hedges' g was calculated as the effect size measure. Subgroup analyses explored the effect of sex and diagnosis, (males vs females; schizophrenia vs non-schizophrenia). RESULTS Altogether, 11 studies (n=1034, schizophrenia-spectrum=475) for Taq1A polymorphism, and 4 studies (n=451, schizophrenia-spectrum=274) for -141C Ins/Del polymorphism, each reporting on PRL levels but not on the proportion of patients with hyperprolactinemia, were meta-analyzed. Across all patients, there was no statistically significant association between PRL levels and either DRD2 Taq1A genotype or DRD2 -141C Ins/Del genotype. However, in patients with schizophrenia, PRL levels were significantly higher in DRD2 Taq1A A1 carriers than A1 non-carriers (studies=5, n=475, Hedges' g=0.250, 95% CI=0.068-0.433, p=0.007, I(2)=0%). DISCUSSION Although there was no significant association between either DRD2 Taq1A genotype or DRD2 -141C Ins/Del genotype and PRL levels in all included patients, our results suggest that DRD2 Taq1A genotype may affect antipsychotic-related PRL levels in patients with schizophrenia. Because of the small sample size, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Itaru Miura
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jian-Ping Zhang
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Katsuhiko Hagi
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Sumitomo Dainippon Pharma Co., Ltd., Medical Affairs, Tokyo, Japan
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christoph U Correll
- The Zucker Hillside Hospital, Psychiatry Research, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Manhasset, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
129
|
Papenberg G, Becker N, Ferencz B, Naveh-Benjamin M, Laukka EJ, Bäckman L, Brehmer Y. Dopamine Receptor Genes Modulate Associative Memory in Old Age. J Cogn Neurosci 2016; 29:245-253. [PMID: 27647283 DOI: 10.1162/jocn_a_01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.
Collapse
Affiliation(s)
| | - Nina Becker
- Karolinska Institutet, Solna, Sweden.,Stockholm University.,Max Planck Institute for Human Development, Berlin, Germany
| | - Beata Ferencz
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | | | - Erika J Laukka
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | - Lars Bäckman
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | - Yvonne Brehmer
- Karolinska Institutet, Solna, Sweden.,Stockholm University.,Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
130
|
Borg J, Cervenka S, Kuja-Halkola R, Matheson GJ, Jönsson EG, Lichtenstein P, Henningsson S, Ichimiya T, Larsson H, Stenkrona P, Halldin C, Farde L. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain. Mol Psychiatry 2016; 21:1077-84. [PMID: 26821979 DOI: 10.1038/mp.2015.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease.
Collapse
Affiliation(s)
- J Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - R Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - G J Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - E G Jönsson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Psychiatry Section, University of Oslo, Oslo, Norway
| | - P Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Henningsson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
| | - T Ichimiya
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - H Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - C Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,AstraZeneca Translational Science Center at Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
131
|
Striatal activation as a neural link between cognitive and perceptual flexibility. Neuroimage 2016; 141:393-398. [PMID: 27474521 DOI: 10.1016/j.neuroimage.2016.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 07/23/2016] [Indexed: 11/22/2022] Open
Abstract
Our brain continuously evaluates different perceptual interpretations of the available sensory data in order to enable flexible updates of conscious experience. Individuals' perceptual flexibility can be assessed using ambiguous stimuli that cause our perception to continuously switch between two mutually exclusive interpretations. Neural processes underlying perceptual switching are thought to involve the visual cortex, but also non-sensory brain circuits that have been implicated in cognitive processes, such as frontal and parietal regions. Perceptual flexibility varies strongly between individuals and has been related to dopaminergic neurotransmission. Likewise, there is also considerable individual variability in tasks that require flexibility in cognition, and dopamine-dependent striato-frontal signals have been associated with processes promoting cognitive flexibility. Given the anatomical and neurochemical similarities with regard to perceptual and cognitive flexibility, we here probed whether individual differences in perceptual flexibility during bistable perception are related to individual cognitive flexibility associated neural correlates. 126 healthy individuals performed rule-based task switching during functional magnetic resonance imaging (fMRI) and reported perceptual switching during the viewing of a modified version of the Necker cube. Mean phase duration as measure of perceptual flexibility correlated with task-switching associated activity in the right putamen as part of the basal ganglia. In addition, we found a tentative correlation between perceptual and cognitive flexibility. These results indicate that individual differences in cognitive flexibility and associated fronto-striatal processing contribute to differences in perceptual flexibility. Our findings thus provide empirical support for the general notion of shared mechanisms between perception and cognition.
Collapse
|
132
|
Kalon E, Hong JY, Tobin C, Schulte T. Psychological and Neurobiological Correlates of Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 129:85-110. [PMID: 27503449 DOI: 10.1016/bs.irn.2016.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Food addiction (FA) is loosely defined as hedonic eating behavior involving the consumption of highly palatable foods (ie, foods high in salt, fat, and sugar) in quantities beyond homeostatic energy requirements. FA shares some common symptomology with other pathological eating disorders, such as binge eating. Current theories suggest that FA shares both behavioral similarities and overlapping neural correlates to other substance addictions. Although preliminary, neuroimaging studies in response to food cues and the consumption of highly palatable food in individuals with FA compared to healthy controls have shown differing activation patterns and connectivity in brain reward circuits including regions such as the striatum, amygdala, orbitofrontal cortex, insula, and nucleus accumbens. Additional effects have been noted in the hypothalamus, a brain area responsible for regulating eating behaviors and peripheral satiety networks. FA is highly impacted by impulsivity and mood. Chronic stress can negatively affect hypothalamic-pituitary-adrenal axis functioning, thus influencing eating behavior and increasing desirability of highly palatable foods. Future work will require clearly defining FA as a distinct diagnosis from other eating disorders.
Collapse
Affiliation(s)
- E Kalon
- Palo Alto University, Palo Alto, CA, United States; SRI International, Menlo Park, CA, United States.
| | - J Y Hong
- SRI International, Menlo Park, CA, United States
| | - C Tobin
- Palo Alto University, Palo Alto, CA, United States; National Center for PTSD, VA Palo Alto Health Care System Menlo Park Division, Menlo Park, CA, United States
| | - T Schulte
- Palo Alto University, Palo Alto, CA, United States; SRI International, Menlo Park, CA, United States
| |
Collapse
|
133
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
134
|
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frías NS, Koller JM, Black KJ, Moerlein SM, Perlmutter JS, Barch DM, Hershey T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016; 70:418-31. [PMID: 27241797 DOI: 10.1002/syn.21916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N-[(11) C]methyl)benperidol ([(11) C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1-), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1- was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [(11) C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Latisha Love-Gregory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110
| | - Nadia S Corral-Frías
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110
| | - Stephen M Moerlein
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Biochemistry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Joel S Perlmutter
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
135
|
Waltz JA. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience 2016; 345:203-217. [PMID: 27282085 DOI: 10.1016/j.neuroscience.2016.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022]
Abstract
Schizophrenia (SZ) has long been associated with a variety of cognitive deficits, including reduced cognitive flexibility. More recent findings, however, point to tremendous inter-individual variability among patients on measures of cognitive flexibility/set-shifting. With an eye toward shedding light on potential sources of variability in set-shifting abilities among SZ patients, I examine the neural substrates of underlying probabilistic reversal learning (PRL) - a paradigmatic measure of cognitive flexibility - as well as neuromodulatory influences upon these systems. Finally, I report on behavioral and neuroimaging studies of PRL in SZ patients, discussing the potentially influences of illness profile and antipsychotic medications on cognitive flexibility in SZ.
Collapse
Affiliation(s)
- James A Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
136
|
Beste C, Stock AK, Epplen JT, Arning L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur Neuropsychopharmacol 2016; 26:1029-36. [PMID: 27021648 DOI: 10.1016/j.euroneuro.2016.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 01/17/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Action control is achieved through a multitude of cognitive processes. One of them is the ability to inhibit responses, for which the dopaminergic systems is known to play an important role. Many lines of psychophysiological research substantiate that two distinct response inhibition subprocesses exist, but it has remained elusive whether they can be attributed to distinct neurobiological factors governing the dopaminergic system. We, therefore, investigated this question by examining the effects of DRD1 (rs4532) and DRD2 (rs6277) receptor polymorphisms on electrophysiological correlates of response inhibition subprocesses (i.e., Nogo-N2 and Nogo-P3) in 195 healthy human subjects with a standard Go/Nogo task. The results show that response inhibition performance at a behavioral level is affected by DRD1 and DRD2 receptor variation. However, from an electrophysiological point of view these effects emerge via different mechanisms selectively affected by DRD1 and DRD2 receptor variation. While the D1 receptor system is associated with pre-motor inhibition electrophysiological correlates of response inhibition processes (Nogo-N2), the D2 receptor system is associated with electrophysiological correlates of outcome evaluation processes. Dissociable cognitive-neurophysiological subprocesses of response inhibition are hence attributable to distinct dopamine receptor systems.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Germany; Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Germany
| |
Collapse
|
137
|
Goto Y, Lee YA, Yamaguchi Y, Jas E. Biological mechanisms underlying evolutionary origins of psychotic and mood disorders. Neurosci Res 2016; 111:13-24. [PMID: 27230505 DOI: 10.1016/j.neures.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Psychotic and mood disorders are brain dysfunctions that are caused by gene environment interactions. Although these disorders are disadvantageous and involve behavioral phenotypes that decrease the reproductive success of afflicted individuals in the modern human society, the prevalence of these disorders have remained constant in the population. Here, we propose several biological mechanisms by which the genes associated with psychotic and mood disorders could be selected for in specific environmental conditions that provide evolutionary bases for explanations of when, why, and where these disorders emerged and have been maintained in humans. We discuss the evolutionary origins of psychotic and mood disorders with specific focuses on the roles of dopamine and serotonin in the conditions of social competitiveness/hierarchy and maternal care and other potential mechanisms, such as social network homophily and symbiosis.
Collapse
Affiliation(s)
- Yukiori Goto
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Young-A Lee
- Department of Food Science & Nutrition, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 712-702, Republic of Korea
| | - Yoshie Yamaguchi
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Emanuel Jas
- Graduate School of Natural Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
138
|
Yeh J, Trang A, Henning SM, Wilhalme H, Carpenter C, Heber D, Li Z. Food cravings, food addiction, and a dopamine-resistant (DRD2 A1) receptor polymorphism in Asian American college students. Asia Pac J Clin Nutr 2016; 25:424-9. [PMID: 27222427 DOI: 10.6133/apjcn.102015.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES In an era where obesity remains an important public health concern, food addiction has emerged as a possible contributor to obesity. The DRD2 gene is the most studied polymorphism. The aim of this study was to investigate a relationship between food addiction questionnaires, body composition measurements, and a dopamine- resistant receptor polymorphism (DRD2 A1) among Asian Americans. METHODS AND STUDY DESIGN A total of 84 Asian American college students were recruited. Participants underwent body composition measurement via bioelectrical impedance, answered questionnaires (Food Craving Inventory and Power of Food Scale), and had blood drawn for genotyping (PCR). RESULTS There was no difference in body composition (BMI, percent body fat) between the A1 (A1A1 or A1A2) and A2 (A2A2) groups. There were statistically significant differences in food cravings of carbohydrates and fast food on the Food Craving Inventory between the A1 and A2 groups (p=0.03), but not for sugar or fat. Among Asian college females, there was also a difference on the Power of Food questionnaire (p=0.04), which was not seen among men. 13 out of 55 women also had >30% body fat at a BMI of 21.4 to 28.5 kg/m2. CONCLUSION Greater carbohydrate and fast food craving was associated with the DRD2 A1 versus A2 allele among Asian Americans. Further studies examining the ability of dopamine agonists to affect food craving and to reduce body fat in Asian American are warranted. More studies in food addiction among obese Asian Americans are needed with careful definition of obesity, specifically for Asian women.
Collapse
Affiliation(s)
- Joanna Yeh
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, UCLA, Los Angeles, CA, USA.
| | - Amy Trang
- Department of Clinical Nutrition, UCLA, Los Angeles, CA, USA
| | | | - Holly Wilhalme
- Department of Medicine, Statistics Core, UCLA, Los Angeles, CA, USA
| | | | - David Heber
- Department of Clinical Nutrition, UCLA, Los Angeles, CA, USA
| | - Zhaoping Li
- Department of Clinical Nutrition, UCLA, Los Angeles, CA, USA
| |
Collapse
|
139
|
The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere. Neuropsychologia 2016; 89:1-13. [PMID: 27221149 DOI: 10.1016/j.neuropsychologia.2016.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 11/22/2022]
Abstract
Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases.
Collapse
|
140
|
Myrga JM, Juengst SB, Failla MD, Conley YP, Arenth PM, Grace AA, Wagner AK. COMT and ANKK1 Genetics Interact With Depression to Influence Behavior Following Severe TBI: An Initial Assessment. Neurorehabil Neural Repair 2016; 30:920-930. [PMID: 27154305 DOI: 10.1177/1545968316648409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Genetic variations in the dopamine (DA) system are associated with cortical-striatal behavior in multiple populations. This study assessed associations of functional polymorphisms in the ankyrin repeat and kinase domain (ANKK1; Taq1a) and catechol-O-methyltransferase (COMT; Val158Met) genes with behavioral dysfunction following traumatic brain injury (TBI). PARTICIPANTS This was a prospective study of 90 survivors of severe TBI recruited from a level 1 trauma center. MAIN MEASURES The Frontal Systems Behavior Scale, a self- or family report questionnaire evaluating behavior associated with frontal lobe dysfunction, was completed 6 and 12 months postinjury. Depression was measured concurrently with the Patient Health Questionnaire-9. Study participants were genotyped for Val158Met and Taq1a polymorphisms. RESULTS No statistically significant behavioral differences were observed by Taq1a or Val158Met genotype alone. At 12 months, among those with depression, Met homozygotes (Val158Met) self-reported worse behavior than Val carriers (P = .015), and A2 homozygotes (Taq1a) self-reported worse behavior than A1 carriers (P = .028) in bivariable analysis. Multivariable models suggest an interaction between depression and genetic variation with behavior at 12 months post-TBI, and descriptive analysis suggests that carriage of both risk alleles may contribute to worse behavioral performance than carriage of either risk allele alone. CONCLUSION In the context of depression, Val158Met and Taq1a polymorphisms are individually associated with behavioral dysfunction 12 months following severe TBI, with preliminary evidence suggesting cumulative, or perhaps epistatic, effects of COMT and ANKK1 on behavioral dysfunction.
Collapse
Affiliation(s)
- John M Myrga
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Shannon B Juengst
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | | | - Yvette P Conley
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Patricia M Arenth
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Anthony A Grace
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA Department of Neuroscience, University of Pittsburgh, Pittsburgh PA Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
141
|
Celorrio D, Muñoz X, Amiano P, Dorronsoro M, Bujanda L, Sánchez MJ, Molina-Montes E, Navarro C, Chirlaque MD, MaríaHuerta J, Ardanaz E, Barricarte A, Rodriguez L, Duell EJ, Hijona E, Herreros-Villanueva M, Sala N, Alfonso-Sánchez MA, de Pancorbo MM. Influence of Dopaminergic System Genetic Variation and Lifestyle Factors on Excessive Alcohol Consumption. Alcohol Alcohol 2016; 51:258-267. [PMID: 26447226 DOI: 10.1093/alcalc/agv114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/30/2015] [Indexed: 01/13/2023] Open
Abstract
AIMS To examine the role of genetic and environmental factors in the pathogenesis of alcohol dependence in a Spanish cohort of women and men. METHODS We analyzed the relationship between 56 genetic variants in 7 genes associated with the dopaminergic reward pathway and excessive alcohol consumption. The study sample (N = 1533, of which 746 were women) consisted of 653 heavy consumers and 880 very low consumers from the Spanish subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Single nucleotide polymorphisms (SNPs) were genotyped using a customized array. Lifestyle variables were also examined to assess associations between genetic and environmental factors. RESULTS No statistically significant differences were found between cases and controls for the allele frequencies in five genes: TH, SLC18A2, DRD1, DRD3 and COMT. Conversely, some alleles of the 12 SNPs from the DRD2 locus and the 5 from the MAOA locus showed significant associations with excessive alcohol consumption. Namely, rs10891556 (DRD2) proved to be the only SNP positively correlated with excessive alcohol consumption in both sexes. DRD2 rs1800497 and rs877138 were significantly associated in men, whereas DRD2 rs17601612 and rs4936271 and MAOA rs5906898 were associated with excessive alcohol consumption in women. A correspondence analysis provided an overall lifestyle profile of excessive drinkers, who were predominantly men who smoked, had large intakes of meat, small intakes of fruit and vegetables, whose jobs did not require high education levels and who engaged in little physical activity. CONCLUSIONS It has shown the influence of dopaminergic pathway in the genetics of alcohol dependence with differences between men and women and providing a lifestyle profile of excessive drinkers.
Collapse
Affiliation(s)
- David Celorrio
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Xavier Muñoz
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Pilar Amiano
- Public Health Division of Gipuzkoa, Department of Health of the Regional Government of the Basque Country, Donostia, Spain BIODonostia Research Institute, San Sebastián, Spain CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain
| | - Miren Dorronsoro
- Public Health Division of Gipuzkoa, Department of Health of the Regional Government of the Basque Country, Donostia, Spain BIODonostia Research Institute, San Sebastián, Spain CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain
| | - Luis Bujanda
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - María-José Sánchez
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Andalusian School of Public Health, Granada, Spain
| | - Esther Molina-Montes
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Andalusian School of Public Health, Granada, Spain
| | - Carmen Navarro
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - M Dolores Chirlaque
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - José MaríaHuerta
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Public Health Institute of Navarra, Pamplona, Spain
| | - Aurelio Barricarte
- CIBER Epidemiología y Salud Pública CIBERESP, Barcelona, Spain Public Health Institute of Navarra, Pamplona, Spain
| | | | - Eric J Duell
- Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Elizabeth Hijona
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - Marta Herreros-Villanueva
- Departmenet of Gastroenterology, Donostia Hospital-Instituto Biodonostia, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), San Sebastian, Spain
| | - Núria Sala
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain Unit of Nutrition, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Miguel A Alfonso-Sánchez
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, 'Lucio Lascaray' Center for Research and Advanced Studies (CIEA), University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
142
|
Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiol Behav 2016; 162:37-45. [PMID: 27085908 DOI: 10.1016/j.physbeh.2016.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward.
Collapse
|
143
|
Gluskin BS, Mickey BJ. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 2016; 6:e747. [PMID: 26926883 PMCID: PMC4872447 DOI: 10.1038/tp.2016.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.
Collapse
Affiliation(s)
- B S Gluskin
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - B J Mickey
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
144
|
Olivo G, Wiemerslage L, Nilsson EK, Solstrand Dahlberg L, Larsen AL, Olaya Búcaro M, Gustafsson VP, Titova OE, Bandstein M, Larsson EM, Benedict C, Brooks SJ, Schiöth HB. Resting-State Brain and the FTO Obesity Risk Allele: Default Mode, Sensorimotor, and Salience Network Connectivity Underlying Different Somatosensory Integration and Reward Processing between Genotypes. Front Hum Neurosci 2016; 10:52. [PMID: 26924971 PMCID: PMC4756146 DOI: 10.3389/fnhum.2016.00052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene are linked to obesity, but how these SNPs influence resting-state neural activation is unknown. Few brain-imaging studies have investigated the influence of obesity-related SNPs on neural activity, and no study has investigated resting-state connectivity patterns. We tested connectivity within three, main resting-state networks: default mode (DMN), sensorimotor (SMN), and salience network (SN) in 30 male participants, grouped based on genotype for the rs9939609 FTO SNP, as well as punishment and reward sensitivity measured by the Behavioral Inhibition (BIS) and Behavioral Activation System (BAS) questionnaires. Because obesity is associated with anomalies in both systems, we calculated a BIS/BAS ratio (BBr) accounting for features of both scores. A prominence of BIS over BAS (higher BBr) resulted in increased connectivity in frontal and paralimbic regions. These alterations were more evident in the obesity-associated AA genotype, where a high BBr was also associated with increased SN connectivity in dopaminergic circuitries, and in a subnetwork involved in somatosensory integration regarding food. Participants with AA genotype and high BBr, compared to corresponding participants in the TT genotype, also showed greater DMN connectivity in regions involved in the processing of food cues, and in the SMN for regions involved in visceral perception and reward-based learning. These findings suggest that neural connectivity patterns influence the sensitivity toward punishment and reward more closely in the AA carriers, predisposing them to developing obesity. Our work explains a complex interaction between genetics, neural patterns, and behavioral measures in determining the risk for obesity and may help develop individually-tailored strategies for obesity prevention.
Collapse
Affiliation(s)
- Gaia Olivo
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Emil K Nilsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | | | - Anna L Larsen
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Marcela Olaya Búcaro
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Veronica P Gustafsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Olga E Titova
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Marcus Bandstein
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Elna-Marie Larsson
- Section of Neuroradiology, Department of Radiology, Uppsala University Uppsala, Sweden
| | - Christian Benedict
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Samantha J Brooks
- Department of Psychiatry, University of Cape Town Cape Town, South Africa
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
145
|
Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 2016; 63:223-38. [PMID: 26850211 DOI: 10.1016/j.neubiorev.2016.01.013] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 02/07/2023]
Abstract
Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, University of Alabama at Birmingham School of Medicine, 619 19th St. South, Birmingham, AL 35249, United States.
| | - Peter H Hutson
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Barry K Herman
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, CASAColumbia and Connecticut Mental Health Center, Yale University School of Medicine, 34 Park St., New Haven, CT 06519, United States.
| |
Collapse
|
146
|
Reduced striatal dopamine D2/3 receptor availability in Body Dysmorphic Disorder. Eur Neuropsychopharmacol 2016; 26:350-356. [PMID: 26711686 DOI: 10.1016/j.euroneuro.2015.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022]
Abstract
Though the dopaminergic system is implicated in Obsessive Compulsive and Related Disorders (OCRD), the dopaminergic system has never been investigated in-vivo in Body Dysmorphic Disorder (BDD). In line with consistent findings of reduced striatal dopamine D2/3 receptor availability in Obsessive Compulsive Disorder (OCD), we hypothesized that the dopamine D2/3 receptor availability in the striatum will be lower in patients with BDD in comparison to healthy subjects. Striatal dopamine D2/3 receptor Binding Potential (BPND) was examined in 12 drug-free BDD patients and 12 control subjects pairwise matched by age, sex, and handedness using [(123)I]iodobenzamide Single Photon Emission Computed Tomography (SPECT; bolus/constant infusion technique). Regions of interest were the caudate nucleus and the putamen. BPND was calculated as the ratio of specific striatal to binding in the occipital cortex (representing nonspecific binding). Compared to controls, dopamine D2/3 receptor BPND was significantly lower in BDD, both in the putamen (p=0.017) and caudate nucleus (p=0.022). This study provides the first evidence of a disturbed dopaminergic system in BDD patients. Although previously BDD was classified as a separate disorder (somatoform disorder), our findings give pathophysiological support for the recent reclassification of BDD to the OCRD in DSM-5.
Collapse
|
147
|
|
148
|
Dretsch MN, Williams K, Emmerich T, Crynen G, Ait-Ghezala G, Chaytow H, Mathura V, Crawford FC, Iverson GL. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress. Brain Behav 2016; 6:e00392. [PMID: 27110438 PMCID: PMC4834940 DOI: 10.1002/brb3.392] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. METHODS Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. RESULTS Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2) = 0.22, P < 0.001). However, predeployment traumatic stress, alone, accounted for 17% of the postdeployment PTSD scores. CONCLUSION These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.
Collapse
Affiliation(s)
- Michael N Dretsch
- U.S. Army Aeromedical Research Laboratory 6901 Farrel Road Fort Rucker Alabama 22206; National Intrepid Center of Excellence Walter Reed National Military Medical Center 4860 South Palmer Road Bethesda Maryland 20889; Human Dimension Division (HDD) Headquarters Army Training and Doctrine Command (HQ TRADOC) 950 Jefferson Ave Fort Eustis Virginia 23604
| | - Kathy Williams
- National Intrepid Center of Excellence Walter Reed National Military Medical Center 4860 South Palmer Road Bethesda Maryland 20889
| | - Tanja Emmerich
- Roskamp Institute 2040 Whitfield Ave Sarasota Florida 34243
| | - Gogce Crynen
- Roskamp Institute 2040 Whitfield Ave Sarasota Florida 34243
| | | | - Helena Chaytow
- Roskamp Institute 2040 Whitfield Ave Sarasota Florida 34243
| | - Venkat Mathura
- Roskamp Institute 2040 Whitfield Ave Sarasota Florida 34243
| | | | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation Harvard Medical School Boston Massachusetts; Spaulding Rehabilitation Hospital Boston Massachusetts; Red Sox Foundation and Massachusetts General Hospital Home Base Program Boston Massachusetts; Defense and Veterans Brain Injury Center Bethesda Maryland; Center for Health and Rehabilitation Department of Physical Medicine & Rehabilitation Harvard Medical School 79/96 Thirteenth Street Charlestown Navy Yard Charlestown Massachusetts 02129
| |
Collapse
|
149
|
Oda Y, Kanahara N, Iyo M. Alterations of Dopamine D2 Receptors and Related Receptor-Interacting Proteins in Schizophrenia: The Pivotal Position of Dopamine Supersensitivity Psychosis in Treatment-Resistant Schizophrenia. Int J Mol Sci 2015; 16:30144-63. [PMID: 26694375 PMCID: PMC4691170 DOI: 10.3390/ijms161226228] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Although the dopamine D2 receptor (DRD2) has been a main target of antipsychotic pharmacotherapy for the treatment of schizophrenia, the standard treatment does not offer sufficient relief of symptoms to 20%-30% of patients suffering from this disorder. Moreover, over 80% of patients experience relapsed psychotic episodes within five years following treatment initiation. These data strongly suggest that the continuous blockade of DRD2 by antipsychotic(s) could eventually fail to control the psychosis in some point during long-term treatment, even if such treatment has successfully provided symptomatic improvement for the first-episode psychosis, or stability for the subsequent chronic stage. Dopamine supersensitivity psychosis (DSP) is historically known as a by-product of antipsychotic treatment in the manner of tardive dyskinesia or transient rebound psychosis. Numerous data in psychopharmacological studies suggest that the up-regulation of DRD2, caused by antipsychotic(s), is likely the mechanism underlying the development of the dopamine supersensitivity state. However, regardless of evolving notions of dopamine signaling, particularly dopamine release, signal transduction, and receptor recycling, most of this research has been conducted and discussed from the standpoint of disease etiology or action mechanism of the antipsychotic, not of DSP. Hence, the mechanism of the DRD2 up-regulation or mechanism evoking clinical DSP, both of which are caused by pharmacotherapy, remains unknown. Once patients experience a DSP episode, they become increasingly difficult to treat. Light was recently shed on a new aspect of DSP as a treatment-resistant factor. Clarification of the detailed mechanism of DSP is therefore crucial, and a preventive treatment strategy for DSP or treatment-resistant schizophrenia is urgently needed.
Collapse
Affiliation(s)
- Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan.
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan.
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan.
| |
Collapse
|
150
|
Huang E, Maciukiewicz M, Zai CC, Tiwari AK, Li J, Potkin SG, Lieberman JA, Meltzer HY, Müller DJ, Kennedy JL. Preliminary evidence for association of genome-wide significant DRD2 schizophrenia risk variant with clozapine response. Pharmacogenomics 2015; 17:103-9. [PMID: 26666695 DOI: 10.2217/pgs.15.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The recent Psychiatric Genomics Consortium genome-wide association study identified an SNP, rs2514218, located 47kb upstream of the DRD2 gene to be associated with risk for schizophrenia (p = 2.75e-11). Since all antipsychotics bind to dopamine D2 receptors, we examined rs2514218 in relation to response to antipsychotic treatment. PATIENTS & METHODS We investigated the SNP in relation to treatment response in a prospective study consisting of 208 patients (151 Caucasians, 42 African-Americans and 15 others) treated with clozapine for 6 months. RESULTS rs2514218 was associated with total score change in the brief psychiatric rating scale under an additive model (pcorr= 0.033). CONCLUSION Our finding provides evidence for rs2514218 association with antipsychotic response, but further replication is required before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Eric Huang
- 1 King's College Circle, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Malgorzata Maciukiewicz
- 250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Clement C Zai
- 250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Arun K Tiwari
- 250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Jiang Li
- 303 East Chicago Avenue, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven G Potkin
- 5251 California Avenue, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92617, USA
| | - Jeffrey A Lieberman
- 1051 Riverside Drive, Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Herbert Y Meltzer
- 303 East Chicago Avenue, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel J Müller
- 250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada.,250 College Street, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - James L Kennedy
- 250 College Street, Pharmacogenetic Research Clinic, Centre for Addiction & Mental Health, Toronto, ON, M5T 1R8, Canada.,250 College Street, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|