101
|
Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets. Behav Pharmacol 2015; 25:705-16. [PMID: 25000488 DOI: 10.1097/fbp.0000000000000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for 3 months. Then, operant sessions began in which rats (n=9 standard chow; n=10 high-fat) chose between one sucrose pellet delivered immediately versus three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered intraperitoneally before some choice sessions under both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve values. Rats in the high-fat diet condition showed increased sensitivity to haloperidol compared with chow-fed controls; haloperidol increased discounting in both dietary groups in the sucrose condition, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking dopamine-2 and cannabinoid-1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task.
Collapse
|
102
|
George Wilson A, Franck CT, Terry Mueller E, Landes RD, Kowal BP, Yi R, Bickel WK. Predictors of delay discounting among smokers: education level and a Utility Measure of Cigarette Reinforcement Efficacy are better predictors than demographics, smoking characteristics, executive functioning, impulsivity, or time perception. Addict Behav 2015; 45:124-33. [PMID: 25661991 DOI: 10.1016/j.addbeh.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Ninety-four smokers completed the delay discounting procedure for either hypothetical amounts of money, $10 (money) and $1000 (money) or hypothetical amounts of cigarettes ($10 and $1000 worth of cigarettes). We investigated how variables previously found to be related to rates of delay discounting accounted for the observed results. These variables included the following: demographic information, smoking characteristics, executive function abilities, impulsivity, time perception, and the Utility Measure of Cigarette Reinforcing Efficacy (UMCE). Education level and UMCE were each significantly correlated with 3 out of 4 of the discounting measures. Moreover, the largest effect sizes observed were between these two measures and the four discounting measures. All potential discounting predictors were also investigated using step-wise linear regression with Bayesian Information Criterion (BIC) analysis—these BIC models revealed that education level and UMCE accounted for large portions of the variance. We conclude that education level and UMCE were the most consistent predictors of discounting. This data is discussed within the framework of a widely accepted neuroeconomic model that suggests that two brain systems separately assess two separate facets of decision-making, and the interplay between these two systems determines self-control in smokers. We hypothesize that education level and UMCE may serve as surrogate measures of the functionality of these two systems and that discounting may be a sentinel measure of self-control.
Collapse
|
103
|
Khani A, Kermani M, Hesam S, Haghparast A, Argandoña EG, Rainer G. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making. Psychopharmacology (Berl) 2015; 232:2097-112. [PMID: 25529106 DOI: 10.1007/s00213-014-3841-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
Abstract
Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.
Collapse
Affiliation(s)
- Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, CH 1700, Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
104
|
Hamilton KR, Mitchell MR, Wing VC, Balodis IM, Bickel WK, Fillmore M, Lane SD, Lejuez CW, Littlefield AK, Luijten M, Mathias CW, Mitchell SH, Napier TC, Reynolds B, Schütz CG, Setlow B, Sher KJ, Swann AC, Tedford SE, White MJ, Winstanley CA, Yi R, Potenza MN, Moeller FG. Choice impulsivity: Definitions, measurement issues, and clinical implications. Personal Disord 2015; 6:182-98. [PMID: 25867841 PMCID: PMC4535726 DOI: 10.1037/per0000099] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impulsivity critically relates to many psychiatric disorders. Given the multifaceted construct that impulsivity represents, defining core aspects of impulsivity is vital for the assessment and understanding of clinical conditions. Choice impulsivity (CI), involving the preferential selection of smaller sooner rewards over larger later rewards, represents one important type of impulsivity. The International Society for Research on Impulsivity (InSRI) convened to discuss the definition and assessment of CI and provide recommendations regarding measurement across species. Commonly used preclinical and clinical CI behavioral tasks are described, and considerations for each task are provided to guide CI task selection. Differences in assessment of CI (self-report, behavioral) and calculating CI indices (e.g., area-under-the-curve, indifference point, and steepness of discounting curve) are discussed along with properties of specific behavioral tasks used in preclinical and clinical settings. The InSRI group recommends inclusion of measures of CI in human studies examining impulsivity. Animal studies examining impulsivity should also include assessments of CI and these measures should be harmonized in accordance with human studies of the disorders being modeled in the preclinical investigations. The choice of specific CI measures to be included should be based on the goals of the study and existing preclinical and clinical literature using established CI measures.
Collapse
Affiliation(s)
- Kristen R Hamilton
- Department of Psychology, Maryland Neuroimaging Center, Center for Addictions, Personality, and Emotion Research, Maryland Neuroimaging Center, University of Maryland
| | | | - Victoria C Wing
- Schizophrenia Division, Complex Mental Illness, Centre for Addiction and Mental Health
| | - Iris M Balodis
- Department of Psychiatry, Yale University School of Medicine
| | | | | | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas at Houston Medical School
| | - C W Lejuez
- Department of Psychology, Center for Addictions, Personality, and Emotion Research, University of Maryland
| | | | | | - Charles W Mathias
- Department of Psychiatry, University of Texas Health Science Center San Antonio
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health and Science University
| | - T Celeste Napier
- Department of Pharmacology, Center for Compulsive Behavior and Addiction, Rush University Medical Center
| | - Brady Reynolds
- Department of Behavioral Science, University of Kentucky
| | | | - Barry Setlow
- Department of Psychiatry, Center for Addiction Research and Education, University of Florida
| | - Kenneth J Sher
- Department of Psychological Sciences, University of Missouri
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine
| | - Stephanie E Tedford
- Department of Pharmacology, Center for Compulsive Behavior and Addiction, Rush University Medical Center
| | - Melanie J White
- School of Psychology and Counselling, Institute of Health and Biomedical Innovation, Queensland University of Technology
| | | | - Richard Yi
- Department of Psychology, Center for Addictions, Personality, and Emotion Research, University of Maryland
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine
| |
Collapse
|
105
|
Desrosiers NA, Ramaekers JG, Chauchard E, Gorelick DA, Huestis MA. Smoked cannabis' psychomotor and neurocognitive effects in occasional and frequent smokers. J Anal Toxicol 2015; 39:251-61. [PMID: 25745105 DOI: 10.1093/jat/bkv012] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Δ9-Tetrahydrocannabinol (THC), the primary psychoactive constituent in cannabis, impairs psychomotor performance, cognition and driving ability; thus, driving under the influence of cannabis is a public safety concern. We documented cannabis' psychomotor, neurocognitive, subjective and physiological effects in occasional and frequent smokers to investigate potential differences between these smokers. Fourteen frequent (≥4x/week) and 11 occasional (<2x/week) cannabis smokers entered a secure research unit ∼19 h prior to smoking one 6.8% THC cigarette. Cognitive and psychomotor performance was evaluated with the critical tracking (CTT), divided attention (DAT), n-back (working memory) and Balloon Analog Risk (BART) (risk-taking) tasks at -1.75, 1.5, 3.5, 5.5 and 22.5 h after starting smoking. GLM (General Linear Model) repeated measures ANOVA was utilized to compare scores. Occasional smokers had significantly more difficulty compensating for CTT tracking error compared with frequent smokers 1.5 h after smoking. Divided attention performance declined significantly especially in occasional smokers, with session × group effects for tracking error, hits, false alarms and reaction time. Cannabis smoking did not elicit session × group effects on the n-back or BART. Controlled cannabis smoking impaired psychomotor function, more so in occasional smokers, suggesting some tolerance to psychomotor impairment in frequent users. These data have implications for cannabis-associated impairment in driving under the influence of cannabis cases.
Collapse
Affiliation(s)
- Nathalie A Desrosiers
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutic Research Branch, NIDA IRP, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224, USA Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emeline Chauchard
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutic Research Branch, NIDA IRP, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224, USA Present address: Laboratoire de Psychologie des Pays de la Loire, Faculté de Psychologie, Université de Nantes, Nantes, France
| | - David A Gorelick
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutic Research Branch, NIDA IRP, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224, USA Present address: Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, Clinical Pharmacology and Therapeutic Research Branch, NIDA IRP, 251 Bayview Boulevard, Suite 200 Room 05A-721, Baltimore, MD 21224, USA
| |
Collapse
|
106
|
Ansell EB, Laws HB, Roche MJ, Sinha R. Effects of marijuana use on impulsivity and hostility in daily life. Drug Alcohol Depend 2015; 148:136-42. [PMID: 25595054 PMCID: PMC4330120 DOI: 10.1016/j.drugalcdep.2014.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Marijuana use is increasingly prevalent among young adults. While research has found adverse effects associated with marijuana use within experimentally controlled laboratory settings, it is unclear how recreational marijuana use affects day-to-day experiences in users. The present study sought to examine the effects of marijuana use on within-person changes in impulsivity and interpersonal hostility in daily life using smartphone administered assessments. METHODS Forty-three participants with no substance dependence reported on their alcohol consumption, tobacco use, recreational marijuana use, impulsivity, and interpersonal hostility over the course of 14 days. Responses were analyzed using multilevel modeling. RESULTS Marijuana use was associated with increased impulsivity on the same day and the following day relative to days when marijuana was not used, independent of alcohol use. Marijuana was also associated with increased hostile behaviors and perceptions of hostility in others on the same day when compared to days when marijuana was not used. These effects were independent of frequency of marijuana use or alcohol use. There were no significant effects of alcohol consumption on impulsivity or interpersonal hostility. CONCLUSIONS Marijuana use is associated with changes in impulse control and hostility in daily life. This may be one route by which deleterious effects of marijuana are observed for mental health and psychosocial functioning. Given the increasing prevalence of recreational marijuana use and the potential legalization in some states, further research on the potential consequences of marijuana use in young adults' day-to-day life is warranted.
Collapse
Affiliation(s)
- Emily B. Ansell
- Department of Psychiatry, Yale University School of Medicine, 2 Church St. South, Suite 209, New Haven, CT 06519
| | - Holly B. Laws
- Department of Psychiatry, Yale University School of Medicine, 2 Church St. South, Suite 209, New Haven, CT 06519
| | - Michael J. Roche
- Department of Psychology, The Pennsylvania State University, 140 Moore Building, University Park, PA 16802
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, 2 Church St. South, Suite 209, New Haven, CT 06519
| |
Collapse
|
107
|
Wrege J, Schmidt A, Walter A, Smieskova R, Bendfeldt K, Radue EW, Lang UE, Borgwardt S. Effects of cannabis on impulsivity: a systematic review of neuroimaging findings. Curr Pharm Des 2015; 20:2126-37. [PMID: 23829358 PMCID: PMC4052819 DOI: 10.2174/13816128113199990428] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/10/2013] [Indexed: 01/18/2023]
Abstract
We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor
control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature
published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated
acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies
investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic
cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain
regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white
matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity
as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal
study designs are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefan Borgwardt
- Department of Psychiatry UPK, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
108
|
Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015; 26:59-72. [PMID: 25369747 PMCID: PMC5398317 DOI: 10.1097/fbp.0000000000000109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.
Collapse
Affiliation(s)
- Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departments of Psychology
| | | | | | - Jeffrey W. Dalley
- Departments of Psychology
- Department of Psychiatry, Addenbrookes’s Hospital University of Cambridge, Cambridge, UK
| |
Collapse
|
109
|
Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. Eur Neuropsychopharmacol 2015; 25:26-37. [PMID: 25532865 DOI: 10.1016/j.euroneuro.2014.11.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 11/23/2022]
Abstract
Cannabis use can induce acute psychotic symptoms and increase the risk of schizophrenia. Impairments in inhibitory control and processing are known to occur both under the influence of cannabis and in schizophrenia. Whether cannabis-induced impairment in inhibitory processing is related to the acute induction of psychotic symptoms under its influence is unclear. We investigated the effects of acute oral administration of 10mg of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive ingredient of cannabis, on inhibitory control and regional brain activation during inhibitory processing in humans and examined whether these effects are related to the induction of psychotic symptoms under its influence using a repeated-measures, placebo-controlled, double-blind, within-subject design. We studied thirty-six healthy, English-speaking, right-handed men with minimal previous exposure to cannabis and other illicit drugs twice using functional magnetic resonance imaging (fMRI) while they performed a response inhibition (Go/No-Go) task. Relative to placebo, delta-9-THC caused transient psychotic symptoms, anxiety, intoxication and sedation, inhibition errors and impaired inhibition efficiency. Severity of psychotic symptoms was directly correlated with inhibition error frequency and inversely with inhibition efficiency under the influence of delta-9-THC. Delta-9-THC attenuated left inferior frontal activation which was inversely correlated with the frequency of inhibition errors and severity of psychotic symptoms and positively with inhibition efficiency under its influence. These results provide experimental evidence that impairments in cognitive processes involved in the inhibitory control of thoughts and actions and inferior frontal function under the influence of cannabis may have a role in the emergence of transient psychotic symptoms under its influence.
Collapse
|
110
|
Cannabis and creativity: highly potent cannabis impairs divergent thinking in regular cannabis users. Psychopharmacology (Berl) 2015; 232:1123-34. [PMID: 25288512 PMCID: PMC4336648 DOI: 10.1007/s00213-014-3749-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
RATIONALE Cannabis users often claim that cannabis has the potential to enhance their creativity. Research suggests that aspects of creative performance might be improved when intoxicated with cannabis; however, the evidence is not conclusive. OBJECTIVE The aim of this study was to investigate the acute effects of cannabis on creativity. METHODS We examined the effects of administering a low (5.5 mg delta-9-tetrahydrocannabinol [THC]) or high (22 mg THC) dose of vaporized cannabis vs. placebo on creativity tasks tapping into divergent (Alternate Uses Task) and convergent (Remote Associates Task) thinking, in a population of regular cannabis users. The study used a randomized, double-blind, between-groups design. RESULTS Participants in the high-dose group (n = 18) displayed significantly worse performance on the divergent thinking task, compared to individuals in both the low-dose (n = 18) and placebo (n = 18) groups. CONCLUSIONS The findings suggest that cannabis with low potency does not have any impact on creativity, while highly potent cannabis actually impairs divergent thinking.
Collapse
|
111
|
McDonald MP. Methods and Models of the Nonmotor Symptoms of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
112
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
113
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
114
|
Grant JE, Chamberlain SR. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addict Behav 2014; 39:1632-1639. [PMID: 24864028 DOI: 10.1016/j.addbeh.2014.04.022] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/02/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Abstract
Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders.
Collapse
Affiliation(s)
- Jon E Grant
- University of Chicago, Pritzker School of Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; MRC/Wellcome Trust Behavioural and Clinical Neurosciences Institute, UK; Cambridge & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
115
|
Bhattacharyya S, Iyegbe C, Atakan Z, Martin-Santos R, Crippa JA, Xu X, Williams S, Brammer M, Rubia K, Prata D, Collier DA, McGuire PK. Protein kinase B (AKT1) genotype mediates sensitivity to cannabis-induced impairments in psychomotor control. Psychol Med 2014; 44:3315-3328. [PMID: 25065544 DOI: 10.1017/s0033291714000920] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND What determines inter-individual variability to impairments in behavioural control that may underlie road-traffic accidents, and impulsive and violent behaviours occurring under the influence of cannabis, the most widely used illicit drug worldwide? METHOD Employing a double-blind, repeated-measures design, we investigated the genetic and neural basis of variable sensitivity to cannabis-induced behavioural dyscontrol in healthy occasional cannabis users. Acute oral challenge with placebo or Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, was combined with functional magnetic resonance imaging, while participants performed a response inhibition task that involved inhibiting a pre-potent motor response. They were genotyped for rs1130233 single nucleotide polymorphisms (SNPs) of the protein kinase B (AKT1) gene. RESULTS Errors of inhibition were significantly (p = 0.008) increased following administration of THC in carriers of the A allele, but not in G allele homozygotes of the AKT1 rs1130233 SNP. The A allele carriers also displayed attenuation of left inferior frontal response with THC evident in the sample as a whole, while there was a modest enhancement of inferior frontal activation in the G homozygotes. There was a direct relationship (r = -0.327, p = 0.045) between the behavioural effect of THC and its physiological effect in the inferior frontal gyrus, where AKT1 genotype modulated the effect of THC. CONCLUSIONS These results require independent replication and show that differing vulnerability to acute psychomotor impairments induced by cannabis depends on variation in a gene that influences dopamine function, and is mediated through modulation of the effect of cannabis on the inferior frontal cortex, that is rich in dopaminergic innervation and critical for psychomotor control.
Collapse
Affiliation(s)
- S Bhattacharyya
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - C Iyegbe
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - Z Atakan
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - R Martin-Santos
- Pharmacology Research Unit, IMIM-Hospital del Mar and Psychiatric Department,ICN,Hospital Clinico, Barcelona,Spain
| | - J A Crippa
- Department of Neurology, Psychiatry and Medical Psychology, Faculty of Medicine of Ribeirão Preto,University of São Paulo,Brazil
| | - X Xu
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - S Williams
- Department of Neuroimaging, Centre for Neuroimaging Sciences,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - M Brammer
- Department of Neuroimaging, Centre for Neuroimaging Sciences,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - K Rubia
- Department of Child and Adolescent Psychiatry,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - D Prata
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - D A Collier
- Social, Genetic and Developmental Psychiatry Centre,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| | - P K McGuire
- Department of Psychosis Studies,King's College London,Institute of Psychiatry, De Crespigny Park, London,UK
| |
Collapse
|
116
|
Call NA, Reavis AR, McCracken CE, Gillespie SE, Scheithauer MC. The Impact of Delays on Parents’ Perceptions of Treatments for Problem Behavior. J Autism Dev Disord 2014; 45:1013-25. [DOI: 10.1007/s10803-014-2257-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
117
|
Abstract
Impulsivity is associated with various psychopathologies, and elevated impulsivity is typically disadvantageous. This manuscript reviews recent investigations into the neurobiology of impulsivity using human imaging techniques and animal models. Both human imaging and preclinical pharmacological manipulations have yielded important insights into the neurobiological underpinnings of impulsivity. A more thorough understanding of the complex neurobiology underlying aspects of impulsivity may provide insight into new treatment options that target elevated impulsivity and psychopathologies such as addictions.
Collapse
Affiliation(s)
- Marci R Mitchell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT ; Department of Neurobiology, Yale University School of Medicine, New Haven, CT ; Child Study Center, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
118
|
Kollins SH, Schoenfelder EN, English JS, Holdaway A, Van Voorhees E, O'Brien BR, Dew R, Chrisman AK. An exploratory study of the combined effects of orally administered methylphenidate and delta-9-tetrahydrocannabinol (THC) on cardiovascular function, subjective effects, and performance in healthy adults. J Subst Abuse Treat 2014; 48:96-103. [PMID: 25175495 DOI: 10.1016/j.jsat.2014.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
Methylphenidate (MPH) is commonly prescribed for the treatment of Attention Deficit Hyperactivity Disorder (ADHD), and is often used illicitly by young adults. Illicit users often coadminister MPH with marijuana. Little is known about physiologic and subjective effects of these substances used in combination. In this double-blind, cross-over experiment, sixteen healthy adult subjects free from psychiatric illness (including ADHD) and reporting modest levels of marijuana use participated in 6 experimental sessions wherein all combinations of placebo or 10mg oral doses of delta-9-tetrahydocannibinol (THC); and 0mg, 10mg and 40 mg of MPH were administered. Sessions were separated by at least 48 hours. Vital signs, subjective effects, and performance measure were collected. THC and MPH showed additive effects on heart rate and rate pressure product (e.g., peak heart rate for 10mg THC+0mg, 10mg, and 40 mg MPH=89.1, 95.9, 102.0 beats/min, respectively). Main effects of THC and MPH were also observed on a range of subjective measures of drug effects, and significant THC dose × MPH dose interactions were found on measures of "Feel Drug," "Good Effects," and "Take Drug Again." THC increased commission errors on a continuous performance test (CPT) and MPH reduced reaction time variability on this measure. Effects of THC, MPH, and their combination were variable on a measure of working memory (n-back task), though in general, MPH decreased reaction times and THC mitigated these effects. These results suggest that the combination of low to moderate doses of MPH and THC produces unique effects on cardiovascular function, subjective effects and performance measures.
Collapse
Affiliation(s)
- Scott H Kollins
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC.
| | | | - Joseph S English
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC
| | - Alex Holdaway
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC
| | | | - Benjamin R O'Brien
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC
| | - Rachel Dew
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC
| | - Allan K Chrisman
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, NC
| |
Collapse
|
119
|
Bossong MG, Jansma JM, Bhattacharyya S, Ramsey NF. Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or ∆9-tetrahydrocannabinol (THC). Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:53-69. [PMID: 24380726 DOI: 10.1016/j.pnpbp.2013.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/16/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Institute of Psychiatry, Department of Psychosis Studies, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom.
| | - J Martijn Jansma
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Department of Psychosis Studies, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Nick F Ramsey
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
120
|
Tanno T, Maguire DR, Henson C, France CP. Effects of amphetamine and methylphenidate on delay discounting in rats: interactions with order of delay presentation. Psychopharmacology (Berl) 2014; 231:85-95. [PMID: 23963529 PMCID: PMC3877712 DOI: 10.1007/s00213-013-3209-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/06/2013] [Indexed: 01/27/2023]
Abstract
RATIONALE Drug effects on delay discounting are thought to reflect changes in sensitivity to reinforcer delay, although other behavioral mechanisms might be involved. One strategy for revealing the influence of different behavioral mechanisms is to alter features of the procedures in which they are studied. OBJECTIVE This experiment examined whether the order of delay presentation under within-session delay discounting procedures impacts drug effects on discounting. METHODS Rats responded under a discrete-trial choice procedure in which responses on one lever delivered one food pellet immediately and responses on the other lever delivered three food pellets either immediately or after a delay. The delay to the larger reinforcer (0, 4, 8, 16, and 32 s) was varied within session and the order of delay presentation (ascending or descending) varied between groups. RESULTS Amphetamine (0.1-1.78 mg/kg) and methylphenidate (1.0-17.8 mg/kg) shifted delay functions upward in the ascending group (increasing choice of the larger reinforcer) and downward in the descending group (decreasing choice of the larger reinforcer). Morphine (1.0-10.0 mg/kg) and delta-9-tetrahydrocannabinol (0.32-5.6 mg/kg) tended to shift the delay functions downward, regardless of order of delay presentation, thereby reducing choice of the larger reinforcer, even when both reinforcers were delivered immediately. CONCLUSION The effects of amphetamine and methylphenidate under delay discounting procedures differed depending on the order of delay presentation, indicating that drug-induced changes in discounting were due, in part, to mechanisms other than altered sensitivity to reinforcer delay. Instead, amphetamine and methylphenidate altered responding in a manner consistent with increased behavioral perseveration.
Collapse
Affiliation(s)
- Takayuki Tanno
- Departments of Pharmacology (TT, DRM, CH, CPF) and Psychiatry (CPF), University of Texas Health Science Center, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | | | | | | |
Collapse
|
121
|
Radhakrishnan R, Wilkinson ST, D'Souza DC. Gone to Pot - A Review of the Association between Cannabis and Psychosis. Front Psychiatry 2014; 5:54. [PMID: 24904437 PMCID: PMC4033190 DOI: 10.3389/fpsyt.2014.00054] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System , West Haven, CT , USA
| |
Collapse
|
122
|
van Wel JHP, Kuypers KPC, Theunissen EL, Toennes SW, Spronk DB, Verkes RJ, Ramaekers JG. Single doses of THC and cocaine decrease proficiency of impulse control in heavy cannabis users. Br J Pharmacol 2013; 170:1410-20. [PMID: 24106872 PMCID: PMC3838687 DOI: 10.1111/bph.12425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabis is the most popular drug used in the European Union, closely followed by cocaine. Whereas cannabis impairs neurocognitive function in occasional cannabis users, such impairments appear less prominent in heavy users, possibly as a result of tolerance. The present study was designed to assess whether the impairing effects of Δ(9) -tetrahydrocannabinol (THC) in heavy cannabis users would present in a wide range of neuropsychological functions or selectively affect specific performance domains. We also assessed the acute effects of cocaine on neurocognitive functions of heavy cannabis users. EXPERIMENTAL APPROACH Heavy cannabis users, who had a history of cocaine use (n = 61), participated in a double-blind, placebo-controlled, three-way crossover study. Subjects received single doses of cocaine HCl (300 mg), cannabis (THC μg·kg(-1) ) and placebo, and completed a number of tests measuring impulse control and psychomotor function. KEY RESULTS Single doses of cannabis impaired psychomotor function and increased response errors during impulsivity tasks. Single doses of cocaine improved psychomotor function and decreased response time in impulsivity tasks, but increased errors. CONCLUSIONS AND IMPLICATIONS Heavy cannabis users display impairments in a broad range of neuropsychological domains during THC intoxication. Impairments observed in psychomotor tasks, but not in impulsivity tasks, appeared smaller in magnitude as compared with those previously reported in occasional cannabis users. Heavy cannabis users were sensitive to the stimulating and inhibitory effects of cocaine on psychomotor function and impulsivity respectively. The reduction in proficiency in impulse control may put drug users at increased risk of repeated drug use and addiction.
Collapse
Affiliation(s)
- J H P van Wel
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, The Netherlands
| | - K P C Kuypers
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, The Netherlands
| | - E L Theunissen
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, The Netherlands
| | - S W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of FrankfurtFrankfurt, Germany
| | - D B Spronk
- Department of Psychiatry (966), Radboud University Nijmegen Medical CentreNijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, The Netherlands
| | - R J Verkes
- Department of Psychiatry (966), Radboud University Nijmegen Medical CentreNijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, The Netherlands
| | - J G Ramaekers
- Department Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, The Netherlands
| |
Collapse
|
123
|
|
124
|
Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol 2013; 108:44-79. [DOI: 10.1016/j.pneurobio.2013.06.005] [Citation(s) in RCA: 1270] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/24/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
|
125
|
|
126
|
Fagundo AB, de la Torre R, Jiménez-Murcia S, Agüera Z, Pastor A, Casanueva FF, Granero R, Baños R, Botella C, del Pino-Gutierrez A, Fernández-Real JM, Fernández-García JC, Frühbeck G, Gómez-Ambrosi J, Menchón JM, Moragrega I, Rodríguez R, Tárrega S, Tinahones FJ, Fernández-Aranda F. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. PLoS One 2013; 8:e66387. [PMID: 23840456 PMCID: PMC3686875 DOI: 10.1371/journal.pone.0066387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022] Open
Abstract
Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = −.17) or AEA (r = −.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.
Collapse
Affiliation(s)
- Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Zaida Agüera
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Antoni Pastor
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Personality, Evaluation and Psychological Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Amparo del Pino-Gutierrez
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Nursing Department of Public Health, Maternal and Child Health the Nursing School of the University of Barcelona, Barcelona, Spain
| | - Jose M. Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Jose C. Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - José M. Menchón
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III, Barcelona, Spain
| | - Inés Moragrega
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Roser Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Salomé Tárrega
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
127
|
Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev 2013; 23:117-37. [PMID: 23129391 PMCID: PMC3593817 DOI: 10.1007/s11065-012-9222-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/22/2012] [Indexed: 12/19/2022]
Abstract
Decades of research have examined the effects of cannabis on neurocognition. Recent advances in this field provide us with a better understanding of how cannabis use influences neurocognition both acutely (during intoxication) and non-acutely (after acute effects subside). Evidence of problems with episodic memory is one of the most consistent findings reported; however, several other neurocognitive domains appear to be adversely affected by cannabis use under various conditions. There is significant variability in findings across studies, thus a discussion of potential moderators is increasingly relevant. The purpose of this review was to 1) provide an update on research of cannabis' acute and non-acute effects on neurocognition, with a focus on findings since 2007 and 2) suggest and discuss how neurodevelopmental issues and sex differences may influence cannabis effects on neurocognition. Finally we discuss how future investigations may lead to better understanding of the complex interplay among cannabis, stages of neurodevelopment, and sex on neurocognitive functioning.
Collapse
Affiliation(s)
| | | | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London
| | - Raul Gonzalez
- Department of Psychology, Florida International University
| |
Collapse
|
128
|
Fridberg DJ, Skosnik PD, Hetrick WP, O’Donnell BF. Neural correlates of performance monitoring in chronic cannabis users and cannabis-naive controls. J Psychopharmacol 2013; 27:515-25. [PMID: 23427191 PMCID: PMC3923357 DOI: 10.1177/0269881113477745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic cannabis use is associated with residual negative effects on measures of executive functioning. However, little previous work has focused specifically on executive processes involved in performance monitoring in frequent cannabis users. The present study investigated event-related potential (ERP) correlates of performance monitoring in chronic cannabis users. The error-related negativity (ERN) and error positivity (Pe), ERPs sensitive to performance monitoring, were recorded from 30 frequent cannabis users (mean usage=5.52 days/week) and 32 cannabis-naïve control participants during a speeded stimulus discrimination task. The "oddball" P3 ERP was recorded as well. Users and controls did not differ on the amplitude or latency of the ERN; however, Pe amplitude was larger among users. Users also showed increased amplitude and reduced latency of the P3 in response to infrequent stimuli presented during the task. Among users, urinary cannabinoid metabolite levels at testing were unrelated to ERP outcomes. However, total years of cannabis use correlated negatively with P3 latency and positively with P3 amplitude, and age of first cannabis use correlated negatively with P3 amplitude. The results of this study suggest that chronic cannabis use is associated with alterations in neural activity related to the processing of motivationally-relevant stimuli (P3) and errors (Pe).
Collapse
Affiliation(s)
- Daniel J Fridberg
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | - Brian F O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
129
|
Abstract
BACKGROUND Cannabis is the most prevalent illicit drug identified in impaired drivers. The effects of cannabis on driving continue to be debated, making prosecution and legislation difficult. Historically, delays in sample collection, evaluating the inactive Δ(9)-tetrahydrocannabinol (THC) metabolite 11-nor-9-carboxy-THC, and polydrug use have complicated epidemiologic evaluations of driver impairment after cannabis use. CONTENT We review and evaluate the current literature on cannabis' effects on driving, highlighting the epidemiologic and experimental data. Epidemiologic data show that the risk of involvement in a motor vehicle accident (MVA) increases approximately 2-fold after cannabis smoking. The adjusted risk of driver culpability also increases substantially, particularly with increased blood THC concentrations. Studies that have used urine as the biological matrix have not shown an association between cannabis and crash risk. Experimental data show that drivers attempt to compensate by driving more slowly after smoking cannabis, but control deteriorates with increasing task complexity. Cannabis smoking increases lane weaving and impaired cognitive function. Critical-tracking tests, reaction times, divided-attention tasks, and lane-position variability all show cannabis-induced impairment. Despite purported tolerance in frequent smokers, complex tasks still show impairment. Combining cannabis with alcohol enhances impairment, especially lane weaving. SUMMARY Differences in study designs frequently account for inconsistencies in results between studies. Participant-selection bias and confounding factors attenuate ostensible cannabis effects, but the association with MVA often retains significance. Evidence suggests recent smoking and/or blood THC concentrations 2-5 ng/mL are associated with substantial driving impairment, particularly in occasional smokers. Future cannabis-and-driving research should emphasize challenging tasks, such as divided attention, and include occasional and chronic daily cannabis smokers.
Collapse
Affiliation(s)
- Rebecca L. Hartman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
- Program in Toxicology, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| |
Collapse
|
130
|
Sewell RA, Schnakenberg A, Elander J, Radhakrishnan R, Williams A, Skosnik PD, Pittman B, Ranganathan M, D’Souza DC. Acute effects of THC on time perception in frequent and infrequent cannabis users. Psychopharmacology (Berl) 2013; 226. [PMID: 23179965 PMCID: PMC3581701 DOI: 10.1007/s00213-012-2915-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RATIONALE Cannabinoids have been shown to alter time perception, but existing literature has several limitations. Few studies have included both time estimation and production tasks, few control for subvocal counting, most had small sample sizes, some did not record subjects' cannabis use, many tested only one dose, and used either oral or inhaled administration of Δ⁹-tetrahydrocannabinol (THC), leading to variable pharmacokinetics, and some used whole-plant cannabis containing cannabinoids other than THC. Our study attempted to address these limitations. OBJECTIVES This study aims to characterize the acute effects of THC and frequent cannabis use on seconds-range time perception. THC was hypothesized to produce transient, dose-related time overestimation and underproduction. Frequent cannabis smokers were hypothesized to show blunted responses to these alterations. METHODS IV THC was administered at doses from 0.015 to 0.05 mg/kg to 44 subjects who participated in several double-blind, randomized, counterbalanced, crossover, placebo-controlled studies. Visual time estimation and production tasks in the seconds range were presented to subjects three times on each test day. RESULTS All doses induced time overestimation and underproduction. Chronic cannabis use had no effect on baseline time perception. While infrequent/nonsmokers showed temporal overestimation at medium and high doses and temporal underproduction at all doses, frequent cannabis users showed no differences. THC effects on time perception were not dose related. CONCLUSIONS A psychoactive dose of THC increases internal clock speed as indicated by time overestimation and underproduction. This effect is not dose related and is blunted in chronic cannabis smokers who did not otherwise have altered baseline time perception.
Collapse
Affiliation(s)
- R. Andrew Sewell
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Ashley Schnakenberg
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Jacqueline Elander
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Rajiv Radhakrishnan
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Ashley Williams
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Patrick D. Skosnik
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Brian Pittman
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - Mohini Ranganathan
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| | - D. Cyril D’Souza
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, United States,VA Connecticut Healthcare System, West Haven, CT, United States,Clinical Neuroscience Research Unit, New Haven, CT, United States
| |
Collapse
|
131
|
Endocannabinoid/GABA interactions in the entopeduncular nucleus modulates alcohol intake in rats. Brain Res Bull 2013; 91:31-7. [DOI: 10.1016/j.brainresbull.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/31/2023]
|
132
|
Guegan T, Cutando L, Ayuso E, Santini E, Fisone G, Bosch F, Martinez A, Valjent E, Maldonado R, Martin M. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. Eur Neuropsychopharmacol 2013; 23:146-59. [PMID: 22612989 DOI: 10.1016/j.euroneuro.2012.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/28/2012] [Accepted: 04/14/2012] [Indexed: 11/28/2022]
Abstract
Palatability enhances food intake by hedonic mechanisms that prevail over caloric necessities. Different studies have demonstrated the role of endogenous cannabinoids in the mesocorticolimbic system in controlling food hedonic value and consumption. We hypothesize that the endogenous cannabinoid system could also be involved in the development of food-induced behavioral alterations, such as food-seeking and binge-eating, by a mechanism that requires neuroplastic changes in the brain reward pathway. For this purpose, we evaluated the role of the CB1 cannabinoid receptor (CB1-R) in the behavioral and neuroplastic changes induced by operant training for standard, highly caloric or highly palatable isocaloric food using different genetics, viral and pharmacological approaches. Neuroplasticity was evaluated by measuring changes in dendritic spine density in neurons previously labeled with the dye DiI. Only operant training to obtain highly palatable isocaloric food induced neuroplastic changes in neurons of the nucleus accumbens shell and prefrontal cortex that were associated to changes in food-seeking behavior. These behavioral and neuroplastic modifications induced by highly palatable isocaloric food were dependent on the activity of the CB1-R. Neuroplastic changes induced by highly palatable isocaloric food are similar to those produced by some drugs of abuse and may be crucial in the alteration of food-seeking behavior leading to overweight and obesity.
Collapse
Affiliation(s)
- Thomas Guegan
- Laboratori de Neurofarmacologia, Univeristat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Boomhower SR, Rasmussen EB, Doherty TS. Impulsive-choice patterns for food in genetically lean and obese Zucker rats. Behav Brain Res 2012; 241:214-21. [PMID: 23261877 DOI: 10.1016/j.bbr.2012.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023]
Abstract
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism.
Collapse
Affiliation(s)
- Steven R Boomhower
- Idaho State University, Department of Psychology, Mail Stop 8112, Pocatello, ID 83209-8112, United States
| | | | | |
Collapse
|
134
|
Balanced placebo design with marijuana: pharmacological and expectancy effects on impulsivity and risk taking. Psychopharmacology (Berl) 2012; 223:489-99. [PMID: 22588253 PMCID: PMC3829473 DOI: 10.1007/s00213-012-2740-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/27/2012] [Indexed: 12/18/2022]
Abstract
RATIONALE Marijuana is believed to increase impulsivity and risk taking, but the processes whereby it affects such behaviors are not understood. Indeed, either the pharmacologic effect of delta-9-tetrahydrocannabinol (THC) or the expectancy of receiving it may lead to deficits in cognitive processing and increases in risk taking. OBJECTIVES AND METHODS We examined the relative effects of expecting to receive active marijuana and the pharmacological drug effects using a balanced placebo design. Young adult regular marijuana users (N = 136) were randomly assigned into one of four groups in a two × two instructional set (Told THC vs. Told no THC) by drug administration (smoked marijuana with 2.8 % THC vs. placebo) design. Dependent measures included subjective intoxication, behavioral impulsivity, and decision-making related to risky behaviors. RESULTS Active THC, regardless of expectancy, impaired inhibition on the Stop Signal and Stroop Color-Word tasks. Expectancy of having smoked THC, regardless of active drug, decreased impulsive decision-making on a delay discounting task among participants reporting no deception and increased perception of sexual risk among women, consistent with a compensatory effect. Expectancy of smoking THC in combination with active THC increased negative perceptions from risky alcohol use. Active drug and expectancy independently increased subjective intoxication. CONCLUSIONS Results highlight the importance of marijuana expectancy effects as users believing they are smoking marijuana may compensate for expected intoxication effects when engaged in deliberate decision-making by making less impulsive and risky decisions. Effects of marijuana on impulsive disinhibition, by contrast, reflect direct pharmacologic effects for which participants did not compensate.
Collapse
|
135
|
Xie X, Arguello AA, Reittinger AM, Wells AM, Fuchs RA. Role of nicotinic acetylcholine receptors in the effects of cocaine-paired contextual stimuli on impulsive decision making in rats. Psychopharmacology (Berl) 2012; 223:271-9. [PMID: 22526542 PMCID: PMC4386831 DOI: 10.1007/s00213-012-2715-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Chronic cocaine exposure produces unconditioned enhancement in impulsive decision making; however, little is known about the effects of cocaine-paired conditioned stimuli on this behavior. Thus, this study explored the effects of cocaine-paired contextual stimuli on impulsive decision making and the contribution of nicotinic acetylcholine receptors (nAChRs) to this phenomenon. METHODS Rats were trained to achieve stable performance on a delay discounting task, which involved lever press-based choice between a single food pellet (small reward) available immediately and three food pellets (large reward) available after a 10-, 20-, 40-, or 60-s time delay. Rats then received Pavlovian context-cocaine (15 mg/kg, i.p.) and context-saline (1 ml/kg, i.p.) pairings in two other, distinct contexts. Subsequently, delay discounting task performance was assessed in the previously cocaine-paired or saline-paired context following pretreatment with saline or cocaine (15 mg/kg, Experiment 1) or with saline or the nAChR antagonist, mecamylamine (0.2 and 2 mg/kg, Experiment 2), using counterbalanced within-subjects testing designs. RESULTS Independent of cocaine pretreatment, rats exhibited greater decrease in preference for the large reward as a function of delay duration in the cocaine-paired context, relative to the saline-paired context. Furthermore, systemic mecamylamine pretreatment dose-dependently attenuated the decrease in preference for the large reward in the cocaine-paired context, but not in the saline-paired context, as compared to saline. CONCLUSION Cocaine-paired contextual stimuli evoke a state of impulsive decision making, which requires nAChR stimulation. Drug context-induced impulsivity likely increases the propensity for drug relapse in cocaine users, making the nAChR an interesting target for drug relapse prevention.
Collapse
Affiliation(s)
| | | | | | | | - Rita A. Fuchs
- Corresponding Author: Rita A. Fuchs, Ph.D., University of North Carolina at Chapel Hill, Department of Psychology, CB# 3270, Davie Hall, Telephone number: (919) 843 – 9112m, FAX number: (919) 962 – 2537,
| |
Collapse
|
136
|
Rossiter S, Thompson J, Hester R. Improving control over the impulse for reward: sensitivity of harmful alcohol drinkers to delayed reward but not immediate punishment. Drug Alcohol Depend 2012; 125:89-94. [PMID: 22503688 DOI: 10.1016/j.drugalcdep.2012.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive control dysfunction has been identified in dependent alcohol users and implicated in the transition from abuse to dependence, although evidence of dyscontrol in chronic but non-dependent 'harmful' alcohol abusers is mixed. The current study examined harmful alcohol users response inhibition over rewarding stimuli in the presence of monetary reward and punishment, to determine whether changes in sensitivity to these factors, noted in imaging studies of dependent users, influences impulse control. METHOD Harmful (n=30) and non-hazardous (n=55) alcohol users were administered a Monetary Incentive Go/No-go task that required participants to inhibit a prepotent motor response associated with reward. RESULTS Harmful alcohol users showed a significantly poorer ability to withhold their impulse for a rewarding stimulus in the presence of immediate monetary punishment for failure, while retaining equivalent response inhibition performance under neutral conditions (associated with neither monetary loss or gain), and significantly better performance under delayed reward conditions. CONCLUSIONS The results of the present study suggest that non-dependent alcohol abusers have altered sensitivity to reward and punishment that influences their impulse control for reward, in the absence of gross dyscontrol that is consistent with past findings in which such performance contingencies were not used. The ability of delayed monetary reward, but not punishment, to increase sustained impulse control in this sample has implications for the mechanism that might underlie the transition from alcohol abuse to dependence, as well as intervention strategies aimed at preventing this transition.
Collapse
Affiliation(s)
- Sarah Rossiter
- University of Melbourne, Department of Psychological Sciences, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
137
|
Gender-specific relationships between depressive symptoms, marijuana use, parental communication and risky sexual behavior in adolescence. J Youth Adolesc 2012; 42:1194-209. [PMID: 22927009 DOI: 10.1007/s10964-012-9809-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/18/2012] [Indexed: 10/28/2022]
Abstract
A large body of research has identified correlates of risky sexual behavior, with depressive symptoms and marijuana use among the most consistent psychosocial predictors of sexual risk. However, substantially less research has examined the relationship between these risk variables and adolescent risky sexual behavior over time as well as the interaction of these individual-level predictors with family-level variables such as parenting factors. Additionally, most studies have been restricted to one index of risky sexual behavior, have not taken into account the complex role of gender, and have not controlled for several of the factors that independently confer risk for risky sexual behavior. Therefore, the current study investigated the association between depressive symptoms and parameters of parenting on marijuana use, number of sexual partners and condom usage measured 9 months later for both boys and girls. Participants were 9th and 10th grade adolescents (N = 1,145; 57.7% female). We found that depressive symptoms may be a gender-specific risk factor for certain indices of risky sexual behavior. For boys only, marijuana use at Time 2 accounted for the variance in the relationship between depressive symptoms at Time 1 and number of partners at Time 2. Additionally, strictness of family rules at Time 1 was associated with the number of partners with whom girls engaged in sex at Time 2, but only among those with lower levels of depressive symptoms at Time 1. Results from the current investigation speak to the utility of examining the complex, gender-specific pathways to sexual risk in adolescents. Findings suggest that treatment of mental health and substance use problems may have important implications in rates of risky sexual behavior and, conceivably, controlling the high rates of serious individual and public health repercussions.
Collapse
|
138
|
Gonzalez R, Schuster RM, Mermelstein RJ, Vassileva J, Martin EM, Diviak KR. Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. J Clin Exp Neuropsychol 2012; 34:962-76. [PMID: 22882144 PMCID: PMC3488122 DOI: 10.1080/13803395.2012.703642] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent studies suggest that abstinent cannabis users show deficits on neurocognitive laboratory tasks of impulsive behavior. But results are mixed, and less is known on the performance of non-treatment-seeking, young adult cannabis users. Importantly, relationships between performance on measures of impulsive behavior and symptoms of cannabis addiction remain relatively unexplored. We compared young adult current cannabis users (CU, n = 65) and nonusing controls (NU, n = 65) on several laboratory measures of impulsive behavior, as well as on a measure of episodic memory commonly impacted by cannabis use. The CU group performed more poorly than the NU group on the Hopkins Verbal Learning Test-Revised Total Immediate Recall and Delayed Recall. No significant differences were observed on the measures of impulsive behavior (i.e., Iowa Gambling Task, IGT; Go-Stop Task; Monetary Choice Questionnaire; Balloon Analogue Risk Task). We examined relationships between neurocognitive performance and symptoms of cannabis use disorder symptoms (Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition, DSM-IV CUD) among the CU group, which revealed that poorer IGT performance was associated with more symptoms of DSM-IV CUD. Our results show poorer memory performance among young adult cannabis users than among healthy controls, but no differences on measures of impulsive behavior. However, performance on a specific type of impulsive behavior (i.e., poorer decision making) was associated with more cannabis use disorder symptoms. These results provide preliminary evidence to suggest that decision-making deficits may be more strongly associated with problems experienced from cannabis use, rather than solely being a consequence of cannabis use, per se.
Collapse
Affiliation(s)
- Raul Gonzalez
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Moreno M, Estevez AF, Zaldivar F, Montes JMG, Gutiérrez-Ferre VE, Esteban L, Sánchez-Santed F, Flores P. Impulsivity differences in recreational cannabis users and binge drinkers in a university population. Drug Alcohol Depend 2012; 124:355-62. [PMID: 22425410 DOI: 10.1016/j.drugalcdep.2012.02.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recreational cannabis use and alcohol binge drinking are the most common drug consumption patterns in young adults. Impulsivity and several psychopathological signs are increased in chronic drug users, but the implications of recreational use are still poorly understood. METHODS We evaluated impulsivity, sensation-seeking traits, impulsive decision-making, inhibitory control and possible symptoms of depression, anxiety and psychosis in three groups of young university adults: recreational cannabis users (N=20), alcohol binge drinkers (N=22) and non-drug users (N=26). RESULTS The cannabis and binge drinking groups had increased scores for impulsivity and sensation-seeking traits. Both groups also exhibited increased impulsive decision-making on the two-choice task and the Iowa gambling task; however, only the cannabis group was significantly different from the non-drug group regarding inhibitory control (go/no-go and stop tasks). The cannabis and binge drinking groups did not show differences in the psychopathological symptoms evaluated. CONCLUSIONS Our observations of this population of non-dependent drug users are consistent with the increased impulsivity traits and behaviors that have been described previously in chronic drug abusers. In this study, compared to no drug use, the recreational use of cannabis was associated with a major dysfunction of the different facets of impulsive behaviors. However, alcohol binge drinking was related only to impulsive decision-making. These results suggest that impulsivity traits and behaviors are present not only in chronic drug abusers but also in recreational drug users. Future work should continue to investigate the long-term effects of these common consumption patterns on various impulsive behaviors and psychopathological symptoms.
Collapse
Affiliation(s)
- Margarita Moreno
- Dept. Neurociencia y Ciencias de la Salud, Universidad de Almería, 04120 Almería, Spain
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SARB, van Gerven JMA. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage 2012; 63:1701-11. [PMID: 22885247 DOI: 10.1016/j.neuroimage.2012.07.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Resting state-functional magnetic resonance imaging (RS-FMRI) is a neuroimaging technique that allows repeated assessments of functional connectivity in resting state. While task-related FMRI is limited to indirectly measured drug effects in areas affected by the task, resting state can show direct CNS effects across all brain networks. Hence, RS-FMRI could be an objective measure for compounds affecting the CNS. Several studies on the effects of cannabinoid receptor type 1 (CB(1))-receptor agonist δ(9)-tetrahydrocannabinol (THC) on task-dependent FMRI have been performed. However, no studies on the effects of cannabinoids on resting state networks using RS-FMRI have been published. Therefore, we investigated the effects of THC on functional brain connectivity using RS-FMRI. Twelve healthy volunteers (9 male, 3 female) inhaled 2, 6 and 6 mg THC or placebo with 90-minute intervals in a randomized, double blind, cross-over trial. Eight RS-FMRI scans of 8 min were obtained per occasion. Subjects rated subjective psychedelic effects on a visual analog scale after each scan, as pharmacodynamic effect measures. Drug-induced effects on functional connectivity were examined using dual regression with FSL software (FMRIB Analysis Group, Oxford). Eight maps of voxel-wise connectivity throughout the entire brain were provided per RS-FMRI series with eight predefined resting-state networks of interest. These maps were used in a mixed effects model group analysis to determine brain regions with a statistically significant drug-by-time interaction. Statistical images were cluster-corrected, and results were Bonferroni-corrected across multiple contrasts. THC administration increased functional connectivity in the sensorimotor network, and was associated with dissociable lateralized connectivity changes in the right and left dorsal visual stream networks. The brain regions showing connectivity changes included the cerebellum and dorsal frontal cortical regions. Clear increases were found for feeling high, external perception, heart rate and cortisol, whereas prolactin decreased. This study shows that THC induces both increases and (to a lesser extent) decreases in functional brain connectivity, mainly in brain regions with high densities of CB(1)-receptors. Some of the involved regions could be functionally related to robust THC-induced CNS-effects that have been found in previous studies (Zuurman et al., 2008), such as postural stability, feeling high and altered time perception.
Collapse
|
141
|
Lee AM, Oleson EB, Diergaarde L, Cheer JF, Pattij T. Cannabinoids and value-based decision making: implications for neurodegenerative disorders. ACTA ACUST UNITED AC 2012; 2:131-138. [PMID: 23162787 DOI: 10.1016/j.baga.2012.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, disturbances in cognitive function have been increasingly recognized as important symptomatic phenomena in neurodegenerative diseases, including Parkinson's Disease (PD). Value-based decision making in particular is an important executive cognitive function that is not only impaired in patients with PD, but also shares neural substrates with PD in basal ganglia structures and the dopamine system. Interestingly, the endogenous cannabinoid system modulates dopamine function and subsequently value-based decision making. This review will provide an overview of the interdisciplinary research that has influenced our understanding of value-based decision making and the role of dopamine, particularly in the context of reinforcement learning theories, as well as recent animal and human studies that demonstrate the modulatory role of activation of cannabinoid receptors by exogenous agonists or their naturally occurring ligands. The implications of this research for the symptomatology of and potential treatments for PD are also discussed.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU university medical center, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
142
|
Laricchiuta D, Rojo ML, Rodriguez-Gaztelumendi A, Ferlazzo F, Petrosini L, Fowler CJ. CB1 receptor autoradiographic characterization of the individual differences in approach and avoidance motivation. PLoS One 2012; 7:e42111. [PMID: 22848724 PMCID: PMC3407173 DOI: 10.1371/journal.pone.0042111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023] Open
Abstract
Typically, approach behaviour is displayed in the context of moving towards a desired goal, while avoidance behaviour is displayed in the context of moving away from threatening or novel stimuli. In the current research, we detected three sub-populations of C57BL/6J mice that spontaneously responded with avoiding, balancing or approaching behaviours in the presence of the same conflicting stimuli. While the balancing animals reacted with balanced responses between approach and avoidance, the avoiding or approaching animals exhibited inhibitory or advance responses towards one of the conflicting inputs, respectively. Individual differences in approach and avoidance motivation might be modulated by the normal variance in the level of functioning of different systems, such as endocannabinoid system (ECS). The present research was aimed at analysing the ECS involvement on approach and avoidance behavioural processes. To this aim, in the three selected sub-populations of mice that exhibited avoiding or balancing or approaching responses in an approach/avoidance Y-maze we analysed density and functionality of CB1 receptors as well as enzyme fatty acid amide hydrolase activity in different brain regions, including the networks functionally responsible for emotional and motivational control. The main finding of the present study demonstrates that in both approaching and avoiding animals higher CB1 receptor density in the amygdaloidal centro-medial nuclei and in the hypothalamic ventro-medial nucleus was found when compared with the CB1 receptor density exhibited by the balancing animals. The characterization of the individual differences to respond in a motivationally based manner is relevant to clarify how the individual differences in ECS activity are associated with differences in motivational and affective functioning.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Centro Europeo per la Ricerca sul Cervello (CERC)/Santa Lucia Foundation, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
143
|
Baumann AA, Odum AL. Impulsivity, risk taking, and timing. Behav Processes 2012; 90:408-14. [PMID: 22542458 PMCID: PMC3897391 DOI: 10.1016/j.beproc.2012.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/26/2022]
Abstract
This study examined the relations among measures of impulsivity and timing. Impulsivity was assessed using delay and probability discounting, and self-report impulsivity (as measured by the Barratt Impulsiveness Scale; BIS-11). Timing was assessed using temporal perception as measured on a temporal bisection task and time perspective (as measured by the Zimbardo Time Perspective Inventory). One hundred and forty three college students completed these measures in a computer laboratory. The degree of delay discounting was positively correlated with the mean and range of the temporal bisection procedure. The degree of delay and probability discounting were also positively correlated. Self-reported motor impulsiveness on the BIS-11 was positively correlated with present hedonism and negatively correlated with future orientation on the ZTPI. Self-reported non-planning on the BIS-11 was positively correlated with fatalism on the ZTPI. These results show that people who overestimate the passage of time (perceive time as passing more quickly) hold less value in delayed rewards. They also confirm previous results regarding the relation between delay and probability discounting, as well as highlight similarities in self-report measures of impulsivity and time perspective.
Collapse
|
144
|
Craft RM, Marusich JA, Wiley JL. Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci 2012; 92:476-81. [PMID: 22728714 DOI: 10.1016/j.lfs.2012.06.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/18/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
Abstract
Marijuana is the most widely used illicit drug in the U.S., and marijuana use by women is on the rise. Women have been found to be more susceptible to the development of cannabinoid abuse and dependence, have more severe withdrawal symptoms, and are more likely to relapse than men. The majority of research in humans suggests that women are more likely to be affected by cannabinoids than men, with reports of enhanced and decreased performance on various tasks. In rodents, females are more sensitive than males to effects of cannabinoids on tests of antinociception, motor activity, and reinforcing efficacy. Studies on effects of cannabinoid exposure during adolescence in both humans and rodents suggest that female adolescents are more likely than male adolescents to be deleteriously affected by cannabinoids. Sex differences in response to cannabinoids appear to be due to activational and perhaps organizational effects of gonadal hormones, with estradiol identified as the hormone that contributes most to the sexually dimorphic effects of cannabinoids in adults. Many, but not all sexually dimorphic effects of exogenous cannabinoids can be attributed to a sexually dimorphic endocannabinoid system in rodents, although the same has not yet been established firmly for humans. A greater understanding of the mechanisms underlying sexually dimorphic effects of cannabinoids will facilitate development of sex-specific approaches to treat marijuana dependence and to use cannabinoid-based medications therapeutically.
Collapse
Affiliation(s)
- Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
145
|
Navarrete F, Pérez-Ortiz JM, Manzanares J. Cannabinoid CB₂ receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br J Pharmacol 2012; 165:260-73. [PMID: 21671903 DOI: 10.1111/j.1476-5381.2011.01542.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE This study evaluated gene expression differences between two mouse strains, characterized by opposite impulsivity-like traits and the involvement of the cannabinoid CB(2) receptor in the modulation of impulsivity. EXPERIMENTAL APPROACH Behavioural tests were conducted to compare motor activity, exploration and novelty seeking, attention and cognitive and motor impulsivity (delayed reinforcement task: session duration 30 min; timeout 30 s) between A/J and DBA/2 mice. Expression of genes for dopamine D(2) receptors, CB(1) and CB(2) receptors were measured in the cingulate cortex (CgCtx), caudate-putamen (CPu), accumbens (Acc), amygdala (Amy) and hippocampus (Hipp). Involvement of CB(2) receptors in impulsivity was evaluated in DBA/2 mice with a CB(2) receptor agonist (JWH133) and an antagonist (AM630). KEY RESULTS DBA/2 mice presented higher motor and exploratory activity, pre-pulse inhibition impairment and higher cognitive and motor impulsivity level than A/J mice. In addition, DBA/2 mice showed lower (CgCtx, Acc, CPu) D(2) receptor, lower (Amy) and higher (CgCtx, Acc, CPu, Hipp) CB(1) receptor and higher (CgCtx, Acc, Amy) and similar (CPu, Hipp) CB(2) receptor gene expressions. Treatment with JWH133 (0.5, 1, 3 mg·kg(-1), i.p.) reduced cognitive and motor impulsivity level, accompanied by CB(2) receptor down-regulation (CgCtx, Acc, Amy) but did not modify other behaviours. In contrast, AM630 (1, 2, 3 mg·kg(-1), i.p.) improved pre-pulse inhibition and reduced novelty seeking behaviour in DBA/2 mice. CONCLUSIONS AND IMPLICATIONS CB(2) receptors might play an important role in regulating impulsive behaviours and should be considered a promising therapeutic target in the treatment of impulsivity-related disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain
| | | | | |
Collapse
|
146
|
Bhattacharyya S, Sendt KV. Neuroimaging evidence for cannabinoid modulation of cognition and affect in man. Front Behav Neurosci 2012; 6:22. [PMID: 22654743 PMCID: PMC3360161 DOI: 10.3389/fnbeh.2012.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, King's College London London, UK
| | | |
Collapse
|
147
|
Simons JS, Dvorak RD, Merrill JE, Read JP. Dimensions and severity of marijuana consequences: development and validation of the Marijuana Consequences Questionnaire (MACQ). Addict Behav 2012; 37:613-21. [PMID: 22305645 DOI: 10.1016/j.addbeh.2012.01.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/06/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
The Marijuana Consequences Questionnaire (MACQ) is a 50-item self-report measure modeled after the Young Adult Alcohol Consequences Questionnaire (YAACQ). College students (n=315) completed questionnaires online. A confirmatory factor analysis supported the hypothesized 8-factor structure. The results indicate good convergent and discriminant validity of the MACQ. A brief, unidimensional, 21-item version (B-MACQ) was developed by a Rasch model. Comparison of item severity estimates of the B-MACQ items and the corresponding items from the YAACQ indicates that the severity of alcohol- and marijuana-problems is defined by a relatively unique pattern of consequences. The MACQ and B-MACQ provide promising new alternatives to assessing marijuana-related problems.
Collapse
|
148
|
Klumpers F, Denys D, Kenemans JL, Grillon C, van der Aart J, Baas JMP. Testing the effects of Δ9-THC and D-cycloserine on extinction of conditioned fear in humans. J Psychopharmacol 2012; 26:471-8. [PMID: 22351380 PMCID: PMC3454470 DOI: 10.1177/0269881111431624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Preclinical evidence implicates several neurotransmitter systems in the extinction of conditioned fear. These results are of great interest, because the reduction of acquired fear associations is critical in therapies for anxiety disorders. We tested whether findings with respect to the N-methyl-D-aspartate (NMDA) and cannabinoid receptor (CB) systems in animals carry over to healthy human subjects. To that end, we administered selected doses of D-cycloserine (partial NMDA receptor agonist, 250 mg), delta-9-tetrahydrocannabinol (THC, CB(1) receptor agonist, 10 mg), or placebo prior to the extinction session of a 3-day conditioning protocol. D-cycloserine did not affect within-session extinction, or the retention of extinction in healthy human participants, in contrast with patient data but in line with previous reports in healthy volunteers. During extinction training, Δ9-THC reduced conditioned skin conductance responses, but not fear-potentiated startle. This effect was not retained at the retention test 2 days later, suggesting it was dependent on acute effects of the drug. Our findings implicate that facilitation of the CB(1) or NMDA system with the substances used in this study does not affect conditioned fear extinction lastingly in healthy humans. The apparent discrepancy between these findings and the results from (pre-)clinical trials is discussed in terms of room for improvement in these systems in healthy volunteers, and the lack of specificity of THC as a CB(1) agonist.
Collapse
Affiliation(s)
- Floris Klumpers
- Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
149
|
Differences in spontaneously avoiding or approaching mice reflect differences in CB1-mediated signaling of dorsal striatal transmission. PLoS One 2012; 7:e33260. [PMID: 22413007 PMCID: PMC3297636 DOI: 10.1371/journal.pone.0033260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/06/2012] [Indexed: 01/26/2023] Open
Abstract
Approach or avoidance behaviors are accompanied by perceptual vigilance for, affective reactivity to and behavioral predisposition towards rewarding or punitive stimuli, respectively. We detected three subpopulations of C57BL/6J mice that responded with avoiding, balancing or approaching behaviors not induced by any experimental manipulation but spontaneously displayed in an approach/avoidance conflict task. Although the detailed neuronal mechanisms underlying the balancing between approach and avoidance are not fully clarified, there is growing evidence that endocannabinoid system (ECS) plays a critical role in the control of these balancing actions. The sensitivity of dorsal striatal synapses to the activation of cannabinoid CB1 receptors was investigated in the subpopulations of spontaneously avoiding, balancing or approaching mice. Avoiding animals displayed decreased control of CB1 receptors on GABAergic striatal transmission and in parallel increase of behavioral inhibition. Conversely, approaching animals exhibited increased control of CB1 receptors and in parallel increase of explorative behavior. Balancing animals reacted with balanced responses between approach and avoidance patterns. Treating avoiding animals with URB597 (fatty acid amide hydrolase inhibitor) or approaching animals with AM251 (CB1 receptor inverse agonist) reverted their respective behavioral and electrophysiological patterns. Therefore, enhanced or reduced CB1-mediated control on dorsal striatal transmission represents the synaptic hallmark of the approach or avoidance behavior, respectively. Thus, the opposite spontaneous responses to conflicting stimuli are modulated by a different involvement of endocannabinoid signaling of dorsal striatal neurons in the range of temperamental traits related to individual differences.
Collapse
|
150
|
Bossong MG, Jager G, van Hell HH, Zuurman L, Jansma JM, Mehta MA, van Gerven JMA, Kahn RS, Ramsey NF. Effects of Δ9-Tetrahydrocannabinol Administration on Human Encoding and Recall Memory Function: A Pharmacological fMRI Study. J Cogn Neurosci 2012; 24:588-99. [DOI: 10.1162/jocn_a_00156] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Deficits in memory function are an incapacitating aspect of various psychiatric and neurological disorders. Animal studies have recently provided strong evidence for involvement of the endocannabinoid (eCB) system in memory function. Neuropsychological studies in humans have shown less convincing evidence but suggest that administration of cannabinoid substances affects encoding rather than recall of information. In this study, we examined the effects of perturbation of the eCB system on memory function during both encoding and recall. We performed a pharmacological MRI study with a placebo-controlled, crossover design, investigating the effects of Δ9-tetrahydrocannabinol (THC) inhalation on associative memory-related brain function in 13 healthy volunteers. Performance and brain activation during associative memory were assessed using a pictorial memory task, consisting of separate encoding and recall conditions. Administration of THC caused reductions in activity during encoding in the right insula, the right inferior frontal gyrus, and the left middle occipital gyrus and a network-wide increase in activity during recall, which was most prominent in bilateral cuneus and precuneus. THC administration did not affect task performance, but while during placebo recall activity significantly explained variance in performance, this effect disappeared after THC. These findings suggest eCB involvement in encoding of pictorial information. Increased precuneus activity could reflect impaired recall function, but the absence of THC effects on task performance suggests a compensatory mechanism. These results further emphasize the eCB system as a potential novel target for treatment of memory disorders and a promising target for development of new therapies to reduce memory deficits in humans.
Collapse
Affiliation(s)
| | - Gerry Jager
- 1University Medical Center Utrecht
- 2Wageningen University
| | | | - Lineke Zuurman
- 3Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | | | | | | |
Collapse
|