101
|
Liu H, Ren N, Gao Y, Wu T, Sui B, Liu Z, Chang B, Huang M, Liu H. Sensitive detection of microRNA by dynamic light scattering based on DNAzyme walker-mediated AuNPs self-assembly. Dalton Trans 2023; 52:17340-17348. [PMID: 37937720 DOI: 10.1039/d3dt02450d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As an important biomarker, microRNAs (miRNAs) play an important role in gene expression, and their detection has attracted increasing attention. In this study, a DNAzyme walker that could provide power to perform autonomous movement was designed. Based on the continuous mechanical motion characteristics of DNAzyme walker, a miRNA detection strategy for the self-assembly of AuNPs induced by the hairpin probe-guided DNAzyme walker "enzyme cleavage and walk" was established. In this strategy, DNAzyme walker continuously cleaved and walked on the hairpin probe on the surface of AuNPs to induce the continuous shedding of some segments of the hairpin probe. The remaining hairpin sequences on the surface of the AuNP pair with each other, causing the nanoparticles to self-assemble. This strategy uses the autonomous movement mechanism of DNAzyme walker to improve reaction efficiency and avoid the problem of using expensive and easily degradable proteases. Secondly, using dynamic light scattering technology as the signal output system, ultra-sensitive detection with a detection limit of 3.6 fM is achieved. In addition, this strategy has been successfully used to analyze target miRNAs in cancer cell samples.
Collapse
Affiliation(s)
- Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Yi Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Tingfan Wu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Boren Sui
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Bin Chang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Man Huang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| |
Collapse
|
102
|
Chaimueangchuen S, Frommer J, Ferguson CTJ, O’Reilly RK. Surface Hybridization Chain Reaction of Binary Mixture DNA-PEG Corona Nanostructures Produced by Low-Volume RAFT-Mediated Photopolymerization-Induced Self-Assembly. Bioconjug Chem 2023; 34:2007-2013. [PMID: 37844270 PMCID: PMC10655036 DOI: 10.1021/acs.bioconjchem.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
DNA-polymer hybrids have been attracting interest as adaptable functional materials by combining the stability of polymers with DNA nanotechnology. Both research fields have in common the capacity to be precise, versatile, and tunable, a prerequisite for creating powerful tools which can be easily tailored and adapted for bio-related applications. However, the conjugation of hydrophilic DNA with hydrophobic polymers remains challenging. In recent years, polymerization-induced self-assembly (PISA) has attracted significant attention for constructing nano-objects of various morphologies owing to the one-step nature of the process, creating a beneficial method for the creation of amphiphilic DNA-polymer nanostructures. This process not only allows pure DNA-polymer-based systems to be produced but also enables the mixture of other polymeric species with DNA conjugates. Here, we present the first report of a DNA-PEG corona nano-object's synthesis without the addition of an external photoinitiator or photocatalyst via photo-PISA. Furthermore, this work shows the use of DNA-macroCTA, which was first synthesized using a solid-support method resulting in high yields, easy upscaling, and no need for HPLC purification. In addition, to the formation of DNA-polymer structures, increasing the nucleic acid loading of assemblies is of great importance. One of the most intriguing phenomena of DNA is the hybridization of single-stranded DNA with a second strand, increasing the nucleic acid content. However, hybridization of DNA in a particle corona may destabilize the nanomaterial due to the electrostatic repulsive force on the DNA corona. Here, we have investigated how changing the DNA volume fraction in hybrid DNA-polymer self-assembled material affects the morphology. Moreover, the effect of the corona composition on the stability of the system during the hybridization was studied. Additionally, the hybridization chain reaction was successfully applied as a new method to increase the amount of DNA on a DNA-based nano-object without disturbing the morphology achieving a fluorescence signal amplification.
Collapse
Affiliation(s)
| | - Jennifer Frommer
- School of Chemistry, University of Birmingham, University Rd W, Birmingham B15 2TT, U.K.
| | - Calum T. J. Ferguson
- School of Chemistry, University of Birmingham, University Rd W, Birmingham B15 2TT, U.K.
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, University Rd W, Birmingham B15 2TT, U.K.
| |
Collapse
|
103
|
Lin D, Ke Y, Chen H, Zhang Y, Tang X, Cui W, Li X, He Y, Wu L. Self-Assembly Nanostructure Induced by Regulation of G-Quadruplex DNA Topology via a Reduction-Sensitive Azobenzene Ligand on Cells. Biomacromolecules 2023; 24:5004-5017. [PMID: 37843895 DOI: 10.1021/acs.biomac.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The control of DNA assembly systems on cells has increasingly shown great importance for precisely targeted therapies. Here, we report a controllable DNA self-assembly system based on the regulation of G-quadruplex DNA topology by a reduction-sensitive azobenzene ligand. Specifically, three azobenzene multiamines are developed, and AzoDiTren is identified as the best G4 binder, which displays high affinity and specificity for G4 DNA. Moreover, the reduction-sensitive nature of the azobenzene scaffold allows AzoDiTren to induce a complete change of the G4 topology in a tissue-specific manner, even at high metal cation concentrations. On this basis, the AzoDiTren-induced G4 conformational switch achieves control of the self-assembly of G4-functionalized DNAs on cells. This strategy enables the regulation of G4 and DNA self-assembly by the bioreductant-responsive ligand.
Collapse
Affiliation(s)
- Dao Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqi Ke
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjia Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinlong Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
104
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
105
|
Fu J, Zhang L, Long Y, Liu Z, Meng G, Zhao H, Su X, Shi S. Multiplexed CRISPR-Based Nucleic Acid Detection Using a Single Cas Protein. Anal Chem 2023; 95:16089-16097. [PMID: 37883656 DOI: 10.1021/acs.analchem.3c01861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Thanks to its ease, speed, and sensitivity, CRISPR-based nucleic acid detection has been increasingly explored for molecular diagnostics. However, one of its major limitations is lack of multiplexing capability because the detection relies on the trans-cleavage activity of the Cas protein, which necessitates the use of multiple orthogonal Cas proteins for multiplex detection. Here we report the development of a multiplexed CRISPR-based nucleic acid detection system with single-nucleotide resolution using a single Cas protein (Cas12a). This method, termed as CRISPR-TMSD, integrates the toehold-mediated strand displacement (TMSD) reaction, and the cis-cleavage activity of the Cas protein and multiplexed detection are achieved using a single Cas protein owing to the use of target-specific reporters. A set of computational simulation toolkits was used to design the TMSD reporter, allowing for highly sensitive and specific identification of target sequences. In combination with the recombinase polymerase amplification (RPA), the detection limit can reach as low as 1 copy/μL. As proof of concept, CRISPR-TMSD was subsequently used to detect an oncogenic gene and SARS-CoV-2 RNA with a single-nucleotide resolution. This work represents a conceptually new strategy for designing a CRISPR-based diagnostic system and has great potential to expand the application of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Jinyu Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanlin Long
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
106
|
Wang S, Zong Z, Xu J, Yao B, Xu Z, Yao L, Chen W. Recognition-Activated Primer-Mediated Exponential Rolling Circle Amplification for Signal Probe Production and Ultrasensitive Visual Detection of Ochratoxin A with Nucleic Acid Lateral Flow Strips. Anal Chem 2023; 95:16398-16406. [PMID: 37878604 DOI: 10.1021/acs.analchem.3c03995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We proposed a visual strategy for rapid and ultrasensitive detection of ochratoxin A (OTA) by integration of primer-mediated exponential rolling circle amplification (P-ERCA) with a designed nucleic acid lateral flow strip (LFS). The recognition component was preimmobilized in the tube by hybridization between the immobilized functionalized aptamer and complementary ssDNA. Recognition of OTA induces the release of complementary ssDNA from the tube, which will also act as the primer of the designed P-ERCA. Three nicking sites on the template P-ERCA could contribute to the production of enormous signal probes based on the simultaneous amplification-nicking model, which can be visually measured directly with the constructed nucleic acid LFS. Importantly, the nicked signal probe can also act as the trigger of the new-round RCA, achieving exponential growth of signal probes for measurement and signal enhancement. Taking advantage of the extraordinary amplification efficiency of P-ERCA and the simplicity of LFS, this P-ERCA-LFS method demonstrates ultrasensitive detection of OTA with a visual limit of detection as low as 100 fg/mL for qualitative screening and a limit of detection of 35 fg/mL for semiquantitative analysis. This designed strategy could also be utilized as a universal method for detection of other chemical analytes with the replacement of the aptamer for recognition, and the nucleic acid LFS unit could also be a useful protocol for direct ssDNA analysis.
Collapse
Affiliation(s)
- Shiyi Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziwen Zong
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
107
|
Ang YS, Yung LYL. Design strategies for countering the effect of fluorophore-quencher labelling on DNA hairpin thermodynamics. Chem Commun (Camb) 2023; 59:13167-13170. [PMID: 37849331 DOI: 10.1039/d3cc02427j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
We report the impact of fluorophore-quencher labelling on the thermodynamics of hairpin opening by testing five fluorophores and two quenchers labelled at the end and/or internal positions. Two counter strategies were introduced, i.e. label the hairpin probe at an internal position or append an external hairpin stem on the trigger strand to promote coaxial stacking hybridization. The observations remained valid for complex hairpin opening operations such as hybridization chain reaction.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
108
|
Zhao S, Jia Y, Wang A, Yang J, Yang L. Dual-mode DNA walker-based optical fiber biosensor for ultrasensitive detection of microRNAs. Biosens Bioelectron 2023; 239:115613. [PMID: 37607447 DOI: 10.1016/j.bios.2023.115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
We present a novel dual-mode DNA-walker based optical fiber biosensor (DMDW-Opt biosensor) for sensitive assay of micro-RNAs in bio-samples. In the sensor system, we develop a new strategy for the cascade amplification, DNA-walker/rolling cycle amplification (RCA), by the use of the residue track of the walker. The strategy can significantly improve the response of the sensor and avoid any tedious operation procedure. Dual-mode readouts, i.e., fluorescence and chemiluminescence, are measured independently without interfering with each other to achieve reliable and accurate analysis. Optical fibers with the surface modified by gold nanoparticles are utilized as the support for fabrication of the sensor, which would be benefit for developing miniaturized and portable sensing devices. The performance of the proposed method is evaluated by using micro-RNAs (MiR-155 and MiR-21) as the analytical target. The method is successfully applied for accurate determination of micoRNAs in human serum and MCF-7 cells. Our method can perform sensitive assays of MiR-155 with limit-of-detection as low as 97.72 fM and 11.22 fM, MiR-21 with limit-of-detection as low as 107.15 fM and 8.32 fM for the fluorescence- and the chemiluminescence-readout respectively, and the biosensor exhibits excellent specificity, reproducibility and storage stability, indicating its valuable potential applications for sensing trace-amount targets in complicated real samples.
Collapse
Affiliation(s)
- Siqi Zhao
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Yaxue Jia
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Anping Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
109
|
Morihiro K, Tomida Y, Fukui D, Hasegawa M, Okamoto A. Nucleic Acid-to-Small Molecule Converter through Amplified Hairpin DNA Circuits. Angew Chem Int Ed Engl 2023; 62:e202306587. [PMID: 37704581 DOI: 10.1002/anie.202306587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Many microRNAs (miRNAs) are characteristically found in cancer cells, making miRNAs promising marker biomolecules for cancer diagnosis and therapeutics. However, it is challenging to use miRNA as a cancer signature because it is difficult to convert the nucleic acid sequence information into molecular functionality. To address this challenge, we realize nucleic acid-to-small molecule converters using hairpin DNA circuits. Harnessing a Staudinger reduction as a trigger for the conversion, we constructed hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) circuits that respond to oncogenic miR-21. Fluorophore and dye molecules were released in response to miR-21 through the HCR, providing fluorogenic and chromogenic readouts. Selective cytotoxicity in miR-21-abundant cells was realized by the CHA to release the anticancer drug SN-38. This would be the first example of selective activation of a small-molecule prodrug triggered by oncogenic miRNA in human living cells.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuhiro Tomida
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Fukui
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Manami Hasegawa
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
110
|
Qin Y, Zhu X, Huang R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomater Sci 2023; 11:6942-6976. [PMID: 37750827 DOI: 10.1039/d3bm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.
Collapse
Affiliation(s)
- Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Xinran Zhu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
111
|
Shen H, Cui G, Liang H, Yang H, Chen M, Xu ZL, Liu W, Liu Y. DNA Nanomachine-Driven Heterogeneous Quadratic Amplification for Sensitive and Programmable miRNA Profiling. Anal Chem 2023; 95:15769-15777. [PMID: 37734028 DOI: 10.1021/acs.analchem.3c03306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Inspired by the molecular crowding effect in biological systems, a novel heterogeneous quadratic amplification molecular circuit (HEQAC) was developed for sensitive bimodal miRNA profiling (HEQAC-BMP) by combining an MNAzyme-based DNA nanomachine with an entropy-driven catalytic hairpin assembly (E-CHA) autocatalytic circuit. Utilizing ferromagnetic nanomaterials as the substrate for DNA nanomachines, a biomimetic heterogeneous interface was established; thus, a localized molecular crowding system was created that can elevate the local reaction concentration and accelerate the molecular recognition process for a significant threshold signal. Simultaneously, the threshold signal undergoes further amplification by E-CHA and is transformed into a chemical signal, enabling a colorimetric-fluorescence bimodal signal readout. The HEQAC-BMP enables miRNA detection from 10 aM to 10 nM with detection limits of 3.7 aM (colorimetry) and 4.8 aM (fluorometry), respectively. Moreover, the design principle and strategy of HEQAC-BMP can be customized to address other critical viruses or diseases with life-threatening and socioeconomic impacts, enhancing healthcare outcomes for individuals.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guosheng Cui
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hui Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
112
|
Chen LG, Sun L, Wu NN, Tao BB, Wang HB. Cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction: Toward an ultrasensitive split-type fluorescent immunoassay. Anal Chim Acta 2023; 1279:341843. [PMID: 37827655 DOI: 10.1016/j.aca.2023.341843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
An ultrasensitive split-type fluorescent immunobiosensor has been reported based on a cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction. In this strategy, Cu2+ could oxidize chemically o-phenylenediamine (OPD) to generate photosensitive 2, 3-diaminophenazine (DAP) and Cu+/Cu0. On one hand, the generated Cu0 in turn catalyzed the oxidation of OPD. On the other hand, the introduced H2O2 reacted with Cu + ion to produce hydroxyl radicals (·OH) and Cu2+ ion through a Cu + -mediated Fenton-like reaction. The produced ·OH and recycled Cu2+ ion could take turns oxidizing OPD to generate more photoactive DAP, which triggering a self-sustaining chemical redox-cycling reaction and leading to a remarkable fluorescent improvement. It was worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Based on the H2O2-triggered cascade signal amplification, the strategy was exploited for the construction of split-type fluorescent immunoassay by taking interleukin-6 (IL-6) as the model target. It was realized for the ultrasensitive determination of IL-6 in a linear ranging from 20 fg/mL to 10 pg/mL with a limit of detection of 5 fg/mL. The study validated the practicability of the cascade signal amplification on the fluorescent bioanalysis and the superior performance in fluorescent immunoassay. It is expected that the strategy would offer new opportunities to develop ultrasensitive fluorescent methods for biosensor and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
113
|
Yin W, Hu J, Chen F, Zhu L, Ma Y, Wang N, Wei H, Yang H, Chou SH, He J. Combining hybrid nanoflowers with hybridization chain reaction for highly sensitive detection of SARS-CoV-2 nucleocapsid protein. Anal Chim Acta 2023; 1279:341838. [PMID: 37827653 DOI: 10.1016/j.aca.2023.341838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.
Collapse
Affiliation(s)
- Wen Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ji Hu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nuo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
114
|
Neitz H, Höbartner C. A tolane-modified 5-ethynyluridine as a universal and fluorogenic photochemical DNA crosslinker. Chem Commun (Camb) 2023; 59:12003-12006. [PMID: 37727895 DOI: 10.1039/d3cc03796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
115
|
Hertenstein T, Tang Y, Day AS, Reynolds J, Viboolmate PV, Yoon JY. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosens Bioelectron 2023; 237:115444. [PMID: 37329805 DOI: 10.1016/j.bios.2023.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs are likely to be a next-generation clinical biomarker for many diseases. While gold-standard technologies, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR), exist for microRNA detection, there is a need for rapid and low-cost testing. Here, an emulsion loop-mediated isothermal amplification (eLAMP) assay was developed for miRNA that compartmentalizes a LAMP reaction and shortens the time-to-detection. The miRNA was a primer to facilitate the overall amplification rate of template DNA. Light scatter intensity decreased when the emulsion droplet got smaller during the ongoing amplification, which was utilized to moitor the amplification non-invasively. A custom low-cost device was designed and fabricated using a computer cooling fan, a Peltier heater, an LED, a photoresistor, and a temperature controller. It allowed more stable vortexing and accurate light scatter detection. Three miRNAs, miR-21, miR-16, and miR-192, were successfully detected using the custom device. Specifically, new template and primer sequences were developed for miR-16 and miR-192. Zeta potential measurements and microscopic observations confirmed emulsion size reduction and amplicon adsorption. The detection limit was 0.01 fM, corresponding to 2.4 copies per reaction, and the detection could be made in 5 min. Since the assays were rapid and both template and miRNA + template could eventually be amplified, we introduced the success rate (compared to the 95% confidence interval of the template result) as a new measure, which worked well with lower concentrations and inefficient amplifications. This assay brings us one step closer to allowing circulating miRNA biomarker detection to become commonplace in the clinical world.
Collapse
Affiliation(s)
- Tyler Hertenstein
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Patrick V Viboolmate
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
116
|
Wang S, Shang J, Zhao B, Wang H, Yang C, Liu X, Wang F. Integration of Isothermal Enzyme-Free Nucleic Acid Circuits for High-Performance Biosensing Applications. Chempluschem 2023; 88:e202300432. [PMID: 37706615 DOI: 10.1002/cplu.202300432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
The isothermal enzyme-free nucleic acid amplification method plays an indispensable role in biosensing by virtue of its simple, robust, and highly efficient properties without the assistance of temperature cycling or/and enzymatic biocatalysis. Up to now, enzyme-free nucleic acid amplification has been extensively utilized for biological assays and has achieved the highly sensitive detection of various biological targets, including DNAs, RNAs, small molecules, proteins, and even cells. In this Review, the mechanisms of entropy-driven reaction, hybridization chain reaction, catalytic hairpin assembly and DNAzyme are concisely described and their recent application as biosensors is comprehensively summarized. Furthermore, the current problems and the developments of these DNA circuits are also discussed.
Collapse
Affiliation(s)
- Siyuan Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Jinhua Shang
- Research Institute of Shenzhen, Wuhan University, 518057, Shenzhen, Guangdong, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Bingyue Zhao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Huimin Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, Hubei, P. R. China
| | - Xiaoqing Liu
- Research Institute of Shenzhen, Wuhan University, 518057, Shenzhen, Guangdong, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Fuan Wang
- Research Institute of Shenzhen, Wuhan University, 518057, Shenzhen, Guangdong, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| |
Collapse
|
117
|
Luo P, Huang X, Luo F, Chen Z, Chen Y, Lin C, Wang J, Qiu B, Lin Z. Low-Background Signal-On Homogeneous Electrochemiluminescence Biosensor for Hepatitis B Virus Detection Based on the Regulation of the Length of DNA Modified on the Nanoparticles by CRISPR/Cas12a and Hybridization Chain Reaction. Anal Chem 2023; 95:14127-14134. [PMID: 37676272 DOI: 10.1021/acs.analchem.3c03141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In this work, combined with the high amplification efficiency of hybridization chain reaction (HCR), high specificity of the CRISPR/Cas12a system, and convenience of the homogeneous electrochemiluminescence (ECL) assay based on the regulation of negative charge on the reporting probes, a sensitive ECL biosensor for hepatitis B virus DNA (chosen as a model target) had been developed. The initiator chain trigger DNA that can induce HCR amplification is modified on the surface of ruthenium bipyridine-doped silica nanoparticles (Ru@SiO2 NPs) first, and large amounts of negative charges modified on the particles were achieved through the HCR amplification reaction. The efficiency of the nanoparticles reaching the negatively charged working electrode can be regulated and realize the change of the ECL signal. In addition, long DNA on the surface of the luminescent body may prevent the coreactant from entering the pore to react with ruthenium bipyridine. These factors combine to produce a low-background system. The presence of the target can activate the CRISPR/Cas12a system and make trigger DNA disappear from the nanoparticle surface, and strong ECL can be detected. The sensor does not require a complex electrode modification; therefore, it has better reproducibility. Additionally, due to dual signal amplification, the sensor has a high sensitivity. In the range of 10 fM to 10 nM, the ECL intensity exhibits a strong linear relationship with the logarithm of the target concentration, and the detection limit is 7.41 fM. This sensor has shown high accuracy in detecting clinical samples, which holds significant potential for application in clinical testing.
Collapse
Affiliation(s)
- Peiqing Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Xiaocui Huang
- Department of Science Research and Training, Fujian Institute of Education, Fuzhou, Fujian 350001, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhonghui Chen
- Affiliated Hospital of Putian University, Putian University, Putian, Fujian 351100, China
| | - Yu Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| |
Collapse
|
118
|
Xu Y, Chen J, Sui X, Zhang Y, Zhang A, Lin Z, Liu X, Chen J. Ultra-sensitive electrochemiluminescent biosensor for miRNA based on CRISPR/Cas13a trans-cleavage-triggered hybridization chain reaction and magnetic-assisted enrichment. Mikrochim Acta 2023; 190:393. [PMID: 37712989 DOI: 10.1007/s00604-023-05962-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The great selectivity and trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a had been coupled with high amplification efficiency of hybridization chain reaction (HCR) and magnetic-assisted enrichment, high sensitivity of electrochemiluminescence (ECL) detection to develop an ultra-sensitive biosensor for microRNA-21 (miRNA-21). The CRISPR/Cas13a was used to recognize target RNA with high specificity and performed the trans-cleavage activity. An initiation strand was generated to bind to the probe on the surface of nanomagnetic beads and then trigged HCR to produce long double-strand DNAs (dsDNAs) to realize signal amplification. Ru(phen)32+ can be inserted in the groove of the dsDNAs and acts as the ECL indicator, which can be separated through magnetic enrichment and allowed the platform to reduce the signal background. Under the optimized conditions, there is a good linear correlation between the ECL intensity and the logarithm of miRNA-21 concentration in the range 1 fM-10 nM; the limit of detection (LOD) was 0.53 fM. The proposed system was applied to detect miRNA-21 from the urine of acute kidney injury (AKI) patients with good results.
Collapse
Affiliation(s)
- Yunpeng Xu
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Jiahui Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xiaolu Sui
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yanzi Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Aisha Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350116, People's Republic of China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China.
| | - Jihong Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China.
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
119
|
Su J, Sun C, Du J, Xing X, Wang F, Dong H. RNA-Cleaving DNAzyme-Based Amplification Strategies for Biosensing and Therapy. Adv Healthc Mater 2023; 12:e2300367. [PMID: 37084038 DOI: 10.1002/adhm.202300367] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Since their first discovery in 1994, DNAzymes have been extensively applied in biosensing and therapy that act as recognition elements and signal generators with the outstanding properties of good stability, simple synthesis, and high sensitivity. One subset, RNA-cleaving DNAzymes, is widely employed for diverse applications, including as reporters capable of transmitting detectable signals. In this review, the recent advances of RNA-cleaving DNAzyme-based amplification strategies in scaled-up biosensing are focused, the application in diagnosis and disease treatment are also discussed. Two major types of RNA-cleaving DNAzyme-based amplification strategies are highlighted, namely direct response amplification strategies and combinational response amplification strategies. The direct response amplification strategies refer to those based on novel designed single-stranded DNAzyme, and the combinational response amplification strategies mainly include two-part assembled DNAzyme, cascade reactions, CHA/HCR/RCA, DNA walker, CRISPR-Cas12a and aptamer. Finally, the current status of DNAzymes, the challenges, and the prospects of DNAzyme-based biosensors are presented.
Collapse
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fang Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
120
|
Chen X, Huang C, Nie F, Hu M. Enzyme-free and sensitive method for single-stranded nucleic acid detection based on CHA and HCR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4243-4251. [PMID: 37592315 DOI: 10.1039/d3ay00975k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Simple, rapid, and highly sensitive methods for single-stranded nucleic acid detection are of great significance in clinical testing. Meanwhile, common methods are inseparable from the participation of enzymes, which greatly increases their complexity. Herein, an enzyme-free and sensitive method combining HCR and CHA is established to detect single-stranded nucleic acid. A target induces the auxiliary hairpin strands to open their secondary structure, exposing partial sequences that can trigger catalytic hairpin assembly (CHA) and hybridization chain reactions (HCR), respectively. To avoid additional signaling substances, 2-aminopurines (which fluoresces differently in double-stranded DNA and G-quadruplex) are modified in the substrate chains of CHA and HCR. Compared with methods that adopt CHA or HCR alone, the sensitivity of this method is increased by nearly 10 times. Moreover, this method can effectively improve the specific recognition of the target. To "turn on" the method, two regions that can pair with H5 and H6 are required. Taking foot-and-mouth disease virus (FMDV) as the object, this method can specifically detect FMDV to 2.78 × 101 TCID50. Although the sensitivity is not as good as RT-qPCR, it owns the advantages of simplicity and speed. We think this method can be used for the primary screening of FMDV, and has application potential in some grassroots.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
| | - Chaowang Huang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs Technology Center, Chongqing, 400020, P. R. China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
- Department of Health Management, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| |
Collapse
|
121
|
Zhang XL, Zhang HN, Liang H, Yang X, Chai YQ, Yuan R. Gold Nanobipyramid Hotspot Aggregation-Induced Surface-Enhanced Raman Scattering for the Ultrasensitive Detection of miRNA. Anal Chem 2023; 95:12768-12775. [PMID: 37587155 DOI: 10.1021/acs.analchem.3c01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS) biosensor was constructed by gold nanobipyramid (Au NBP) hotspot aggregation-induced SERS (HAI-SERS) for the ultrasensitive detection of microRNA-221 (miRNA-221). Impressively, compared with single Au NBP, the multiple Au NBPs assembled by tetrahedral DNA nanostructures (TDNs) could increase hotspot aggregation to significantly enhance the SERS signal of Raman molecule methylene blue (MB). Meanwhile, in the aid of Exo-III assisted target cycle amplification and TDNs-induced catalytic hairpin assembly (CHA) amplification, the biosensor could achieve the sensitive detection of miRNA-221 with a linear range of 1 fM-10 nM, and the limit of detection (LOD) was 0.59 fM, which could be used for practical application in MHCC-97L and MCF-7 cell lysates. This work provided a method for hotspot aggregation to enhance SERS for the detection of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Xin-Li Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hai-Na Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Huan Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
122
|
Dai C, Wang K, Tan M, Hua Z, Xia L, Qin L. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4194-4203. [PMID: 37584160 DOI: 10.1039/d3ay01006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this work, based on a dual signal amplification strategy of enzyme-assisted signal amplification (EASA) and catalytic hairpin assembly (CHA), combined with the magnetic attraction effect, a capillary pump-driven surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) platform was developed for the sensitive detection of colorectal cancer-associated (CRC) microRNA (miRNA). During the detection process, the miRNA first undergoes an EASA reaction with hairpin DNA1 (hpDNA1) under the action of endonuclease, which generates a large amount of DNA2 cyclically. After that, DNA2 triggers the CHA reaction to proceed, which leads to the ligation of the SERS nanoprobes and the capture nanoprobes (hpDNA2-hpDNA3 complexes). Finally, as the reactant solution flows through the collection zone, the end products are magnetically attracted by the micro-magnets, generating many "hot spots" and leading to a triple amplification of the SERS signal. By quantitative analysis, the platform achieved ultra-low detection limits of miR-122 (4.26 aM) and miR-192 (4.71 aM) within a linear range of 10 aM-10 pM. In addition, the platform's results for clinical samples are highly consistent with those measured by qRT-PCR methods. Overall, the proposed LoC-SERS platform is expected to be an important tool for the early screening of CRC.
Collapse
Affiliation(s)
- Chun Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Kun Wang
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Tan
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Zhaolai Hua
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lin Xia
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
123
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553315. [PMID: 37645872 PMCID: PMC10462003 DOI: 10.1101/2023.08.15.553315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
124
|
Yan Y, Guo L, Geng H, Bi S. Hierarchical Porous Metal-Organic Framework as Biocatalytic Microreactor for Enzymatic Biofuel Cell-Based Self-Powered Biosensing of MicroRNA Integrated with Cascade Signal Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301654. [PMID: 37098638 DOI: 10.1002/smll.202301654] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Enzymatic biofuel cells have become powerful tools in biosensing, which however generally suffer from the limited loading efficiency as well as low catalytic activity and poor stability of bioenzymes. Herein, the hierarchical porous metal-organic frameworks (MOFs) are synthesized using tannic acid (TA) for structural etching, which realizes co-encapsulation of glucose dehydrogenase (GDH) and nicotinamide adenine dinucleotide (NAD+ ) cofactor in zeolitic imidazolate framework (ZIF-L) and are further used as the biocatalytic microreactors to modify bioanode. In this work, the TA-controlled etching can not only expand the pore size of microreactors, but also achieve the reorientation of enzymes in their lower surface energy form, therefore enhancing the biocatalysis of cofactor-dependent enzyme. Meanwhile, the topological DNA tetrahedron is assembled on the microreactors, which acts as the microRNA-responsive "lock" to perform the cascade signal amplification of exonuclease III-assisted target recycling on bioanode and hybridization chain reaction (HCR) on biocathode. The proposed self-powered biosensor has achieved a detection limit as low as 2 aM (6 copies miRNA-21 in a 5 µL of sample), which is further successfully applied to identify cancer cells and clinical serums of breast cancer patients based on the different levels of miRNA-21, holding great potential in accurate disease identification and clinical diagnosis.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Li Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongyan Geng
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
125
|
Liao Z, Guo W, Ning G, Wu Y, Wang Y, Ning G. A sensitive electrochemical aptasensor for zearalenone detection based on target-triggered branched hybridization chain reaction and exonuclease I-assisted recycling. Anal Bioanal Chem 2023; 415:4911-4921. [PMID: 37326832 DOI: 10.1007/s00216-023-04797-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Traditional methods for detecting antibiotic and mycotoxin residues rely on large-scale instruments, which are expensive and require complex sample pretreatment processes and professional operators. Although aptamer-based electrochemical sensors have the advantages of simplicity, speed, low cost, and high sensitivity, most aptamer-based sensors lack a signal amplification strategy due to their direct use of aptamers as probes, resulting in insufficient sensitivity. To solve the sensitivity problem in the electrochemical detection process, a novel electrochemical sensing strategy was established for ultrasensitive zearalenone (ZEN) detection on the basis of exonuclease I (Exo I) and branched hybridization chain reaction (bHCR) to amplify the signal. The amplification strategy showed excellent analytical performance towards ZEN with a low detection limit at 3.1×10-12 mol/L and a wide linear range from 10-11 to 10-6 mol/L. Importantly, the assay was utilized in the corn powder samples with satisfactory results, holding promising applications in food safety detection and environmental monitoring.
Collapse
Affiliation(s)
- Zhibing Liao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Guiai Ning
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
126
|
Li Y, Sun Y, Yang W, Yang L, Su M, Fang L, Zheng J, Yuan R, Liang W. A novel photoelectrochemical strategy for sequence-spot bispecific analysis of N 6-methyladenosine modification based on proximity ligation-triggered cascade amplification. Anal Chim Acta 2023; 1265:341287. [PMID: 37230570 DOI: 10.1016/j.aca.2023.341287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
N6-methyladenosine (m6A) modification as the most prevalent mammalian RNA internal modification has been considered as the invasive biomarkers in clinical diagnosis and biological mechanism researches. It is still challenged to explore m6A functions due to technical limitations on base- and location-resolved m6A modification. Herein, we firstly proposed a sequence-spot bispecific photoelectrochemical (PEC) strategy based on in situ hybridization mediated proximity ligation assay for m6A RNA characterization with high sensitivity and accuracy. Firstly, the target m6A methylated RNA could be transferred to the exposed cohesive terminus of H1 based on the special self-designed auxiliary proximity ligation assay (PLA) with sequence-spot bispecific recognition. The exposed cohesive terminus of H1 could furtherly trigger the next catalytic hairpin assembly (CHA) amplification and in situ exponential nonlinear hyperbranched hybridization chain reaction for highly sensitive monitoring of m6A methylated RNA. Compared with conventional technologies, the proposed sequence-spot bispecific PEC strategy for m6A methylation of special RNA based on proximity ligation-triggered in situ nHCR performed improved sensitivity and selectivity with a detection limit of 53 fM, providing new insights into highly sensitive monitoring m6A methylation of RNA in bioassay, disease diagnosis and RNA mechanism.
Collapse
Affiliation(s)
- Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Yumeng Sun
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Weiguo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lan Yang
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China
| | - Mingli Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Ruo Yuan
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
127
|
Liang P, Huang W, Li C, Li X, Lai G. Dual cascade DNA walking-induced "super on" photocurrent response for constructing a novel antibiotic biosensing method. Anal Chim Acta 2023; 1264:341240. [PMID: 37230718 DOI: 10.1016/j.aca.2023.341240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
The construction of effective methods for the convenient testing of antibiotic residues in real samples has attracted considerable interest. Herein, we designed a dual cascade DNA walking amplification strategy and combined it with the controllable photocurrent regulation of a photoelectrode to develop a novel photoelectrochemical (PEC) biosensing method for antibiotic detection. The photoelectrode was prepared through the surface modification of a glassy carbon electrode with the TiO2/CdS QDs nanocomposite synthesized by an in situ hydrothermal deposition method. The strong anodic PEC response of the nanocomposite could be well inhibited by the introduction of a silver nanoclusters (Ag NCs)-labeled DNA hairpin onto its surface. Upon the target biorecognition reaction, an Mg2+-dependent DNAzyme (MNAzyme)-driven DNA walking was triggered to release another MNAzyme strand-linked streptavidin (SA) complex. As this SA complex could serve as a four-legged DNA walker, its cascade walking on the electrode surface not only released Ag NCs but also caused the linking of Rhodamine 123 with the electrode to realize the "super on" photocurrent output. By using kanamycin as the model analyte, this method showed a very wide linear range from 10 fg mL-1 to 1 ng mL-1 and a very low detection limit of 0.53 fg mL-1. Meanwhile, the simple photoelectrode preparation and the aptamer recognition-based autonomous DNA walking resulted in the convenient manipulation and excellent repeatability. These unique performances determine the great potential of the proposed method for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
128
|
Liu J, Zeng S, Wan Y, Liu T, Chen F, Wang A, Tang W, Wang J, Yuan H, Negahdary M, Lin Y, Li Y, Wang L, Wu Z. Hybridization chain reaction cascaded amplification platform for sensitive detection of pathogen. Talanta 2023; 265:124829. [PMID: 37352781 DOI: 10.1016/j.talanta.2023.124829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Rapid, sensitive, and accurate identification of pathogens is vital for preventing and controlling fish disease, reducing economic losses in aquaculture, and interrupting the spread of food-borne diseases in human populations. Herein, we proposed a hybridization chain reaction (HCR) cascaded dual-signal amplification platform for the ultrasensitive and specific detection of pathogenic microorganisms. A couple of specific primers for target bacterial 16S rRNAs were used to obtain amplified target single-stranded DNAs (AT-ssDNA). Then, AT-ssDNA initiated HCR amplification along with the opening of fluorophore (FAM) and a quencher (BHQ1) labeled hairpin reporter probe (H1), and the FAM fluorescence signal recovered. The proposed strategy could achieve a detection limit down to 0.31 CFU/mL for Staphylococcus aureus (S. aureus), 0.49 CFU/mL for Escherichia coli (E. coli) in buffer, and a linear range from 1 to 1 × 106 CFU/mL for S. aureus, 1 to 1 × 107 CFU/mL for E. coli. Furthermore, this platform enabled sensitive and precise detection of pathogenic microorganisms in complex samples such as fish blood and different organ tissues (large intestine, gallbladder, heart, liver, ren, gill, skin), which shows great potential in disease prevention and control in aquatic products.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Shu Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China.
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Tianmi Liu
- Testing Center of Aquatic Product Quality Safety of Hainan Province, Haikou, 570206, China
| | - Fei Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Anwei Wang
- Testing Center of Aquatic Product Quality Safety of Hainan Province, Haikou, 570206, China
| | - Wenning Tang
- Products Quality Supervision and Inspection Institute of Hainan Province, Haikou, 570206, China
| | - Jiali Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Haoyu Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Yutong Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yajing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Lingxuan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Zijing Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| |
Collapse
|
129
|
Chen W, Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A review of advances in aptamer-based cell detection technology. Mol Biol Rep 2023; 50:5425-5438. [PMID: 37101007 DOI: 10.1007/s11033-023-08410-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Since cells are the basic structural and functional units of organisms, the detection or quantitation of cells is one of the most common basic problems in life science research. The established cell detection techniques mainly include fluorescent dye labeling, colorimetric assay, and lateral flow assay, all of which employ antibodies as cell recognition elements. However, the widespread application of the established methods generally dependent on antibodies is limited, because the preparation of antibodies is complicated and time-consuming, and unrecoverable denaturation is prone to occur with antibodies. By contrast, aptamers that are generally selected through the systematic evolution of ligands by exponential enrichment can avoid the disadvantages of antibodies due to their controllable synthesis, thermostability, and long shelf life, etc. Accordingly, aptamers may serve as novel molecular recognition elements like antibodies in combination with various techniques for cell detection. This paper reviews the developed aptamer-based cell detection methods, mainly including aptamer-fluorescent labeling, aptamer-isothermal amplification assay, electrochemical aptamer sensor, aptamer-based lateral flow analysis, and aptamer-colorimetric assay. The principles, advantages, progress of application in cell detection and future development trend of these methods were specially discussed. Overall, different assays are suitable for different detection purposes, and the development of more accurate, economical, efficient, and rapid aptamer-based cell detection methods is always on the road in the future. This review is expected to provide a reference for achieving efficient and accurate detection of cells as well as improving the usefulness of aptamers in the field of analytical applications.
Collapse
Affiliation(s)
- Wenrong Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, PR China.
| |
Collapse
|
130
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
131
|
Ning W, Zhang C, Tian Z, Wu M, Luo Z, Hu S, Pan H, Li Y. Ω-shaped fiber optic LSPR biosensor based on mismatched hybridization chain reaction and gold nanoparticles for detection of circulating cell-free DNA. Biosens Bioelectron 2023; 228:115175. [PMID: 36871422 DOI: 10.1016/j.bios.2023.115175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Circulating cell-free DNA (cfDNA) is a promising biomarker of liquid biopsy, but it still faces some difficulties in achieving sensitive and convenient detection. Herein, an Ω-shaped fiber optic localized surface plasmon resonance (FO-LSPR) biosensor based on hybridization chain reaction (HCR) coupled with gold nanoparticles (AuNPs) was developed, and applied in simple and sensitive detection of cfDNA. Specifically, one-base mismatch was designed in HCR hairpins (H1 and H2) to obtain high reaction efficiency, and AuNPs was introduced onto H1 through poly-adenine to construct HCR coupled with AuNPs strategy. Meanwhile, target cfDNA was designed into two domains: one could trigger HCR to generate dsDNA concatemer carrying numerous AuNPs, and the other could hybridize with capture DNA on the surface of Ω-shaped fiber optic (FO) probes. Thus, the presence of target cfDNA would initiate HCR, and bring the formed dsDNA concatemer and AuNPs to approach the probe surface, resulting in dramatically amplified LSPR signal. Besides, HCR required simple isothermal and enzyme-free condition, and Ω-shaped FO probe with high refractive index sensitivity just needed to be immersed into HCR solution directly for signal monitoring. Benefiting from the synergetic amplification of mismatched HCR and AuNPs, the proposed biosensor exhibited high sensitivity with a limit of detection of 14.0 pM, and therefore could provide a potential strategy for biomedical analysis and disease diagnosis.
Collapse
Affiliation(s)
- Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuyan Zhang
- Medical Equipment Innovation Research Center, Precision Medicine Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
132
|
Yu C, Wang Y, Wu R, Li B. Single Molecular Nanopores as a Label-Free Method for Homogeneous Conformation Investigation and Anti-Interference Molecular Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23602-23612. [PMID: 37141628 DOI: 10.1021/acsami.3c01884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this paper, we propose a "reciprocal strategy" that, on the one hand, explores the ability of solid-state nanopores in a homogeneous high-fidelity characterization of nucleic acid assembly and, on the other hand, the formed nucleic acid assembly with a large size serves as an amplifier to provide a highly distinguished and anti-interference signal for molecular sensing. Four-hairpin hybridization chain reaction (HCR) with G-rich tail tags is taken as the proof-of-concept demonstration. G-rich tail tags are commonly used to form G-quadruplex signal probes on the side chain of HCR duplex concatemers. When such G-tailed HCR concatemers translocate the nanopore, abnormal, much higher nanopore signals over normal duplexes can be observed. Combined with atomic force microscopy, we reveal the G-rich tail may easily induce the "intermolecular interaction" between HCR concatemers to form "branched assembly structure (BAS)". To the best of our knowledge, this is the first evidence for the formation BAS of the G tailed HCR concatemers in a homogeneous solution. Systematic nanopore measurements further suggest the formation of these BASs is closely related to the types of salt ions, the amount of G, the concentration of substrate hairpins, the reaction time, and so forth. Under optimized conditions, these BASs can be grown to just the right size without being too large to block the pores, while producing a current 14 times that of conventional double-stranded chains. Here, these very abnormal large current blockages have, in turn, been taken as an anti-interference signal indicator for small targets in order to defend the high noises resulting from co-existing big species (e.g., enzymes or other long double-stranded DNA).
Collapse
Affiliation(s)
- Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruiping Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
133
|
Sakhabutdinova AR, Chemeris AV, Garafutdinov RR. Detection of Specific RNA Targets by Multimerization. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:679-686. [PMID: 37331713 DOI: 10.1134/s0006297923050103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 06/20/2023]
Abstract
Detection of specific RNA targets via amplification-mediated techniques is widely used in fundamental studies and medicine due to essential role of RNA in transfer of genetic information and development of diseases. Here, we report on an approach for detection of RNA targets based on the particular type of isothermal amplification, namely, reaction of nucleic acid multimerization. The proposed technique requires only a single DNA polymerase possessing reverse transcriptase, DNA-dependent DNA polymerase, and strand-displacement activities. Reaction conditions that lead to efficient detection of the target RNAs through multimerization mechanism were determined. The approach was verified by using genetic material of the SARS-CoV-2 coronavirus as a model viral RNA. Reaction of multimerization allowed to differentiate the SARS-CoV-2 RNA-positive samples from the SARS-CoV-2 negative samples with high reliability. The proposed technique allows detection of RNA even in the samples, which were subjected to multiple freezing-thawing cycles.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Alexey V Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia.
| |
Collapse
|
134
|
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Isothermal nucleic acid amplification technology for rapid detection of virus. Crit Rev Biotechnol 2023; 43:415-432. [PMID: 35156471 DOI: 10.1080/07388551.2022.2030295] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.
Collapse
Affiliation(s)
- Zhenting Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Xiaowen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Huhu Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fanpu Ji
- Department of Infectious Diseases, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Nanchong, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
| | - Xiaoping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanchong, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Nanchong, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanchong, China
| |
Collapse
|
135
|
Martino S, Tammaro C, Misso G, Falco M, Scrima M, Bocchetti M, Rea I, De Stefano L, Caraglia M. microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics. Int J Mol Sci 2023; 24:7762. [PMID: 37175469 PMCID: PMC10178165 DOI: 10.3390/ijms24097762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNA (miRNA) are constituted of approximately 22 nucleotides and play an important role in the regulation of many physiological functions and diseases. In the last 10 years, an increasing interest has been recorded in studying the expression profile of miRNAs in cancer. Real time-quantitative polymerase chain reaction (RT-qPCR), microarrays, and small RNA sequencing represent the gold standard techniques used in the last 30 years as detection methods. The advent of nanotechnology has allowed the fabrication of nanostructured biosensors which are widely exploited in the diagnostic field. Nanostructured biosensors offer many advantages: (i) their small size allows the construction of portable, wearable, and low-cost products; (ii) the large surface-volume ratio enables the loading of a great number of biorecognition elements (e.g., probes, receptors); and (iii) direct contact of the recognition element with the analyte increases the sensitivity and specificity inducing low limits of detection (LOD). In this review, the role of nanostructured biosensors in miRNA detection is explored, focusing on electrochemical and optical sensing. In particular, four types of nanomaterials (metallic nanoparticles, graphene oxide, quantum dots, and nanostructured polymers) are reported for both detection strategies with the aim to show their distinct properties and applications.
Collapse
Affiliation(s)
- Sara Martino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Ilaria Rea
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Luca De Stefano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| |
Collapse
|
136
|
Zhang Y, Cai Q, Yan X, Jie G. Versatile fluorescence detection of T4 PNK and mRNA based on unique DNA nanomachine amplification. Anal Chim Acta 2023; 1251:341003. [PMID: 36925292 DOI: 10.1016/j.aca.2023.341003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The development of DNA nanomachines provides a new strategy for the detection of tumor markers. In this work, an intelligent three-dimensional (3D) DNA walking machine with polynucleotide kinase (PNK) activator was designed, which was coupled with unique nanomachine formed by DNA nanowire cascade amplification reaction for versatile fluorescence detection of T4 PNK activity and messenger RNA (mRNA). When PNK exists, the free DNA walker was formed by hydrolysis cleavage of exonuclease, then the fluorophore-labeled report probe on the Au nanoparticles (NPs) was sheared during cycling cleavage reaction, thus the fluorescence signal was recovered for detection of PNK. Moreover, the DNA nanowires were produced by rolling ring amplification, then target mRNA sequentially initiated interval hybridization of hairpin probes through DNA nanowire, thus realizing DNA cascade reaction (DCR) with high "on" signal of DNA nanomachine for mRNA assay. This developed novel fluorescence nanomachine reported a new assay method with promising application for versatile targets and showed great potential for molecular-target therapies, and clinic diagnostics.
Collapse
Affiliation(s)
- Yuqi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
137
|
Qian W, Gong G, Su H, Zhao Y, Fu W, Wang Y, Ji W, Sun X, Zhang B, Ma L, Li J, Zhang X, Li S, Sheng E, Lu Y, Zhu D. Hepar-on-a-sensor-platform with hybridization chain reaction amplification strategy to intuitively monitor the hepatoxicity of natural compounds. Acta Biomater 2023; 160:73-86. [PMID: 36804823 DOI: 10.1016/j.actbio.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The irrational use of natural compounds in the treatment of diseases can lead to serious side effects, especially hepatoxicity, and its toxic effects are usually cumulative and imperceptible. Therefore, an accurate sensing platform is urgently needed to monitor the hepatotoxicity of natural compounds. Here, we deposited a thermo-responsive alginate-RGD/Pluronic hydrogel to construct an in vitro three-dimensional(3D) hepar-platform, and a thorough validation was adopted to evaluate the bioprinted hepatic constructs. The engineered hepar-platform was then employed to access its biological response toward Emodin (EM) and Triptolide (TP), two typical hepatotoxic natural compounds. Subsequently, we integrated it with a robust fluorescent sensor based on hybridization chain reaction amplification strategy (HCR) to monitor the early hepatotoxic biomarker - glutathione-S-transferase-alpha (GST-α) secreted by this 3D constructs. Our study was the first attempt to construct an accurate hepar-on-a-sensor platform that could effectively detect GST-α for monitoring the hepatoxic effects of natural compounds. The limit of detection of the platform was 0.3 ng ml-1 and the accuracy of this platform was verified by enzyme linked immunosorbent assay. Furthermore, the variation of GST-α induced by EM and TP was consistent with hepatotoxicity studies, thus providing an important application value for evaluating the hepatotoxicity of natural compounds. STATEMENT OF SIGNIFICANCE: 1. We deposited a thermo-responsive alginate-RGD/Pluronic hydrogel to construct an in vitro three-dimensional(3D) hepar-platform, and elucidated the essential reasons why hybrid bioinks more suitable for 3D extrusion from biomaterials itself. Also, a thorough validation associated with a series of important proteins and genes involved in liver cell metabolism was adopted to evaluate the bioprinted hepatic constructs accurately 2. Glutathione-S-transferase-alpha is a soluble trace biomarker for acute hepatotoxic injury, the hepatotoxic effects of natural compounds on the secretion of GST-α has not been reported to date. We integrated our 3D hepar-platform with recognition molecules-aptamers and HCR amplification strategy to monitor the variation of GST-α, aiming at developing a robust and stable fluorescent biosensing platform to monitor the hepatoxicity of natural compounds.
Collapse
Affiliation(s)
- Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China; Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
| | - Guangming Gong
- Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
| | - Hua Su
- Department of Pharmacy, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wenjuan Fu
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Yuting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Wenwen Ji
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Xuetong Sun
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Bei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Lijuan Ma
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Jianting Li
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Xiangying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Su Li
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Enze Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China
| | - Yin Lu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine,Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
138
|
Fu X, Chen Z, Ma W, Zhang H, Mo W, Li J, Yang M. Entropy-driven dynamic self-assembled DNA dendrimers for colorimetric detection of African swine fever virus. Anal Bioanal Chem 2023; 415:1675-1685. [PMID: 36715708 DOI: 10.1007/s00216-023-04562-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023]
Abstract
Herein, we subtly engineered an amplified colorimetric biosensor for the cyclic detection of African swine fever virus DNA (ASFV-DNA), which associated the branched catalytic hairpin assembly (bCHA) amplification with G-quadruplex DNAzyme activity through triplex DNA formation. Firstly, a Y-shaped hairpin trimer was constructed for the dynamic self-assembly of DNA dendrimers. Then, in the presence of ASFV-DNA, the signal strand CP was opened, exposing the toehold regions, which would trigger the CHA cascade reaction between hairpin trimers. In the CHA cascade reaction, H1, H2, and H3 opened and bound in sequence, eventually forming the structure of DNA dendrimers. Subsequently, the obtained bCHA product was specifically recognized by the GGG repeat sequences of L1 and L2, then amplified by the synergistic effect of triplex DNA and the formation of asymmetric split G-quadruplex. Benefiting from the amplification properties of bCHA and the high peroxidase-like catalytic activity of asymmetrically split G-quadruplex DNAzymes, it could achieve effective colorimetric signal output in the presence of ASFV-DNA by means of triplex DNA formation. Under the optimal experimental conditions, this biosensor exhibited excellent sensitivity with a detection limit of 1.8 pM. Further, it was applied to the content detection of simulated samples of African swine fever, and the recoveries were 98.9 ~ 103.2%. This method has the advantages of simple operation, good selectivity, and high sensitivity, which is expected to be used for highly sensitive detection of actual samples of African swine fever virus.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China.
| | - Zhoujie Chen
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Wenjie Ma
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - He Zhang
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China.
| | - Wenhao Mo
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Jinyan Li
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Mei Yang
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| |
Collapse
|
139
|
Liu L, Xiong M, Rong Q, Zhang M, Zhang X. Nucleic acid sensors in vivo: challenges and opportunities. VIEW 2023. [DOI: 10.1002/viw.20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
140
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|
141
|
Lee H, Lee S, Park C, Yeom M, Lim JW, Vu TTH, Kim E, Song D, Haam S. Rapid Visible Detection of African Swine Fever Virus Using Hybridization Chain Reaction-Sensitized Magnetic Nanoclusters and Affinity Chromatography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207117. [PMID: 36960666 DOI: 10.1002/smll.202207117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
African swine fever virus (ASFV) is a severe and persistent threat to the global swine industry. As there are no vaccines against ASFV, there is an immense need to develop easy-to-use, cost-effective, and rapid point-of-care (POC) diagnostic platforms to detect and prevent ASFV outbreaks. Here, a novel POC diagnostic system based on affinity column chromatography for the optical detection of ASFV is presented. This system employs an on-particle hairpin chain reaction to sensitize magnetic nanoclusters with long DNA strands in a target-selective manner, which is subsequently fed into a column chromatography device to produce quantitatively readable and colorimetric signals. The detection approach does not require expensive analytical apparatus or immobile instrumentation. The system can detect five genes constituting the ASFV whole genome with a detection limit of ≈19.8 pm in swine serum within 30 min at laboratory room temperature. With an additional pre-amplification step using polymerase chain reaction (PCR), the assay is successfully applied to detect the presence of ASFV in 30 suspected swine samples with 100% sensitivity and specificity, similar to quantitative PCR. Thus, this simple, inexpensive, portable, robust, and customizable platform for the early detection of ASFV can facilitate the timely surveillance and implementation of control measures.
Collapse
Affiliation(s)
- Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Thu Hang Vu
- Department of Preclinical Science, College of Pharmacy, Korea University Sejong Campus, Sejong City, 30019, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
142
|
Ma L, Liao D, Zhao Z, Kou J, Guo H, Xiong X, Man S. Sensitive Small Molecule Aptasensing based on Hybridization Chain Reaction and CRISPR/Cas12a Using a Portable 3D-Printed Visualizer. ACS Sens 2023; 8:1076-1084. [PMID: 36651835 DOI: 10.1021/acssensors.2c02097] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Next-generation biosensing tools based on CRISPR/Cas have revolutionized the molecular detection. A number of CRISPR/Cas-based biosensors have been reported for the detection of nucleic acid targets. The establishment of efficient methods for non-nucleic acid target detection would further broaden the scope of this technique, but up to now, the concerning research is limited. In the current study, we reported a versatile biosensing platform for non-nucleic acid small-molecule detection called SMART-Cas12a (small-molecule aptamer regulated test using CRISPR/Cas12a). Simply, hybridization chain reaction cascade signal amplification was first trigged by functional nucleic acid (aptamer) through target binding. Then, the CRISPR/Cas system was integrated to recognize the amplified products followed by activation of the trans-cleavage. As such, the target can be ingeniously converted to nucleic acid signals and then fluorescent signals that can be readily visualized and analyzed by a customized 3D-printed visualizer with the help of a home-made App-enabled smartphone. Adenosine triphosphate was selected as a model target, and under the optimized conditions, we achieved fine analytical performance with a linear range from 0.1 to 750 μM and a detection limit of 1.0 nM. The satisfactory selectivity and recoveries that we have obtained further demonstrated this method to be suitable for a complex sample environment. The sample-to-answer time was less than 100 min. Our work not only expanded the reach of the CRISPR-Cas system in biosensing but also provided a prototype method that can be generalized for detecting a wider range of analytes with desirable adaptability, sensitivity, specificity, and on-site capability.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dan Liao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haoyu Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xin Xiong
- College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 3000457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
143
|
Zhang Z, Jia X, Xu X. An electrochemical aptasensor for detection of streptomycin based on signal amplification assisted by functionalized gold nanoparticles and hybridization chain reaction. Mikrochim Acta 2023; 190:152. [PMID: 36959354 DOI: 10.1007/s00604-023-05737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
A ratiometric electrochemical aptasensor based on gold nanoparticles (AuNPs) functionalization and hybridization chain reaction (HCR) assisted signal amplification has been for the first time designed for the detection of streptomycin (STR). The double-stranded DNA (dsDNA) formed by the hybridization of ferrocene (Fc)-labeled STR aptamer (Apt) and capture probe (CP) is first immobilized on the gold electrode (GE) surface via Au-S reaction. The specific binding of the target and Apt results in numerous Fc detachment from the sensing interface. Then, the remaining single-stranded CP is combined with AuNPs modified with initiator DNA (iDNA) by auxiliary DNA (aDNA). Among them, the iDNA triggers HCR between two hairpin probes (H1/H2), thus capturing a large number of methylene blue (MB) electrochemical probe, which generates a strong electrochemical signal of MB and a weak electrochemical signal of Fc. Signals are collected by square wave voltammetry (the potential window ranging from -0.5 V to 0.6 V, vs. Ag/AgCl ), and the oxidation peak currents at -0.200 V (MB) and 0.416 V (Fc) are recorded. The use of the ratiometric method has effectively improved the accuracy and reliability of the analysis. The successful application of AuNPs and HCR greatly improves the sensitivity of the sensor, and the detection limit is as low as 0.08 pM. It can sensitively determine STR in the range 0.1 pM to 10 nM. In addition, the designed aptasensor has been successfully applied to the detection of STR in milk and honey samples.
Collapse
Affiliation(s)
- Zhoubing Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xiaorun Jia
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xueqin Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
144
|
Chen Q, Wu L, Zhao F, Liu B, Wu Z, Yu R. Construction of hybridization chain reaction induced optical signal directed change of photonic crystals-DNA hydrogel sensor and its visual determination for aflatoxin B1. Food Chem 2023; 418:135891. [PMID: 36965395 DOI: 10.1016/j.foodchem.2023.135891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
Herein, we have introduced hybridization chain reaction (HCR) into the photonic crystals (PhCs) hydrogel, for the first time, realizing HCR for inducing the change of the optical signal of PhCs hydrogel and using this hydrogel as a sensor for determination of the aflatoxin B1 (AFB1). By using specific sequences as the cross-linker, the extension of the cross-linker by HCR drives the swelling of the hydrogel, and the optical property of 2D PhCs array converts this swelling into a change of the Debye diffraction ring. Moreover, by further selecting the aptamer to construct the cross-linker, the hydrogel is also endowed with a unique capability for AFB1, making the hydrogel a novel sensor based on the signal amplification strategy. The results show that the designed hairpin DNAs can effectively trigger the HCR and cause the swelling of hydrogel, and the hydrogel sensor has a good determination performance and high specific recognition for AFB1.
Collapse
Affiliation(s)
- Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Lingfeng Wu
- Leicester International Institute, Dalian University of Technology, Panjin 124221, People's Republic of China
| | - Feng Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
145
|
Chu Y, Xiao SJ, Zhu JJ. Rapid Signal Amplification Based on Planetary Cross-Catalytic Hairpin Assembly Reactions. Anal Chem 2023; 95:4317-4324. [PMID: 36826784 DOI: 10.1021/acs.analchem.2c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Non-enzymatic nucleic acid catalytic systems based on branch migration have been developed, with applications ranging from biological sensing to molecular computation. A scalable planetary cross-catalytic (PCC) system is built up in this work by cross-cascading three planetary catalytic hairpin assembly (CHA) reactions with a central three-arm-branched CHA reaction. With the bottom-up hierarchy strategy, we designed four levels of catalytic reactions, simple CHA reactions, two-layered linear cascades, conventional one-planetary PCC reactions, and two- and three-planetary PCC reactions, and examined the reaction products and intermediates in each level via native polyacrylamide gel electrophoresis. The gel shift assay optimized the designs of hairpin strands to keep the leaking reactions at a manageable level and protect against signal attenuation during serial signal transduction in nucleic acid circuits. The reaction kinetics, measured via fluorescence, are strongly dependent on the number of planetary reactions. As a result, the three-planetary PCC system achieved an exponential amplification factor of about 3k, while the conventional one-planetary cross-catalytic system has an amplification factor of 2k (k represents the cycling number). Finally, we demonstrated the rapid detection of a cancer biomarker, microRNA141, used as the catalyst in a two-planetary PCC system. We envision that the PCC systems could be applied in biological signal transduction, biocomputing, rapid detection of single- and multi-target nucleic acid probes, etc.
Collapse
Affiliation(s)
- Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
146
|
Zhou S, Deng L, Dong J, Lu P, Qi N, Huang Z, Yang M, Huo D, Hou C. Electrochemical detection of the p53 gene using exponential amplification reaction (EXPAR) and CRISPR/Cas12a reactions. Mikrochim Acta 2023; 190:113. [PMID: 36869936 DOI: 10.1007/s00604-023-05642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 03/05/2023]
Abstract
An improved electrochemical sensor has been developed for sensitive detection of the p53 gene based on exponential amplification reaction (EXPAR) and CRISPR/Cas12a. Restriction endonuclease BstNI is introduced to specifically identify and cleave the p53 gene, generating primers to trigger the EXPAR cascade amplification. A large number of amplified products are then obtained to enable the lateral cleavage activity of CRISPR/Cas12a. For electrochemical detection, the amplified product activates Cas12a to digest the designed block probe, which allows the signal probe to be captured by the reduced graphene oxide-modified electrode (GCE/RGO), resulting in an enhanced electrochemical signal. Notably, the signal probe is labeled with large amounts of methylene blue (MB). Compared with traditional endpoint decoration, the special signal probe effectively amplifies the electrochemical signals by a factor of about 15. Experimental results show that the electrochemical sensor exhibits wide ranges from 500 aM to 10 pM and 10 pM to 1 nM, as well as a relatively low limit detection of 0.39 fM, which is about an order of magnitude lower than that of fluorescence detection. Moreover, the proposed sensor shows reliable application capability in real human serum, indicating that this work has great prospects for the construction of a CRISPR-based ultra-sensitive detection platform.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Peng Lu
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, People's Republic of China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, 610065, People's Republic of China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
147
|
Zhu Y, Wu J, Zhou Q. Functional DNA sensors integrated with nucleic acid signal amplification strategies for non-nucleic acid targets detection. Biosens Bioelectron 2023; 230:115282. [PMID: 37028002 DOI: 10.1016/j.bios.2023.115282] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
In addition to carrying and transmitting genetic material, some DNA molecules have specific binding ability or catalytic function. DNA with this special function is collectively referred to as functional DNA (fDNA), such as aptamer, DNAzyme and so on. fDNA has the advantages of simple synthetic process, low cost and low toxicity. It also has high chemical stability, recognition specificity and biocompatibility. In recent years, fDNA biosensors have been widely investigated as signal recognition elements and signal transduction elements for the detection of non-nucleic acid targets. However, the main problem of fDNA sensors is their limited sensitivity to trace targets, especially when the affinity of fDNA to the targets is low. To further improve the sensitivity, various nucleic acid signal amplification strategies (NASAS) are explored to improve the limit of detection of fDNA. In this review, we will introduce four NASAS (hybridization chain reaction, entropy-driven catalysis, rolling circle amplification, CRISPR/Cas system) and the corresponding design principles. The principle and application of these fDNA sensors integrated with signal amplification strategies for detection of non-nucleic acid targets are summarized. Finally, the main challenges and application prospects of NASAS integrated fDNA biosensing system are discussed.
Collapse
|
148
|
New method for microRNA detection based on multimerization. Anal Biochem 2023; 664:115049. [PMID: 36639117 DOI: 10.1016/j.ab.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Detection of specific microRNA (miRNA) is of great demand due to their essential role in genes regulation, stress response and development of diseases. However, mature miRNAs are small molecules that make it difficult to use routine amplification-based methods. Here, we report an approach for detection of miRNA based on a new type of isothermal amplification, namely, multimerization. The proposed technique is simple and versatile, excludes a reverse transcription step, and requires two conventional primers only and no additional stem-loop or fluorogenic probes. Only mature miRNAs can initiate multimerization, thereby, pri- or pre-miRNA are excluded from analysis, ensuring high accuracy of the assay. The approach was approved on miRNA from common wheat Triticum aestivum; the increase of Tae-miRNA159 level for plants affected by Stagonospora nodorum Berk infection was demonstrated. The obtained results allow to perform quantitative analysis, providing determination of specific targets with high reliability (detection limit of about 20 pM).
Collapse
|
149
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
150
|
Zhang D, Wang Y, Zhao J, Li X, Zhou Y, Wang S. One-step and Wash-free Multiplexed Immunoassay Platform based on Bioinspired Photonic Barcodes. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|