101
|
MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal "time cells" bridge the gap in memory for discontiguous events. Neuron 2011; 71:737-49. [PMID: 21867888 PMCID: PMC3163062 DOI: 10.1016/j.neuron.2011.07.012] [Citation(s) in RCA: 729] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 01/17/2023]
Abstract
The hippocampus is critical to remembering the flow of events in distinct experiences and, in doing so, bridges temporal gaps between discontiguous events. Here, we report a robust hippocampal representation of sequence memories, highlighted by "time cells" that encode successive moments during an empty temporal gap between the key events, while also encoding location and ongoing behavior. Furthermore, just as most place cells "remap" when a salient spatial cue is altered, most time cells form qualitatively different representations ("retime") when the main temporal parameter is altered. Hippocampal neurons also differentially encode the key events and disambiguate different event sequences to compose unique, temporally organized representations of specific experiences. These findings suggest that hippocampal neural ensembles segment temporally organized memories much the same as they represent locations of important events in spatially defined environments.
Collapse
|
102
|
The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci 2011; 31:7715-28. [PMID: 21613484 DOI: 10.1523/jneurosci.1380-11.2011] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adult hippocampus continuously generates new cohorts of immature neurons with increased excitability and plasticity. The window for the expression of those unique properties in each cohort is determined by the time required to acquire a mature neuronal phenotype. Here, we show that local network activity regulates the rate of maturation of adult-born neurons along the septotemporal axis of the hippocampus. Confocal microscopy and patch-clamp recordings were combined to assess marker expression, morphological development, and functional properties in retrovirally labeled neurons over time. The septal dentate gyrus displayed higher levels of basal network activity and faster rates of newborn neuron maturation than the temporal region. Voluntary exercise enhanced network activity only in the temporal region and, in turn, accelerated neuronal development. Finally, neurons developing within a highly active environment exhibited a delayed maturation when their intrinsic electrical activity was reduced by the cell-autonomous overexpression of Kir2.1, an inward-rectifying potassium channel. Our findings reveal a novel type of activity-dependent plasticity acting on the timing of neuronal maturation and functional integration of newly generated neurons along the longitudinal axis of the adult hippocampus.
Collapse
|
103
|
Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 2011; 33:828.e1-17. [PMID: 21820213 DOI: 10.1016/j.neurobiolaging.2011.06.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/11/2023]
Abstract
Aged (20-22 months) male Fischer 344 rats were randomly assigned to sedentary (A-SED), environmentally-enriched (A-ENR), or exercise (A-EX) conditions. After 10-12 weeks of differential experience, the 3 groups of aged rats and young sedentary controls were tested for physical and cognitive function. Spatial discrimination learning and memory consolidation, tested on the water maze, were enhanced in environmentally-enriched compared with sedentary. A-EX exhibited improved and impaired performance on the cue and spatial task, respectively. Impaired spatial learning in A-EX was likely due to a bias in response selection associated with exercise training, as object recognition memory improved for A-EX rats. An examination of senescent hippocampal physiology revealed that enrichment and exercise reversed age-related changes in long-term depression (LTD) and long-term potentiation (LTP). Rats in the enrichment group exhibited an increase in cell excitability compared with the other 2 groups of aged animals. The results indicate that differential experience biased the selection of a spatial or a response strategy and factors common across the 2 conditions, such as increased hippocampal activity associated with locomotion, contribute to reversal of senescent synaptic plasticity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | | | |
Collapse
|
104
|
|
105
|
Czurkó A, Huxter J, Li Y, Hangya B, Muller RU. Theta phase classification of interneurons in the hippocampal formation of freely moving rats. J Neurosci 2011; 31:2938-47. [PMID: 21414915 PMCID: PMC3758554 DOI: 10.1523/jneurosci.5037-10.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022] Open
Abstract
Earlier work on freely moving rats classified neurons in Ammon's horn as pyramidal cells (including place cells) or interneurons (previously called "theta cells") based on temporal discharge correlates and waveform configurations, but the anatomical and biochemical diversity of interneurons suggests they may have other distinguishing characteristics. To explore this possibility, we made extracellular recordings as rats foraged for food in an open space, used accepted criteria to identify interneurons, and found two additional categorization methods. First, interneurons were separated into theta-modulated and theta-independent groups using spike autocorrelograms. Second, theta-modulated interneurons were further separated into four groups by the phase of the ∼8 Hz theta rhythm at which firing was most rapid. These phase groups resemble the four phase peak groups of five anatomically identified interneuron types (two with the same preferred phase) recorded during the slow (∼4 Hz) theta rhythm in urethane-anesthetized rats. We suggest that the similar number of peak phase groups in walking rats and urethane-anesthetized rats and the partial agreement between peak phase values reflect a similar organization of theta rhythm in both states, so that the discharge properties of anatomically identified interneurons can be described in freely moving rats. Interestingly, the average spatial firing precision of the interneuron classes does not differ significantly, suggesting that the strong location-specific firing of place cells may be due to segregated high- and low-precision interneuron ensembles rather than to one or more dedicated high-precision classes.
Collapse
Affiliation(s)
- András Czurkó
- Department of Anatomy, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
- Laboratory of Proteomics, Institute of Biology, Faculty of Natural Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Institute of Medical Chemistry, University of Szeged, 6720 Szeged, Hungary
| | - John Huxter
- Department of Anatomy, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
- Pfizer Regenerative Medicine, Cambridge CB21 6GP, United Kingdom
| | - Yu Li
- Department of Anatomy, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Balázs Hangya
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary, and
| | - Robert U. Muller
- Department of Anatomy, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
106
|
Gomes da Silva S, Unsain N, Mascó DH, Toscano-Silva M, de Amorim HA, Silva Araújo BH, Simões PSR, Naffah-Mazzacoratti MDG, Mortara RA, Scorza FA, Cavalheiro EA, Arida RM. Early exercise promotes positive hippocampal plasticity and improves spatial memory in the adult life of rats. Hippocampus 2010; 22:347-58. [PMID: 21136521 DOI: 10.1002/hipo.20903] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2010] [Indexed: 01/20/2023]
Abstract
There is a great deal of evidence showing the capacity of physical exercise to enhance cognitive function, reduce anxiety and depression, and protect the brain against neurodegenerative disorders. Although the effects of exercise are well documented in the mature brain, the influence of exercise in the developing brain has been poorly explored. Therefore, we investigated the morphological and functional hippocampal changes in adult rats submitted to daily treadmill exercise during the adolescent period. Male Wistar rats aged 21 postnatal days old (P21) were divided into two groups: exercise and control. Animals in the exercise group were submitted to daily exercise on the treadmill between P21 and P60. Running time and speed gradually increased over this period, reaching a maximum of 18 m/min for 60 min. After the aerobic exercise program (P60), histological and behavioral (water maze) analyses were performed. The results show that early-life exercise increased mossy fibers density and hippocampal expression of brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B, improved spatial learning and memory, and enhanced capacity to evoke spatial memories in later stages (when measured at P96). It is important to point out that while physical exercise induces hippocampal plasticity, degenerative effects could appear in undue conditions of physical or psychological stress. In this regard, we also showed that the exercise protocol used here did not induce inflammatory response and degenerating neurons in the hippocampal formation of developing rats. Our findings demonstrate that physical exercise during postnatal development results in positive changes for the hippocampal formation, both in structure and function.
Collapse
|
107
|
McHugh SB, Fillenz M, Lowry JP, Rawlins JNP, Bannerman DM. Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety. Eur J Neurosci 2010; 33:322-37. [PMID: 21105915 PMCID: PMC3085075 DOI: 10.1111/j.1460-9568.2010.07497.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Traditionally, the function of the hippocampus (HPC) has been viewed in unitary terms, but there is growing evidence that the HPC is functionally differentiated along its septotemporal axis. Lesion studies in rodents and functional brain imaging in humans suggest a preferential role for the septal HPC in spatial learning and a preferential role for the temporal HPC in anxiety. To better enable cross-species comparison, we present an in vivo amperometric technique that measures changes in brain tissue oxygen at high temporal resolution in freely-moving rats. We recorded simultaneously from the dorsal (septal; dHPC) and ventral (temporal; vHPC) HPC during two anxiety tasks and two spatial tasks on the radial maze. We found a double-dissociation of function in the HPC, with increased vHPC signals during anxiety and increased dHPC signals during spatial processing. In addition, dHPC signals were modulated by spatial memory demands. These results add a new dimension to the growing consensus for a differentiation of HPC function, and highlight tissue oxygen amperometry as a valuable tool to aid translation between animal and human research.
Collapse
Affiliation(s)
- Stephen B McHugh
- Department of Psychology, University of Oxford, Oxford, South Parks Road, Oxford OX1 3UD, UK.
| | | | | | | | | |
Collapse
|
108
|
Lu X, Bilkey DK. The velocity-related firing property of hippocampal place cells is dependent on self-movement. Hippocampus 2010; 20:573-83. [PMID: 19554643 DOI: 10.1002/hipo.20666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hippocampal place cells have the interesting property of increasing their firing rate when a freely moving animal increases its running speed through the cell's place field. A previous study from this laboratory showed that this movement-related firing property is disrupted by lesions of the perirhinal cortex (PrhC). It is possible, therefore, that PrhC lesions disrupt speed-modulated sensory information such as optic flow or motor efferent or proprioceptive input that might be available to the hippocampus from the PrhC. To test this hypothesis, rats with single unit recording electrodes implanted in the CA1 region of the hippocampus received different levels of optic flow stimulation in both a freely moving and a passive movement condition. The effects of PrhC lesions were also tested. Although increasing the amount of optic flow information available decreased place field size, it had no discernable effect on the movement-firing rate relationship in the place cells of control animals run in the free-movement condition. In lesioned animals the relationship was disrupted, replicating our previous results. In the passive movement condition many place cells stopped firing. In those cells that did fire, however, the movement-firing rate relationship was no longer evident. These data indicate that the movement-firing rate relationship is not driven by vestibular or optic flow cues, but rather depends on either motor efferent or proprioceptive input, or that it results from some other form of input that may be modulated by self-motion, such as from the vibrissae.
Collapse
Affiliation(s)
- Xiaodong Lu
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
109
|
Taube JS. Interspike interval analyses reveal irregular firing patterns at short, but not long, intervals in rat head direction cells. J Neurophysiol 2010; 104:1635-48. [PMID: 20592120 DOI: 10.1152/jn.00649.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that a subset of neurons in the rat anterodorsal thalamus discharge as a function of the animal's head direction (HD) in the horizontal plane, independent of the animal's location and behavior. These cells have consistent firing properties across a wide range of conditions and cell discharge appears highly regular when listened to through a loudspeaker. In contrast, interspike interval (ISI) analyses on cortical cells have found that cell firing is irregular, even under constant stimulus conditions. Here, we analyzed HD cells from the anterodorsal thalamus, while rats foraged for food pellets, to determine whether their firing was regular or irregular. ISIs were measured when the animal's HD was maintained within ± 6° of the cell's preferred firing direction. ISIs were highly variable with a mean coefficient of variation (CV) of 0.681. For each cell, the CV values at HDs ± 24° away from the cell's preferred direction were similar to the coefficient measured at the cell's preferred direction. A second recording session showed that cells had similar coefficients of variation as the first session, suggesting that the degree of variability in cell spiking was a characteristic property for each cell. There was little correlation between ISIs and angular head velocity or translational speed. ISIs measured in HD cells from the postsubiculum and lateral mammillary nuclei showed higher CV values. These results indicate that despite the appearance of regularity in their firing, HD cells, like cortical cells, have irregular ISIs. In contrast to the irregular firing observed for ISIs, analyses over longer time intervals indicated that HD cell firing was much more regular, more nearly resembling a rate code. These findings have implications for attractor networks that model the HD signal and for models proposed to explain the generation of grid cell signals in entorhinal cortex.
Collapse
Affiliation(s)
- Jeffrey S Taube
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755, USA.
| |
Collapse
|
110
|
Lista I, Sorrentino G. Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 2010; 30:493-503. [PMID: 20041290 PMCID: PMC11498799 DOI: 10.1007/s10571-009-9488-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/14/2009] [Indexed: 02/07/2023]
Abstract
In order to guarantee better conditions for competition, the nervous system has developed not only mechanisms controlling muscle effectors, but also retrograde systems that, starting from peripheral structures, may influence brain functions. Under such perspective, physical activity could play an important role in influencing cognitive brain functions including learning and memory. The results of epidemiological studies (cross-sectional, prospective and retrospective) support a positive relationship between cognition and physical activities. Recent meta-analysis confirmed a significant effect of exercise on cognitive functions. However, the biological mechanisms that underlie such beneficial effects are still to be completely elucidated. They include supramolecular mechanisms (e.g. neurogenesis, synaptogenesis, and angiogenesis) which, in turn, are controlled by molecular mechanisms, such as BDNF, IGF-1, hormone and second messengers.
Collapse
Affiliation(s)
- I. Lista
- University of Naples Parthenope, Istituto di diagnosi e cura Hermitage Capodimonte, Naples, Italy
| | - G. Sorrentino
- University of Naples Parthenope, Istituto di diagnosi e cura Hermitage Capodimonte, Naples, Italy
- Faculty of Motor Sciences, University of Naples Parthenope, Via Acton 38, 80133 Naples, Italy
| |
Collapse
|
111
|
Abstract
Hippocampus place cell discharge is an important model system for understanding cognition, but evidence is missing that the place code is under the kind of dynamic attentional control characterized in primates as selective activation of one neural representation and suppression of another, competing representation. We investigated the apparent noise ("overdispersion") in the CA1 place code, hypothesizing that overdispersion results from discharge fluctuations as spatial attention alternates between distal cues and local/self-motion cues. The hypothesis predicts that: (1) preferential use of distal cues will decrease overdispersion; (2) global, attention-like states can be decoded from ensemble discharge such that both the discharge rates and the spatial firing patterns of individual cells will be distinct in the two states; (3) identifying attention-like states improves reconstructions of the rat's path from ensemble discharge. These predictions were confirmed, implying that a covert, dynamic attention-like process modulates discharge on a approximately 1 s time scale. We conclude the hippocampus place code is a dynamic representation of the spatial information in the immediate focus of attention.
Collapse
|
112
|
Diniz Behn CG, Klerman EB, Mochizuki T, Lin SC, Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 2010; 33:297-306. [PMID: 20337187 DOI: 10.1093/sleep/33.3.297] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. DESIGN We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. MEASUREMENTS AND RESULTS OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. CONCLUSIONS State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders.
Collapse
|
113
|
Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 2010; 107:7957-62. [PMID: 20375279 DOI: 10.1073/pnas.0912478107] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Driven either by external landmarks or by internal dynamics, hippocampal neurons form sequences of cell assemblies. The coordinated firing of these active cells is organized by the prominent "theta" oscillations in the local field potential (LFP): place cells discharge at progressively earlier theta phases as the rat crosses the respective place field ("phase precession"). The faster oscillation frequency of active neurons and the slower theta LFP, underlying phase precession, creates a paradox. How can faster oscillating neurons comprise a slower population oscillation, as reflected by the LFP? We built a mathematical model that allowed us to calculate the population activity analytically from experimentally derived parameters of the single neuron oscillation frequency, firing field size (duration), and the relationship between within-theta delays of place cell pairs and their distance representations ("compression"). The appropriate combination of these parameters generated a constant frequency population rhythm along the septo-temporal axis of the hippocampus, while allowing individual neurons to vary their oscillation frequency and field size. Our results suggest that the faster-than-theta oscillations of pyramidal cells are inherent and that phase precession is a result of the coordinated activity of temporally shifted cell assemblies, relative to the population activity, reflected by the LFP.
Collapse
|
114
|
Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS. Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 2009; 19:937-50. [PMID: 19132736 DOI: 10.1002/hipo.20543] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neurons from exercise participate in the acute neuronal response to high levels of running in B6D2F1/J (F1 hybrid of C57BL/6J female by DBA/2J male). Mice were housed with or without a running wheel for 50 days (runner vs. sedentary). The first 10 days, they received daily injections of BrdU to label dividing cells. The last 10 days, mice were tested for performance on the Morris water maze and rotarod and then euthanized to measure neurogenesis, c-Fos induction from running and vascular density. In C57BL/6J, exercise increased neurogenesis, density of blood vessels in the dentate gyrus and striatum (but not whole hippocampus), and enhanced performance on the water maze and rotarod. In B6D2F1/J, exercise also increased hippocampal neurogenesis but not vascular density in the granular layer. Improvement on the water maze from exercise was marginal, and no gain was seen for rotarod, possibly because of a ceiling effect. Running increased the number of c-Fos positive neurons in the granular layer by fivefold, and level of running was strongly correlated with c-Fos within 90 min before euthanasia. In runners, approximately 3.3% (+/-0.008 S.E.) of BrdU-positive neurons in the middle of the granule layer displayed c-Fos when compared with 0.8% (+/-0.001) of BrdU-negative neurons. Results suggest that procognitive effects of exercise are associated with increased vascular density in the dentate gyrus and striatum in C57BL/6J mice, and that new neurons from exercise preferentially function in the neuronal response to running in B6D2F1/J.
Collapse
Affiliation(s)
- Peter J Clark
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
115
|
Xu H, Liu ZQ, Liu Y, Zhang WS, Xu B, Xiong YC, Deng XM. Administration of midazolam in infancy does not affect learning and memory of adult mice. Clin Exp Pharmacol Physiol 2009; 36:1144-8. [DOI: 10.1111/j.1440-1681.2009.05208.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
116
|
Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 2009; 29:12597-605. [PMID: 19812334 DOI: 10.1523/jneurosci.2407-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The integrity of the hippocampus is critical for both spatial navigation and episodic memory, but how its neuronal firing patterns underlie those functions is not well understood. In particular, the modality by which hippocampal place cells contribute to spatial memory is debated. We found that administration of the cannabinoid receptor agonist CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol) induced a profound and reversible behavioral deficit in the hippocampus-dependent delayed spatial alternation task. On the one hand, despite severe memory impairment, the location-dependent firing of CA1 hippocampal place cells remained mostly intact. On the other hand, both spike-timing coordination between place cells at the theta timescale and theta phase precession of spikes were reversibly reduced. These results raise the possibility that cannabinoids impair memory primarily by altering short-term temporal dynamics of hippocampal neurons. We hypothesize that precise temporal coordination of hippocampal neurons is necessary for guiding behavior in spatial memory tasks.
Collapse
|
117
|
Chang CY, Mennerick S. Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses. J Neurophysiol 2009; 103:392-401. [PMID: 19889850 DOI: 10.1152/jn.00683.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although frequency-dependent short-term presynaptic plasticity has been of long-standing interest, most studies have emphasized modulation of the synchronous, phasic component of transmitter release, most evident with a single or a few presynaptic stimuli. Asynchronous transmitter release, vesicle fusion not closely time locked to presynaptic action potentials, can also be prominent under certain conditions, including repetitive stimulation. Asynchrony has often been attributed to residual Ca(2+) buildup in the presynaptic terminal. We verified that a number of manipulations of Ca(2+) handling and influx selectively alter asynchronous release relative to phasic transmitter release during action potential trains in cultured excitatory autaptic hippocampal neurons. To determine whether other manipulations of vesicle release probability also selectively modulate asynchrony, we probed the actions of one thoroughly studied modulator class whose actions on phasic versus asynchronous release have not been investigated. We examined the effects of the phorbol ester PDBu, which has protein kinase C (PKC) dependent and independent actions on presynaptic transmitter release. PDBu increased phasic and asynchronous release in parallel. However, while PKC inhibition had relatively minor inhibitory effects on PDBu potentiation of phasic and total release during action potential trains, PKC inhibition strongly reduced phorbol-potentiated asynchrony, through actions most evident late during stimulus trains. These results lend new insight into PKC-dependent and -independent effects on transmitter release and suggest the possibility of differential control of synchronous versus asynchronous vesicle release.
Collapse
Affiliation(s)
- Chun Yun Chang
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
118
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
119
|
Zou D, Aitake M, Hori E, Umeno K, Fukuda M, Ono T, Nishijo H. Rat hippocampal theta rhythm during sensory mismatch. Hippocampus 2009; 19:350-9. [PMID: 18958848 DOI: 10.1002/hipo.20524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been suggested that sensory mismatch induces motion sickness, but its neural mechanisms remain unclear. To investigate this issue, theta waves in the hippocampal formation (HF) were studied during sensory mismatch by backward translocation in awake rats. A monopolar electrode was implanted into the dentate gyrus in the HF, from which local field potentials were recorded. The rats were placed on a treadmill affixed to a motion stage translocated along a figure 8-shaped track. The rats were trained to run forward on the treadmill at the same speed as that of forward translocation of the motion stage (a forward condition) before the experimental (recording) sessions. In the experimental sessions, the rats were initially tested in the forward condition, and then tested in a backward (mismatch) condition, in which the motion stage was turned around by 180 degrees before translocation. That is, the rats were moved backward by translocation of the stage although the rats ran forward on the treadmill. The theta (6-9 Hz) power was significantly increased in the backward condition compared with the forward condition. However, the theta power gradually decreased by repeated testing in the backward condition. Furthermore, backward translocation of the stage without locomotion did not increase theta power. These results suggest that the HF might function as a comparator to detect sensory mismatch, and that alteration in HF theta activity might induce motion sickness.
Collapse
Affiliation(s)
- D Zou
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Recordings of rat hippocampal place cells have provided information about how the hippocampus retrieves memory sequences. One line of evidence has to do with phase precession, a process organized by theta and gamma oscillations. This precession can be interpreted as the cued prediction of the sequence of upcoming positions. In support of this interpretation, experiments in two-dimensional environments and on a cue-rich linear track demonstrate that many cells represent a position ahead of the animal and that this position is the same irrespective of which direction the rat is coming from. Other lines of investigation have demonstrated that such predictive processes also occur in the non-spatial domain and that retrieval can be internally or externally cued. The mechanism of sequence retrieval and the usefulness of this retrieval to guide behaviour are discussed.
Collapse
Affiliation(s)
- John Lisman
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
121
|
Ekstrom A, Suthana N, Millett D, Fried I, Bookheimer S. Correlation between BOLD fMRI and theta-band local field potentials in the human hippocampal area. J Neurophysiol 2009; 101:2668-78. [PMID: 19244353 DOI: 10.1152/jn.91252.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relation between the blood-oxygen-level-dependent (BOLD) signal, which forms the basis of functional magnetic resonance imaging (fMRI), and underlying neural activity is not well understood. We performed high-resolution fMRI in patients scheduled for implantation with depth electrodes for seizure monitoring while they navigated a virtual environment. We then recorded local field potentials (LFPs) and neural firing rate directly from the hippocampal area of the same subjects during the same task. Comparing BOLD signal changes with 396 LFP and 185 neuron recordings in the hippocampal area, we found that BOLD signal changes correlated positively with LFP power changes in the theta-band (4-8 Hz). This correlation, however, was largely present for parahippocampal BOLD signal changes; BOLD changes in the hippocampus correlated weakly or not at all with LFP power changes. We did not find a significant relationship between BOLD activity and neural firing rate in either region, which could not be accounted for by a lesser tendency for neurons to respond or a greater tendency for neurons to habituate to the task. Strengthening the idea of a dissociation between LFP power and neural firing rate in their relation to the BOLD signal, simultaneously recorded LFP power and neural firing rate changes were uncorrelated across electrodes. Together, our results suggest that the BOLD signal in the human hippocampal area has a more heterogenous relationship with underlying neural activity than has been described previously in other brain regions.
Collapse
Affiliation(s)
- Arne Ekstrom
- Center for Cognitive Neuroscience, Semel Institute, Department of Psychiatry, University of California, Davis, 1544 Newton Ct., Davis, CA 95618, USA.
| | | | | | | | | |
Collapse
|
122
|
Mizumori SJY, Puryear CB, Martig AK. Basal ganglia contributions to adaptive navigation. Behav Brain Res 2008; 199:32-42. [PMID: 19056429 DOI: 10.1016/j.bbr.2008.11.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 11/18/2022]
Abstract
The striatum has long been considered to be selectively important for nondeclarative, procedural types of memory. This stands in contrast with spatial context processing that is typically attributed to hippocampus. Neurophysiological evidence from studies of the neural mechanisms of adaptive navigation reveals that distinct neural systems such as the striatum and hippocampus continuously process task relevant information regardless of the current cognitive strategy. For example, both striatal and hippocampal neural representations reflect spatial location, directional heading, reward, and egocentric movement features of a test situation in an experience-dependent way, and independent of task demands. Thus, continual parallel processing across memory systems may be the norm rather than the exception. It is suggested that neuromodulators, such as dopamine, may serve to differentially regulate learning-induced neural plasticity mechanisms within these memory systems such that the most successful form of neural processing exerts the strongest control over response selection functions. In this way, dopamine may serve to optimize behavioral choices in the face of changing environmental demands during navigation.
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- Psychology Department, Box 351525, University of Washington, Seattle, WA 98195-1525, United States.
| | | | | |
Collapse
|
123
|
Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci 2008; 28:10766-71. [PMID: 18923051 DOI: 10.1523/jneurosci.2744-08.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are essential organelles in neurons providing appropriate energetic needs to maintain resting and action potentials as well as to modulate synaptic plasticity. Although neuronal events underlie various behavioral events, the behavior itself, such as voluntary exercise, feeds back to affect neuronal morphology and function as well as glial morphology and function. The hippocampal formation is a main site of synaptic plasticity induced by voluntary exercise. Here we show that voluntary exercise induces uncoupling protein 2 (UCP2) mRNA expression and mitochondrial oxygen consumption in coupled as well as uncoupled respiratory states in the hippocampus. These changes in mitochondrial metabolism coincided with an increase in mitochondrial number and dendritic spine synapses in granule cells of the dentate gyrus and the stratum radiatum of the CA1 region and were dependent on UCP2 expression, because in UCP2 knock-out mice such changes were not observed. Together, these observations reveal that a mitochondrial mechanism related to UCP2 function is essential for appropriate bioenergetic adaptation of neurons to increased neuronal activity and synaptic plasticity in response to exercise.
Collapse
|
124
|
Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. Internally generated cell assembly sequences in the rat hippocampus. Science 2008; 321:1322-7. [PMID: 18772431 DOI: 10.1126/science.1159775] [Citation(s) in RCA: 830] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A long-standing conjecture in neuroscience is that aspects of cognition depend on the brain's ability to self-generate sequential neuronal activity. We found that reliably and continually changing cell assemblies in the rat hippocampus appeared not only during spatial navigation but also in the absence of changing environmental or body-derived inputs. During the delay period of a memory task, each moment in time was characterized by the activity of a particular assembly of neurons. Identical initial conditions triggered a similar assembly sequence, whereas different conditions gave rise to different sequences, thereby predicting behavioral choices, including errors. Such sequences were not formed in control (nonmemory) tasks. We hypothesize that neuronal representations, evolved for encoding distance in spatial navigation, also support episodic recall and the planning of action sequences.
Collapse
Affiliation(s)
- Eva Pastalkova
- Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
125
|
Burke SN, Maurer AP, Yang Z, Navratilova Z, Barnes CA. Glutamate receptor-mediated restoration of experience-dependent place field expansion plasticity in aged rats. Behav Neurosci 2008; 122:535-48. [PMID: 18513124 DOI: 10.1037/0735-7044.122.3.535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Place fields of hippocampal pyramidal cells expand asymmetrically when adult rats repeatedly follow the same route. This behaviorally induced expression of neuronal plasticity uses an NMDAR-dependent, LTP-like mechanism and could be used by hippocampal networks to store information. Aged spatial memory-impaired rats exhibit defective experience-dependent place field expansion plasticity. One possible explanation for this aged-associated deficit is alterations in glutamatergic function. In fact, both NMDAR- and AMPAR-mediated field excitatory postsynaptic potentials in CA1 decrease with aging. The current study investigated whether modulation of either AMPA or NDMA receptor activity could restore this experience-dependent plasticity by prolonging AMPAR activity with the ampakine CX516 and modulating the NMDAR with the noncompetitive antagonist memantine. The spatial firing characteristics of multiple CA1 pyramidal cells were monitored under both treatment conditions as aged rats repeatedly traversed a circular track. Compared to the saline baseline condition, acute administration of memantine, but not CX516, reinstated experience-dependent place field expansion. Taken together, these data suggest that pharmacological manipulation of the NMDAR can improve the function of hippocampal networks critical to optimal cognition in aging.
Collapse
Affiliation(s)
- Sara N Burke
- Evelyn F. McKnight Brain Institute, Life Sciences North Building, Room 384, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
126
|
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav Brain Res 2008; 192:42-60. [PMID: 18468702 DOI: 10.1016/j.bbr.2008.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 12/22/2022]
Abstract
There is growing interest in the effects of voluntary wheel running activity on brain and behaviour in laboratory rodents and their implications to humans. Here, the major findings to date on the impact of exercise on mental health and diseases as well as the possible underlying neurobiological mechanisms are summarised. Several critical modulating factors on the neurobehavioural effects of wheel running exercise are emphasized and discussed--including the amount of wheel running, sex and strain/species differences. We also reported the outcome of an empirical investigation of the impact of wheel running exercise on the expression of both cognitive and non-cognitive phenotypes in a triple (3 x Tg-AD) transgenic mouse model for Alzheimer's disease (AD). Clear sex- and paradigm-specific effects of exercise on the genetically determined phenotypes are illustrated, including the efficacy of wheel running activity in attenuating the sex-specific cognitive deficits. It is concluded that the wheel running paradigm represents a unique environmental manipulation for the investigation of neurobehavioural plasticity in terms of gene-environment interactions relevant to the pathogenesis and therapies of certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
127
|
Mizumori SJY, Smith DM, Puryear CB. Hippocampal and neocortical interactions during context discrimination: electrophysiological evidence from the rat. Hippocampus 2008; 17:851-62. [PMID: 17598155 DOI: 10.1002/hipo.20317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is substantial evidence that hippocampus plays an important role in the processing of contextual information. Its specific role, however, remains unclear. One possibility is that single hippocampal neurons represent context information so that local circuits can construct representations of the current context, and the context that is expected based on past experience. Population codes derived from input by multiple local circuits may then engage match-mismatch algorithms that compare current and expected context information to determine the extent to which an expected context has changed. The results of such match-mismatch comparisons can be used to discriminate contexts. When context changes are detected, efferent messages may be passed on to connected neocortical areas so that informed "decisions" regarding future behavioral and cognitive strategies can be made. Here, a brief review describes evidence that a primary consequence of hippocampal processing is the discrimination of meaningful contexts. Then, the functional significance of neocortical circuits that likely receive hippocampal output messages are described in terms of their contribution to the control of ongoing behavioral and cognitive strategy, especially during active navigation. It is clear from this systems view that studies of spatial navigation continue to provide researchers with an excellent model of hippocampal-neocortical interactions during learning.
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
128
|
Ainge JA, van der Meer MAA, Langston RF, Wood ER. Exploring the role of context-dependent hippocampal activity in spatial alternation behavior. Hippocampus 2008; 17:988-1002. [PMID: 17554771 DOI: 10.1002/hipo.20301] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a continuous T-maze spatial alternation task, CA1 place cells fire differentially on the stem of the maze as rats are performing left- and right-turn trials (Wood et al. (2000) Neuron 27:623-633). This context-dependent hippocampal activity provides a potential mechanism by which animals could solve the alternation task, as it provides a cue that could prime the appropriate goal choice. The aim of this study was to examine the relationship between context-dependent hippocampal activity and spatial alternation behavior. We report that rats with complete lesions of the hippocampus learn and perform the spatial alternation task as well as controls if there is no delay between trials, suggesting that the observed context-dependent hippocampal activity does not mediate alternation behavior in this task. However lesioned rats are significantly impaired when delays of 2 or 10 s are interposed. Recording experiments reveal that context-dependent hippocampal activity occurs in both the delay and no-delay versions of the task, but that in the delay version it occurs during the delay period, and not on the stem of the maze. These data are consistent with a role for context-dependent hippocampal activity in delayed spatial alternation, but suggest that, according to specific task demands and memory load, the activity may be generated by different mechanisms and/or in different brain structures.
Collapse
Affiliation(s)
- James A Ainge
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
129
|
Griesbach GS, Gómez-Pinilla F, Hovda DA. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J Neurotrauma 2007; 24:1161-71. [PMID: 17610355 DOI: 10.1089/neu.2006.0255] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We recently found that an exercise-induced increase in hippocampal brain-derived neurotrophic factor (BDNF) is dependent when exercise is initiated after traumatic brain injury (TBI). When voluntary exercise was delayed by 2 weeks after a mild fluid-percussion injury (FPI) in rats, an increase in BDNF and an improvement in behavioral outcome were observed. This suggests that following FPI there is a therapeutic window for the implementation of voluntary exercise. To determine if more severely injured animals require more time after TBI before voluntary exercise can increase neuroplasticity, adult male rats with a moderate lateral FPI or sham injury were housed with or without access to a running wheel from post-injury-day (PID) 0-6, 14-20 or 30-36. Rats with a mild injury only had access to the running wheel from PID 0-6 or 14-20. Rats were sacrificed at PID 7, 21, or 37. BDNF, synapsin I, and cyclic AMP response element binding protein (CREB) were analyzed within the ipsilateral hippocampus. Whereas BDNF levels significantly increased with exercise in the mild FPI rats that were exercised from PID 14 to 20, the moderate FPI rats only showed significant increases in BDNF when exercised from PID 30 to 36. In addition, moderate FPI rats that were allowed to exercise from PID 30 to 36 also exhibited significant increases in synapsin I and CREB. These results indicate that the time window for exercise-induced increases in BDNF, synapsin I, and CREB is dependent on injury severity.
Collapse
Affiliation(s)
- Grace S Griesbach
- Division of Neurosurgery, University of California-Los Angeles (UCLA), Los Angeles, California, USA.
| | | | | |
Collapse
|
130
|
Máthé K, Tóth A, Petykó Z, Szabó I, Czurkó A. Implementation of a miniature sized, battery powered electrophysiological signal-generator for testing multi-channel recording equipments. J Neurosci Methods 2007; 165:1-8. [PMID: 17624440 DOI: 10.1016/j.jneumeth.2007.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/10/2007] [Accepted: 05/17/2007] [Indexed: 11/22/2022]
Abstract
Testing electrophysiological recording equipments is an important task in multi-channel extracellular in vivo electrophysiology. In this paper, a miniature, battery powered multi-channel electrophysiological signal-generator (ESG) is described that was designed for this purpose. The device is based on a Xilinx CPLD (Complex Programmable Logic Device) and it is powered by a 3V lithium coin battery. It is a useful tool for calibration and testing the performance, quality and parameters of the recording equipments used for acquiring EEG, field potentials, ECG, EMG, and multiple unit activity. The device is ideally suited to identify instances when errors interfere with the proper recording, and repair of wiring or service of the equipment is needed. Two versions of the device are described; one is for 16 (ESG16), and another is for 32 channels (ESG32). Both versions provide amplitude and time calibration, as well as cross-talk and CMRR (common mode rejection ratio) testing for the recording equipment.
Collapse
Affiliation(s)
- Kálmán Máthé
- Institute of Electronics, University of Pécs, Faculty of Engineering, Boszorkány út 2, H-7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
131
|
Csicsvari J, O'Neill J, Allen K, Senior T. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur J Neurosci 2007; 26:704-16. [PMID: 17651429 PMCID: PMC2121123 DOI: 10.1111/j.1460-9568.2007.05684.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the linear track, the recent firing sequences of CA1 place cells recur during sharp wave/ripple patterns (SWRs) in a reverse temporal order [Foster & Wilson (2006) Nature, 440, 680–683]. We have found similar reverse-order reactivation during SWRs in open-field exploration where the firing sequence of cells varied before each SWR. Both the onset times and the firing patterns of cells showed a tendency for reversed sequences during SWRs. These effects were observed for SWRs that occurred during exploration, but not for those during longer immobility periods. Additionally, reverse reactivation was stronger when it was preceded by higher speed (> 5 cm/s) run periods. The trend for reverse-order SWR reactivation was not significantly different in familiar and novel environments, even though SWR-associated firing rates of both pyramidal cells and interneurons were reduced in novel environments as compared with familiar. During exploration-associated SWRs (eSWR) place cells retain place-selective firing [O'Neill et al. (2006) Neuron, 49, 143–155]. Here, we have shown that each cell's firing onset was more delayed and firing probability more reduced during eSWRs the further the rat was from the middle of the cell's place field; that is, cells receiving less momentary place-related excitatory drive fired later during SWR events. However, even controlling for place field distance, the recent firing of cells was still significantly correlated with SWR reactivation sequences. We therefore propose that both place-related drive and the firing history of cells contribute to reverse reactivation during eSWRs.
Collapse
Affiliation(s)
- Jozsef Csicsvari
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | |
Collapse
|
132
|
Alaei H, Moloudi R, Sarkaki AR. Effects of treadmill running on mid-term memory and swim speed in the rat with Morris water maze test. J Bodyw Mov Ther 2007; 12:72-5. [PMID: 19083658 DOI: 10.1016/j.jbmt.2007.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/29/2007] [Accepted: 05/19/2007] [Indexed: 10/23/2022]
Abstract
Previous studies involving exercise and memory showed that learning and memory were improved by exercise. This study was performed to find the effect of treadmill running on memory. Mid-term memory and swim speed were measured within 8 days. Twenty rats were divided into two groups, a control and a test group. Mid-term memory and swim speed were measured in the Morris water maze apparatus. Our results showed that treadmill running produced a significant enhancement on mid-term memory and swim speed in the test group, which may be mediated by specific molecular pathways.
Collapse
Affiliation(s)
- HojjatAllah Alaei
- Department of Physiology, Isfahan University of Medical Sciences, Iran
| | | | | |
Collapse
|
133
|
Geisler C, Robbe D, Zugaro M, Sirota A, Buzsáki G. Hippocampal place cell assemblies are speed-controlled oscillators. Proc Natl Acad Sci U S A 2007; 104:8149-54. [PMID: 17470808 PMCID: PMC1876586 DOI: 10.1073/pnas.0610121104] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Indexed: 01/17/2023] Open
Abstract
The phase of spikes of hippocampal pyramidal cells relative to the local field theta oscillation shifts forward ("phase precession") over a full theta cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer theta cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.
Collapse
Affiliation(s)
- Caroline Geisler
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102
| | - David Robbe
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102
| | - Michaël Zugaro
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102
| | - Anton Sirota
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102
| | - György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102
| |
Collapse
|
134
|
Awatramani GB, Boyd JD, Delaney KR, Murphy TH. Effective release rates at single rat Schaffer collateral-CA1 synapses during sustained theta-burst activity revealed by optical imaging. J Physiol 2007; 582:583-95. [PMID: 17463045 PMCID: PMC2075339 DOI: 10.1113/jphysiol.2007.130286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand how information is coded at single hippocampal synapses during high-frequency activity, we imaged NMDA receptor-mediated Ca(2+) responses in spines of CA1 neurons using two-photon microscopy. Although discrete quantal events were not readily apparent during continuous theta-burst stimulation (TBS), we found that the steady-state dendritic Ca(2+) response was spatially restricted (half-width < 1 microm), voltage dependent and sensitive to MK-801, indicating that that it was mediated by activation of NMDA receptors at single synapses. Partial antagonism of NMDA receptors caused a similar reduction of NMDA EPSCs (measured at the soma) and local dendritic Ca(2+) signals, suggesting that, like EPSCs, the steady-state Ca(2+) signal was made up of a linear addition of quantal events. Statistical analyses of the steady-response suggested that the quantal size did not change dramatically during TBS. Deconvolution of TBS-evoked Ca(2+) responses revealed a heterogeneous population of synapses differing in their capacity to signal high-frequency information, with an average effective steady-state release rate of approximately 2.6 vesicles synapse(-1)s(-1). To assess how the optically determined release rates compare with population measures we analysed the rate of decay of peak EPSCs during train stimulation. From these studies, we estimated a unitary vesicular replenishment rate of 0.02 s(-1), which corresponds to an average release rate of approximately 0.8-2 vesicles s(-1) at individual synapses. Additionally, extracellular recordings from single Schaffer collaterals revealed that spikes propagate reliably during TBS. Hence, during high-frequency activity, Schaffer collaterals conduct spikes with high fidelity, but release quanta with relatively lower efficiency, leaving NMDA receptor function largely intact and synapse specific. Heterogeneity in release rates between synapses suggests that similar patterns of presynaptic action potentials could trigger different forms of plasticity at individual synapses.
Collapse
Affiliation(s)
- G B Awatramani
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
135
|
Hennevin E, Huetz C, Edeline JM. Neural representations during sleep: From sensory processing to memory traces. Neurobiol Learn Mem 2007; 87:416-40. [PMID: 17178239 DOI: 10.1016/j.nlm.2006.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
In the course of a day, the brain undergoes large-scale changes in functional modes, from attentive wakefulness to the deepest stage of sleep. The present paper evaluates how these state changes affect the neural bases of sensory and cognitive representations. Are organized neural representations still maintained during sleep? In other words, despite the absence of conscious awareness, do neuronal signals emitted during sleep contain information and have a functional relevance? Through a critical evaluation of the animal and human literature, neural representations at different levels of integration (from the most elementary sensory level to the most cognitive one) are reviewed. Recordings of neuronal activity in animals at presentation of neutral or significant stimuli show that some analysis of the external word remains possible during sleep, allowing recognition of behaviorally relevant stimuli. Event-related brain potentials in humans confirm the preservation of some sensory integration and discriminative capacity. Behavioral and neuroimaging studies in humans substantiate the notion that memory representations are reactivated and are reorganized during post-learning sleep; these reorganisations may account for the beneficial effects of sleep on behavioral performance. Electrophysiological results showing replay of neuronal sequences in animals are presented, and their relevance as neuronal correlates of memory reactivation is discussed. The reviewed literature provides converging evidence that structured neural representations can be activated during sleep. Which reorganizations unique to sleep benefit memory representations, and to what extent the operations still efficient in processing environmental information during sleep are similar to those underlying the non-conscious, automatic processing continually at work in wakefulness, are challenging questions open to investigation.
Collapse
Affiliation(s)
- Elizabeth Hennevin
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR CNRS 8620, Université Paris-Sud, Bâtiment 446, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
136
|
Wagatsuma H, Yamaguchi Y. Neural dynamics of the cognitive map in the hippocampus. Cogn Neurodyn 2007; 1:119-41. [PMID: 19003507 DOI: 10.1007/s11571-006-9013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Accepted: 10/25/2006] [Indexed: 11/29/2022] Open
Abstract
The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may indeed be the bridge to the episodic memory function in human hippocampus.
Collapse
Affiliation(s)
- Hiroaki Wagatsuma
- Laboratory for Dynamics of Emergent Intelligence, RIKEN BSI, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan,
| | | |
Collapse
|
137
|
Tóth A, Petykó Z, Máthé K, Szabó I, Czurkó A. Improved version of the printed circuit board (PCB) modular multi-channel microdrive for extracellular electrophysiological recordings. J Neurosci Methods 2007; 159:51-6. [PMID: 16890295 DOI: 10.1016/j.jneumeth.2006.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The modular multi-channel PCB microdrive was described some years ago, since then several improvements were introduced while using these drives. Utilizing several years of experience with the original PCB microdrive we redesigned it to improve its stability and usability. The application of the printed circuit board technology and the extensive use of flexible fused silica capillaries for fabrication of the microdrive are described in detail. The improved design led to a low cost and light-weight multi-channel microdrive with outstanding modularity for extracellular field, single unit or multiunit tetrode recording up to 64/128 channels.
Collapse
Affiliation(s)
- Attila Tóth
- Institute of Behavioral Sciences, Pécs University, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
138
|
|
139
|
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci 2006; 7:663-78. [PMID: 16858394 DOI: 10.1038/nrn1932] [Citation(s) in RCA: 1193] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
Collapse
Affiliation(s)
- Bruce L McNaughton
- Arizona Research Laboratories Division of Neural Systems, Memory & Aging, and Department of Psychology, University of Arizona, Tucson 85724, USA.
| | | | | | | | | |
Collapse
|
140
|
Scheuss V, Yasuda R, Sobczyk A, Svoboda K. Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. J Neurosci 2006; 26:8183-94. [PMID: 16885232 PMCID: PMC6673787 DOI: 10.1523/jneurosci.1962-06.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spine Ca2+ triggers the induction of synaptic plasticity and other adaptive neuronal responses. The amplitude and time course of Ca2+ signals specify the activation of the signaling pathways that trigger different forms of plasticity such as long-term potentiation and depression. The shapes of Ca2+ signals are determined by the dynamics of Ca2+ sources, Ca2+ buffers, and Ca2+ extrusion mechanisms. Here we show in rat CA1 pyramidal neurons that plasma membrane Ca2+ pumps (PMCAs) and Na+/Ca2+ exchangers are the major Ca2+ extrusion pathways in spines and small dendrites. Surprisingly, we found that Ca2+ extrusion via PMCA and Na+/Ca2+ exchangers slows in an activity-dependent manner, mediated by intracellular Na+ and Ca2+ accumulations. This activity-dependent depression of Ca2+ extrusion is, in part, attributable to Ca2+-dependent inactivation of PMCAs. Ca2+ extrusion recovers from depression with a time constant of 0.5 s. Depression of Ca2+ extrusion provides a positive feedback loop, converting small differences in stimuli into large differences in Ca2+ concentration. Depression of Ca2+ extrusion produces Ca2+ concentration dynamics that depend on the history of neuronal activity and therefore likely modulates the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Volker Scheuss
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
141
|
Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK. Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat. J Neurophysiol 2006; 96:4-14. [PMID: 16772515 DOI: 10.1152/jn.00953.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampus has a major role in memory for spatial location. Theta is a rhythmic hippocampal EEG oscillation that occurs at approximately 8 Hz during voluntary movement and that may have some role in encoding spatial information. We investigated whether, as part of this process, theta might be influenced by self-movement signals provided by the vestibular system. The effects of bilateral peripheral vestibular lesions, made > or = 60 days prior to recording, were assessed in freely moving rats. Power spectral analysis revealed that theta in the lesioned animals had a lower power and frequency compared with that recorded in the control animals. When the electroencephalography (EEG) was compared in epochs matched for speed of movement and acceleration, theta was less rhythmic in the lesioned group, indicating that the effect was not a result of between-group differences in this behavior. Blood measurements of corticosterone were also similar in the two groups indicating that the results could not be attributed to changes in stress levels. Despite the changes in theta EEG, individual neurons in the CA1 region of lesioned animals continued to fire with a periodicity of approximately 8 Hz. The positive correlation between cell firing rate and movement velocity that is observed in CA1 neurons of normal animals was also maintained in cells recorded from lesion group animals. These findings indicate that although vestibular signals may contribute to theta rhythm generation, velocity-related firing in hippocampal neurons is dependent on nonvestibular signals such as sensory flow, proprioception, or motor efference copy.
Collapse
Affiliation(s)
- Noah A Russell
- Department of Psychology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
142
|
Sinnamon HM. Decline in hippocampal theta activity during cessation of locomotor approach sequences: amplitude leads frequency and relates to instrumental behavior. Neuroscience 2006; 140:779-90. [PMID: 16581189 DOI: 10.1016/j.neuroscience.2006.02.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/23/2022]
Abstract
Hippocampal theta frequency and amplitude decrease as locomotor approach slows and the goal is reached. This study compared the declines of these theta parameters and related them to behavioral events. Theta activity was recorded with bipolar electrodes spanning cornu Ammon, sector 1 or cornu Ammon, sectors 2/3 cell layers of the dorsal hippocampus in 12 rats trained to approach and depress a treadle which exposed a milk dipper. Behavioral events were identified using a video capture system (20-ms sampling) synchronized to the hippocampal recording system (10-ms sampling). Peri-event averages of theta activity were made around the initial paw contact with the treadle, the presentation of the dipper, and the first lick at the dipper. Phase relationships between averaged hippocampal slow wave activity and behavioral events occasionally were found but they were inconsistent. In averages of both amplitude and frequency, times of minimum were less variable around paw contact indicating that compared with reward presentation and consummatory behavior, it more closely related to the processes determining the declines. Theta amplitude declined more rapidly than frequency and reached an earlier minimum in averages around initial paw contact and dipper presentation. Mean amplitude minimum occurred after the paw contact at 159 ms but the decline of frequency continued into the licking bout with its minimum occurring at 343 ms. The findings indicate that during the termination of approach locomotion, the amplitude of hippocampal theta activity is closely related to specific expected sensorimotor events.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Judd Hall, 207 High Street, Middletown, CT 06459-0408, USA.
| |
Collapse
|
143
|
Puryear CB, King M, Mizumori SJY. Specific changes in hippocampal spatial codes predict spatial working memory performance. Behav Brain Res 2006; 169:168-75. [PMID: 16457896 DOI: 10.1016/j.bbr.2005.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/08/2005] [Accepted: 12/18/2005] [Indexed: 11/16/2022]
Abstract
This study examined the relationship between hippocampal place fields and spatial working memory. Place cells were recorded while rats solved a spatial working memory task in light and dark testing conditions. Rats made significantly more errors when tested in darkness, and although place fields changed in multiple ways in darkness, only changes in place field specificity predicted the degree of impaired spatial memory. This finding suggests that more spatially distinct place fields may contribute to hippocampal-dependent mnemonic functions.
Collapse
Affiliation(s)
- Corey B Puryear
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
144
|
Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL. Self-motion and the hippocampal spatial metric. J Neurosci 2006; 25:8085-96. [PMID: 16135766 PMCID: PMC6725460 DOI: 10.1523/jneurosci.0693-05.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-motion signals are sufficient for animal navigation ("path integration") and for updating hippocampal location-specific firing. The contributions of ambulatory, vestibular, and optic self-motion signals to CA1 unit activity and EEG were studied while rats either walked or drove a car between locations on a circular track (referred to as WALK and CAR, respectively) or experienced pseudomotion, in which the animal was stationary and the environment was rotated (WORLD). Fewer pyramidal cells expressed place fields during CAR and those that did exhibited substantially larger place fields. The number of theta cycles required to traverse a place field increased, whereas the slope of the theta phase of firing versus position function was reduced. The presence and/or location of place fields were not well correlated between conditions. These effects were even more accentuated during WORLD. These results are not explainable by a simple "smearing out" of place fields but, in terms of size of place fields relative to the track size, are comparable with what would be observed if the track circumference was reduced and the animal moved around it at a correspondingly slower speed. Theta (and its 14-18 Hz harmonic) power were dependent on velocity, but the gain of this function was substantially reduced during CAR and WORLD, again as if the rat were moving more slowly. The spatial scale over which the hippocampal population vector is updated appears to be derived primarily from the gain of a self-motion velocity signal with approximately equal components derived from ambulation, vestibular, and optic-flow signals.
Collapse
Affiliation(s)
- Alejandro Terrazas
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
145
|
Nitz DA. Tracking Route Progression in the Posterior Parietal Cortex. Neuron 2006; 49:747-56. [PMID: 16504949 DOI: 10.1016/j.neuron.2006.01.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/10/2005] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
Quick and efficient traversal of learned routes is critical to the survival of many animals. Routes can be defined by both the ordering of navigational epochs, such as continued forward motion or execution of a turn, and the distances separating them. The neural substrates conferring the ability to fluidly traverse complex routes are not well understood, but likely entail interactions between frontal, parietal, and rhinal cortices and the hippocampus. This paper demonstrates that posterior parietal cortical neurons map both individual and multiple navigational epochs with respect to their order in a route. In direct contrast to spatial firing patterns of hippocampal neurons, parietal neurons discharged in a place- and direction-independent fashion. Parietal route maps were scalable and versatile in that they were independent of the size and spatial configuration of navigational epochs. The results provide a framework in which to consider parietal function in spatial cognition.
Collapse
Affiliation(s)
- Douglas A Nitz
- The Neurosciences Institute, San Diego, California 92121, USA.
| |
Collapse
|
146
|
Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, Gandevia SC, Gomez-Pinilla F, Greenwood BN, Hillman CH, Kramer AF, Levin BE, Moran TH, Russo-Neustadt AA, Salamone JD, Van Hoomissen JD, Wade CE, York DA, Zigmond MJ. Neurobiology of exercise. Obesity (Silver Spring) 2006; 14:345-56. [PMID: 16648603 DOI: 10.1038/oby.2006.46] [Citation(s) in RCA: 547] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voluntary physical activity and exercise training can favorably influence brain plasticity by facilitating neurogenerative, neuroadaptive, and neuroprotective processes. At least some of the processes are mediated by neurotrophic factors. Motor skill training and regular exercise enhance executive functions of cognition and some types of learning, including motor learning in the spinal cord. These adaptations in the central nervous system have implications for the prevention and treatment of obesity, cancer, depression, the decline in cognition associated with aging, and neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. Chronic voluntary physical activity also attenuates neural responses to stress in brain circuits responsible for regulating peripheral sympathetic activity, suggesting constraint on sympathetic responses to stress that could plausibly contribute to reductions in clinical disorders such as hypertension, heart failure, oxidative stress, and suppression of immunity. Mechanisms explaining these adaptations are not as yet known, but metabolic and neurochemical pathways among skeletal muscle, the spinal cord, and the brain offer plausible, testable mechanisms that might help explain effects of physical activity and exercise on the central nervous system.
Collapse
Affiliation(s)
- Rod K Dishman
- Department of Exercise Science, The University of Georgia, Ramsey Center, 330 River Road, Athens, GA 30602-6554, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Hölscher C, Schmid S, Pilz PKD, Sansig G, van der Putten H, Plappert CF. Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learn Mem 2006; 12:450-5. [PMID: 16204199 DOI: 10.1101/lm.98305] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in EEGs, and since EEG abnormalities have been observed in these mice before, we studied the effect of mGluR7 gene ablation on EEG activity in the hippocampus, in particular in the Theta range, during performance of a WM task. In an eight-arm maze with four arms baited, mGluR7 knock-out (KO) and wild-type mice committed the same number of reference memory errors, whereas KOs committed more WM errors. While performing the task, KO mice showed substantially higher Theta amplitudes, and the ratio of Theta to overall EEG power was much increased. No change was seen in the Delta (0-5 Hz), or Gamma (30-40 Hz) EEG bands compared with controls. When recording EEGs during periods of rest in the home cages, no difference was seen between groups. These findings suggest that mGluR7 is important for modulation and control of Theta activity. Since only WM was affected, and only the Theta range of EEG activity was altered, these results show a correlation between Theta rhythm and WM performance, and therefore support the concept that Theta activity in the hippocampus is involved in WM storage.
Collapse
Affiliation(s)
- Christian Hölscher
- Department of Cognitive Neuroscience, University of Tübingen, Auf der Morgenstelle 28, Germany.
| | | | | | | | | | | |
Collapse
|
148
|
O'Neill J, Senior T, Csicsvari J. Place-Selective Firing of CA1 Pyramidal Cells during Sharp Wave/Ripple Network Patterns in Exploratory Behavior. Neuron 2006; 49:143-55. [PMID: 16387646 DOI: 10.1016/j.neuron.2005.10.037] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/29/2005] [Accepted: 10/18/2005] [Indexed: 11/21/2022]
Abstract
We observed sharp wave/ripples (SWR) during exploration within brief (<2.4 s) interruptions of or during theta oscillations. CA1 network responses of SWRs occurring during exploration (eSWR) and SWRs detected in waking immobility or sleep were similar. However, neuronal activity during eSWR was location dependent, and eSWR-related firing was stronger inside the place field than outside. The eSPW-related firing increase was stronger than the baseline increase inside compared to outside, suggesting a "supralinear" summation of eSWR and place-selective inputs. Pairs of cells with similar place fields and/or correlated firing during exploration showed stronger coactivation during eSWRs and subsequent sleep-SWRs. Sequential activation of place cells was not required for the reactivation of waking co-firing patterns; cell pairs with symmetrical cross-correlations still showed reactivated waking co-firing patterns during sleep-SWRs. We suggest that place-selective firing during eSWRs facilitates initial associations between cells with similar place fields that enable place-related ensemble patterns to recur during subsequent sleep-SWRs.
Collapse
Affiliation(s)
- Joseph O'Neill
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
| | | | | |
Collapse
|
149
|
Gill KM, Mizumori SJY. Context-dependent modulation by D₁ receptors: Differential effects in hippocampus and striatum. Behav Neurosci 2006; 120:377-92. [PMID: 16719702 DOI: 10.1037/0735-7044.120.2.377] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Place-specific firing by hippocampal and striatal neurons was recorded simultaneously following injection of a D(1) receptor antagonist (SCH23390) and during spatial working memory task performance. SCH23390-induced changes in unit responses were observed during light and dark test conditions. Although hippocampal place field locations were altered by the contextual change, the reliability and specificity of place fields was disrupted only by combining D(1) antagonism and a change in context. Striatal place field locations were reorganized after either contextual change or D(1) antagonism, without altering place field reliability and specificity. Disrupted velocity encoding by place cells in both regions was induced by darkness, whereas greater stability in acceleration encoding followed removal of D(1) receptor activity. Dopamine may differentially regulate hippocampal context learning and striatum-based predictive codes.
Collapse
Affiliation(s)
- Kathryn M Gill
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
150
|
O'Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 2005; 15:853-66. [PMID: 16145693 PMCID: PMC2677681 DOI: 10.1002/hipo.20115] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We review the ideas and data behind the hypothesis that hippocampal pyramidal cells encode information by their phase of firing relative to the theta rhythm of the EEG. Particular focus is given to the further hypothesis that variations in firing rate can encode information independently from that encoded by firing phase. We discuss possible explanation of the phase-precession effect in terms of interference between two independent oscillatory influences on the pyramidal cell membrane potential, and the extent to which firing phase reflects internal dynamics or external (environmental) variables. Finally, we propose a model of the firing of the recently discovered "grid cells" in entorhinal cortex as part of a path-integration system, in combination with place cells and head-direction cells.
Collapse
Affiliation(s)
- John O'Keefe
- Department of Anatomy and Developmental Biology, University College London.
| | | |
Collapse
|