101
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
102
|
Moloney RD, Stilling RM, Dinan TG, Cryan JF. Early-life stress-induced visceral hypersensitivity and anxiety behavior is reversed by histone deacetylase inhibition. Neurogastroenterol Motil 2015; 27:1831-6. [PMID: 26403543 DOI: 10.1111/nmo.12675] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Stressful life events, especially in childhood, can have detrimental effects on health and are associated with a host of psychiatric and gastrointestinal disorders including irritable bowel syndrome (IBS). Early-life stress can be recapitulated in animals using the maternal separation (MS) model, exhibiting many key phenotypic outcomes including visceral hypersensitivity and anxiety-like behaviors. The molecular mechanisms of MS are unclear, but recent studies point to a role for epigenetics. Histone acetylation is a key epigenetic mark that is altered in numerous stress-related disease states. Here, we investigated the role of histone acetylation in early-life stress-induced visceral hypersensitivity. Interestingly, increased number of pain behaviors and reduced threshold of visceral sensation were associated with alterations in histone acetylation in the lumbosacral spinal cord, a key region in visceral pain processing. Moreover, we also investigated whether the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could reverse early-life stress-induced visceral hypersensitivity and stress-induced fecal pellet output in the MS model. Significantly, SAHA reversed both of these parameters. Taken together, these data describe, for the first time, a key role of histone acetylation in the pathophysiology of early-life stress-induced visceral hypersensitivity in a well-established model of IBS. These findings will inform new research aimed at the development of novel pharmaceutical approaches targeting the epigenetic machinery for novel anti-IBS drugs.
Collapse
Affiliation(s)
- R D Moloney
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - R M Stilling
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - T G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - J F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
103
|
Sun Y, Sahbaie P, Liang D, Li W, Shi X, Kingery P, Clark JD. DNA Methylation Modulates Nociceptive Sensitization after Incision. PLoS One 2015; 10:e0142046. [PMID: 26535894 PMCID: PMC4633178 DOI: 10.1371/journal.pone.0142046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/17/2015] [Indexed: 01/31/2023] Open
Abstract
DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT) inhibitor 5-Aza-2′-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2′-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Peyman Sahbaie
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - DeYong Liang
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Wenwu Li
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xiaoyou Shi
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paige Kingery
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - J. David Clark
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Abstract
Despite an extensive body of reported information about peripheral and central mechanisms involved in the pathophysiology of IBS symptoms, no comprehensive disease model has emerged that would guide the development of novel, effective therapies. In this Review, we will first describe novel insights into some key components of brain-gut interactions, starting with the emerging findings of distinct functional and structural brain signatures of IBS. We will then point out emerging correlations between these brain networks and genomic, gastrointestinal, immune and gut-microbiome-related parameters. We will incorporate this new information, as well as the reported extensive literature on various peripheral mechanisms, into a systems-based disease model of IBS, and discuss the implications of such a model for improved understanding of the disorder, and for the development of more-effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Jennifer S Labus
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Kirsten Tillisch
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA and West Los Angeles VA Medical Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Steven W Cole
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California at Irvine, 4038 Bren Hall, Irvine, CA 92697-3435, USA
| |
Collapse
|
105
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
106
|
Keil KP, Abler LL, Altmann HM, Wang Z, Wang P, Ricke WA, Bjorling DE, Vezina CM. Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol. Am J Physiol Renal Physiol 2015; 308:F1431-43. [PMID: 25855514 DOI: 10.1152/ajprenal.00674.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Aging men are susceptible to developing lower urinary tract symptoms, but the underlying etiology is unknown and the influence of dietary and environmental factors on them is unclear. We tested whether a folic acid-enriched diet changed urinary tract physiology and biology in control male mice and male mice with urinary dysfunction induced by exogenous testosterone and estradiol (T+E2), which mimics changing hormone levels in aging humans. T+E2 treatment increased mouse urine output, time between voiding events, and bladder capacity and compliance. Consumption of a folic acid-enriched diet moderated these changes without decreasing prostate wet weight or threshold voiding pressure. One potential mechanism for these changes involves water balance. T+E2 treatment increases plasma concentrations of anti-diuretic hormone, which is offset at least in part by a folic acid-enriched diet. Another potential mechanism involves neural control of micturition. The folic acid-enriched diet, fed to T+E2-treated mice, increased voiding frequency in response to intravesicular capsaicin infusion and increased mRNA abundance of the capsaicin-sensitive cation channel transient receptor potential vanilloid subfamily member 1 (Trpv1) in L6 and S1 dorsal root ganglia (DRG) neurons. T+E2 treatment and a folic acid-enriched diet also modified DNA methylation, which is capable of altering gene expression. We found the enriched diet increased global DNA methylation in dorsal and ventral prostate and L6 and S1 DRG. Our results are consistent with folic acid acting to slow or reverse T+E2-mediated alteration in urinary function in part by normalizing water balance and enhancing or preserving afferent neuronal function.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helene M Altmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; and George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; and George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
107
|
Moloney RD, Golubeva AV, O'Connor RM, Kalinichev M, Dinan TG, Cryan JF. Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain. Neurobiol Stress 2015; 2:28-33. [PMID: 26844237 PMCID: PMC4721404 DOI: 10.1016/j.ynstr.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/15/2015] [Accepted: 04/03/2015] [Indexed: 11/19/2022] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8) are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY) rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - Anna V. Golubeva
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
| | | | | | - Timothy G. Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Psychiatry, University College Cork, Ireland
| | - John F. Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- Corresponding author. Dept Anatomy & Neuroscience, Room 386, Western Gateway Building, University College Cork, Western Rd., Cork, Ireland.
| |
Collapse
|
108
|
Johnson AC, Tran L, Greenwood-Van Meerveld B. Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Transl Psychiatry 2015; 5:e517. [PMID: 25734510 PMCID: PMC4354346 DOI: 10.1038/tp.2015.16] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/18/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal nociception is exacerbated by chronic stress through an unknown mechanism. The amygdala is a key nucleus involved in the autonomic and neuroendocrine responses to stress. The goal of this study was to test the hypothesis that prolonged exposure of the central amygdala (CeA) to stress or the stress hormone cortisol (or corticosterone in rats) induces nociceptive behaviors mediated by corticotropin-releasing factor (CRF) within the CeA. We selectively knocked down CRF in the CeA via antisense oligodeoxynucleotides (ASO) in animals with targeted, stereotaxically placed corticosterone (CORT) micropellets or following repeated water avoidance stress (WAS). CRF expression in the CeA was analyzed concurrently with the assessment of visceral hypersensitivity to colonic distension and mechanical somatic withdrawal threshold. The responses were characterized at 7 or 28 days post implantation of the CORT micropellet or following 7 days of WAS. Exposure of the CeA to elevated CORT or WAS increased CRF expression and heightened visceral and somatic sensitivity. Infusion of CRF ASO into the CeA decreased CRF expression and attenuated visceral and somatic hypersensitivity in both models. Our study provides important evidence for a CRF-mediated mechanism specifically within the CeA that regulates stress-induced visceral and somatic nociception.
Collapse
Affiliation(s)
- A C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, Research Administration Room 151G, 921 NE 13th Street, Oklahoma City, OK 73104, USA. E-mail:
| |
Collapse
|
109
|
Knockdown of steroid receptors in the central nucleus of the amygdala induces heightened pain behaviors in the rat. Neuropharmacology 2015; 93:116-23. [PMID: 25656477 DOI: 10.1016/j.neuropharm.2015.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/25/2014] [Accepted: 01/21/2015] [Indexed: 01/25/2023]
Abstract
Previously we demonstrated that exposure of the central nucleus of the amygdala (CeA) to elevated corticosterone (CORT) induces nociceptive behaviors that are reversed by glucocorticoid and/or mineralocorticoid (GR/MR) receptor antagonism. Here we test the hypothesis that in a cholesterol (CHOL)-implanted control rat, selective knockdown of GR/MR in the CeA would, via a corticotropin-releasing factor (CRF)-mediated mechanism, replicate the nociceptive behaviors produced by elevated amygdala CORT. Micropellets of CHOL or CORT were stereotaxically placed on the dorsal margin of the CeA. Cannulae were implanted into the CeA for the delivery of vehicle or oligodeoxynucleotide (ODN) of either antisense (ASO) or random sequences (RSO) targeting GR or MR. Visceromotor behavioral response quantified visceral sensitivity in response to colonic distension, while von Frey filaments assessed somatic sensitivity. Receptor expression was determined with qRT-PCR. In CHOL implanted controls, knockdown of GR in the CeA increased both colonic and somatic sensitivity, whereas selective knockdown of MR in the CeA induced colonic hypersensitivity without affecting somatic sensitivity. CRF expression in the CeA was increased in CHOL-implanted rats treated with GR or MR ASO and resembled the augmented CRF expression seen in the CORT-implanted rats. This is the first study to demonstrate that decreasing either GR or MR within the CeA is sufficient to induce visceral hypersensitivity whereas somatic hypersensitivity developed after only GR knockdown. The loss of either GR or MR was associated with an increased CRF expression, and may represent a common mechanism for the development of CeA-mediated nociceptive behaviors.
Collapse
|
110
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|