101
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
102
|
Miller D, Garcia-Flores V, Romero R, Galaz J, Pique-Regi R, Gomez-Lopez N. Single-Cell Immunobiology of the Maternal-Fetal Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1450-1464. [PMID: 36192116 PMCID: PMC9536179 DOI: 10.4049/jimmunol.2200433] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Pregnancy success requires constant dialogue between the mother and developing conceptus. Such crosstalk is facilitated through complex interactions between maternal and fetal cells at distinct tissue sites, collectively termed the "maternal-fetal interface." The emergence of single-cell technologies has enabled a deeper understanding of the unique processes taking place at the maternal-fetal interface as well as the discovery of novel pathways and immune and nonimmune cell types. Single-cell approaches have also been applied to decipher the cellular dynamics throughout pregnancy, in parturition, and in obstetrical syndromes such as recurrent spontaneous abortion, preeclampsia, and preterm labor. Furthermore, single-cell technologies have been used during the recent COVID-19 pandemic to evaluate placental viral cell entry and the impact of SARS-CoV-2 infection on maternal and fetal immunity. In this brief review, we summarize the current knowledge of cellular immunobiology in pregnancy and its complications that has been generated through single-cell investigations of the maternal-fetal interface.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; and
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
103
|
Conforti A, Longobardi S, Carbone L, Iorio GG, Cariati F, Campitiello MR, Strina I, Palese M, D’Hooghe T, Alviggi C. Does Intrauterine Injection of hCG Improve IVF Outcome? A Systematic Review and a Meta-Analysis. Int J Mol Sci 2022; 23:12193. [PMID: 36293052 PMCID: PMC9603006 DOI: 10.3390/ijms232012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Various interventions have been proposed to improve embryo implantation in IVF. Among these, intrauterine injections of human chorionic gonadotropin seem to have promising results. Consequently, we conducted a review and meta-analysis to assess IVF outcomes by comparing couples who underwent intrauterine hCG injection transfer versus those who underwent embryo transfer with intrauterine injection of placebo, or without any additional intervention. The primary outcome was the clinical pregnancy rate. Secondary outcomes were the implantation rate, miscarriage rate, and live birth rate. A meta-analysis was conducted using the random effects model, while bias within studies was detected using the Cochrane risk of bias tool. Ectopic pregnancies and stillbirths were also assessed. The clinical pregnancy (RR 1.38, 95% CI 1.17−1.62, p < 0.0001) and implantation rate (RR 1.40, 95% CI 1.12−1.75, p = 0.003) were significantly higher in women who underwent hCG injection than in the control group. These significant effects persisted only in women who underwent cleavage-stage embryo transfer. No significant differences between groups were observed in the other secondary outcomes. In conclusion, our systematic review and meta-analysis demonstrate that intrauterine injection of hCG could be a valuable approach in women who undergo cleavage-stage embryo transfer. Given the lack of data about the live birth rate, caution should be exercised in interpreting these data.
Collapse
Affiliation(s)
- Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | | | - Luigi Carbone
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Gabriele Iorio
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Federica Cariati
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Ida Strina
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Michela Palese
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Thomas D’Hooghe
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven (University of Leuven), 3000 Leuven, Belgium
- KGaA, 64293 Darmstadt, Germany
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
104
|
Koel M, Krjutškov K, Saare M, Samuel K, Lubenets D, Katayama S, Einarsdottir E, Vargas E, Sola-Leyva A, Lalitkumar PG, Gemzell-Danielsson K, Blesa D, Simon C, Lanner F, Kere J, Salumets A, Altmäe S. Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay. Hum Reprod Open 2022; 2022:hoac043. [PMID: 36339249 PMCID: PMC9632455 DOI: 10.1093/hropen/hoac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Indexed: 08/17/2023] Open
Abstract
STUDY QUESTION Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Dmitri Lubenets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, Sweden
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Parameswaran Grace Lalitkumar
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - David Blesa
- Department of Product Development, IGENOMIX, Valencia, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA in Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| |
Collapse
|
105
|
Zheng Y, Pan J, Xia C, Chen H, Zhou H, Ju W, Wegiel J, Myatt L, Roberts JM, Guo X, Zhong N. Characterization of placental and decidual cell development in early pregnancy loss by single-cell RNA sequencing. Cell Biosci 2022; 12:168. [PMID: 36209198 PMCID: PMC9548121 DOI: 10.1186/s13578-022-00904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Early pregnancy loss (EPL) presents as sporadic or recurrent miscarriage during the first trimester. In addition to chromosomal defects, EPL may result from impairment of the placental-decidual interface at early gestational age due to gene-environmental interactions. Methods To better understand the pathogenesis associated with this impairment, cell development in chorionic villi and decidua of different forms of EPL (sporadic or recurrent) was investigated with single-cell RNA sequencing and compared to that of normal first-trimester tissue. Results Unique gene expression signatures were obtained for the different forms of EPL and for normal tissue and the composition of placental and decidual cell clusters in each form was established. In particular, the involvement of macrophages in the EPL phenotypes was identified revealing an immunoactive state. Conclusion Differential gene expression and unique marker genes among cell clusters from chorionic villi and decidua of miscarried and normal pregnancies, may lead to identification of biomarker for EPL. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00904-5.
Collapse
Affiliation(s)
- Yuhua Zheng
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Jing Pan
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Chenglai Xia
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Haiying Chen
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Huadong Zhou
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Weina Ju
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jerzy Wegiel
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Leslie Myatt
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| | - James M. Roberts
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA ,grid.460217.60000 0004 0387 4432Department of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research University of Pittsburgh, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213 USA
| | - Xiaoling Guo
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Nanbert Zhong
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| |
Collapse
|
106
|
Wang X, Miao S, Lu L, Yuan J, Pan S, Wu X. miR‑519d‑3p released by human blastocysts negatively regulates endometrial epithelial cell adhesion by targeting HIF1α. Int J Mol Med 2022; 50:123. [PMID: 35959792 PMCID: PMC9387561 DOI: 10.3892/ijmm.2022.5179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022] Open
Abstract
Successful embryo implantation requires a competent embryo, a receptive endometrium and synchronized communication between them. The selection of embryos with the highest implantation potential remains a challenge in the field of assisted reproductive technology. Moreover, little is known about the precise molecular mechanisms underlying embryo‑endometrium crosstalk. MicroRNAs (miRNAs/miRs) have been detected in the spent embryo culture medium (SCM); however, their functions at the preimplantation stage remain unclear. In the present study, human SCM samples were collected during in vitro fertilization/intracytoplasmic sperm injection‑embryo transfer and divided into implanted and not‑implanted groups according to the clinical pregnancy outcomes. Total RNA was extracted and six miRNAs (miR‑372‑3p, miR‑373‑3p, miR‑516b‑5p, miR‑517a‑3p, miR‑519d‑3p and miR‑520a‑3p) were selected for reverse transcription‑quantitative PCR (RT‑qPCR) analysis. The results revealed that miR‑372‑3p and miR‑519d‑3p were markedly increased in SCM from blastocysts that failed to implant compared with in blastocysts that implanted. The receiver operating characteristic curve analysis revealed that miR‑519d‑3p was superior to miR‑372‑3p in predicting pregnancy outcomes. In vitro miRNA uptake and cell adhesion assays were performed to determine whether miR‑519d‑3p could be taken up by endometrial epithelial cells and to examine the biological roles of miR‑519d‑3p after internalization. Potential targets of miR‑519d‑3p were verified using a dual‑luciferase reporter system. The results demonstrated that miR‑519d‑3p was taken up by human endometrial epithelial cells and that it may inhibit embryo adhesion by targeting HIF1α. Using RT‑qPCR, western blot analysis and flow cytometry assay, HIF1α was shown to inhibit the biosynthesis of fucosyltransferase 7 and sialyl‑Lewis X (sLex), a cell‑surface oligosaccharide that serves an important role in embryonic apposition and adhesion. In addition, a mouse model was established and the results suggested that miR‑519d‑3p overexpression hampered embryo implantation in vivo. Taken together, miRNAs in SCM may serve as novel biomarkers for embryo quality. Furthermore, miR‑519d‑3p was shown to mediate embryo‑endometrium crosstalk and to negatively regulate embryo implantation by targeting HIF1α/FUT7/sLex pathway.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Suibing Miao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Linqi Lu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jingchuan Yuan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuhong Pan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
107
|
Hebeda CB, Savioli AC, Scharf P, de Paula-Silva M, Gil CD, Farsky SHP, Sandri S. Neutrophil depletion in the pre-implantation phase impairs pregnancy index, placenta and fetus development. Front Immunol 2022; 13:969336. [PMID: 36248911 PMCID: PMC9558710 DOI: 10.3389/fimmu.2022.969336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal neutrophils cells are players in gestational tolerance and fetus delivery. Nonetheless, their actions in each phase of the pregnancy are unknown. We here investigated the role of maternal neutrophil depletion before the blastocyst implantation phase and outcomes in the pregnancy index, placenta, and fetus development. Neutrophils were pharmacologically depleted by i.p. injection of anti-Gr1 (anti-neutrophils; 200 µg) 24 hours after plug visualization in allogeneic-mated C57BL/6/BALB/c mice. Depletion of peripheral neutrophils lasted until 48 hours after anti-Gr1 injection (gestational day 1.5-3.5). On gestational day 5.5, neutrophil depletion impaired the blastocyst implantation, as 50% of pregnant mice presented reduced implantation sites. On gestational day 18.5, neutrophil depletion reduced the pregnancy rate and index, altered the placenta disposition in the uterine horns, and modified the structure of the placenta, detected by reduced junctional zone, associated with decreased numbers of giant trophoblast cells, spongiotrophoblast. Reduced number of placenta cells labeled for vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (PECAM-1), and intercellular cell adhesion molecule (ICAM-1), important markers of angiogenesis and adhesiveness, were detected in neutrophil depleted mice. Furthermore, neutrophil depletion promoted a higher frequency of monocytes, natural killers, and T regulatory cells, and lower frequency of cytotoxic T cells in the blood, and abnormal development of offspring. Associated data obtained herein highlight the pivotal role of neutrophils actions in the early stages of pregnancy, and address further investigations on the imbricating signaling evoked by neutrophils in the trophoblastic interaction with uterine epithelium.
Collapse
Affiliation(s)
- Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- Núcleo de Pesquisa em Ciências Médicas, Fundação Universidade para o Desenvolvimento do Alto Vale do Itajaí – UNIDAVI, Rio do Sul, SC, Brazil
| | - Anna Carolina Savioli
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Marina de Paula-Silva
- Center for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, São Paulo, Brazil
- *Correspondence: Silvana Sandri,
| |
Collapse
|
108
|
Liu K, Cheng H, Guo Y, Liu Y, Li L, Zhang X. Autologous platelet‐rich plasma intrauterine perfusion to improve pregnancy outcomes after implantation failure: A systematic review and meta‐analysis. J Obstet Gynaecol Res 2022; 48:3137-3151. [DOI: 10.1111/jog.15431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kepeng Liu
- First Clinical Medical College of LanZhou University Lanzhou GanSu PR China
| | - Hui Cheng
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Yaqiong Guo
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Yuan Liu
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Lifei Li
- The Reproductive Medicine Special Hospital of the 1st Hospital of Lanzhou University Lanzhou GanSu PR China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province Lanzhou GanSu PR China
| | - Xuehong Zhang
- The Reproductive Medicine Special Hospital of the 1st Hospital of Lanzhou University Lanzhou GanSu PR China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province Lanzhou GanSu PR China
| |
Collapse
|
109
|
Wu J, Lin S, Huang P, Qiu L, Jiang Y, Zhang Y, Meng N, Meng M, Wang L, Deng W, Liu Z, Guo C, Lu J, Wang H, Kong S. Maternal anxiety affects embryo implantation via impairing adrenergic receptor signaling in decidual cells. Commun Biol 2022; 5:840. [PMID: 35982177 PMCID: PMC9388523 DOI: 10.1038/s42003-022-03694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/10/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrent implantation failure (RIF) is defined as the failed pregnancy after good embryo transfer over 3 cycles during in vitro fertilization (IVF).The human endometrium plays a vital role in providing the site for embryo implantation, with several factors implicated in unsatisfactory endometrial receptivity in RIF. Our present results revealed that women with pregnancy loss or infertility have a higher serum epinephrine level, indicating a potential correlation between psychological stress and pregnancy failure. RNA-sequencing of the tissues collected at the endometrial receptive phase in normal and RIF women showed that stress hormones could affect the functional status of endometrial receptivity. Subsequent analysis revealed that the epinephrine signaling acts as an important regulator of endometrial receptivity through the PI3K-AKT and FOXO1 signaling pathways. We also found that patients with RIF show attenuated expression of the alpha-2C-adrenergic receptor (ADRA2C) and that its down regulation induced by high level epinephrine could inhibit the decidualization. Early pregnant mice treated with stress showed high serum epinephrine levels, defective uterine adrenergic receptor expression, and low pregnancy rates. Altogether, our findings indicate that mental stress during early pregnancy can alter the functional status of endometrial receptivity.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Reproductive Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Pinxiu Huang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lingling Qiu
- Department of Reproductive Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yufei Jiang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Nan Meng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meiqing Meng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lemeng Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhao Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chuanhui Guo
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
110
|
Wang R, Feng Y, Chen J, Chen Y, Ma F. Association between polyunsaturated fatty acid intake and infertility among American women aged 20-44 years. Front Public Health 2022; 10:938343. [PMID: 36062133 PMCID: PMC9428268 DOI: 10.3389/fpubh.2022.938343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Background Infertility is a nationwide public health priority in the U.S. However, few studies have investigated the effects of dietary intake of polyunsaturated fatty acids (PUFAs) on female infertility. This study explored the association between PUFA intake and risk of infertility. Methods A total of 1,785 women aged 20-44 years from three National Health and Nutrition Examination Survey cycles (2013-2018) were included in this cross-sectional study. The intake of PUFAs was obtained from a 24-h dietary interview on two separate days with a 3-10-day interval, and nutrient residue models were used. Fertility status was assessed by positive response to two relative questions via a questionnaire. Logistic regression models were used and some covariates were adjusted. Results Among all the participants, 340 (19.05%) women suffered from infertility. The intake of docosahexaenoic acid (DHA) (OR = 0.998, 95% CI 0.998, 0.009) was slightly related to the risk of infertility. In contrast, women with higher α-linolenic acid (ALA) (OR = 1.416, 95% CI 1.138, 1.763) and linoleic acid (LA) intake (OR = 1.020, 95% CI 1.002, 1.038) presented with a relatively higher risk of primary infertility. Furthermore, in 20-34-year-old women, higher omega-6/omega-3 was significant associated with the risk of infertility (OR = 1.002, 95%CI 1.000, 1.005). Conclusions Our results suggest that PUFA intake is only slightly associated with infertility. The higher the DHA intake, the lower the risk of infertility regardless of age. In women with primary infertility, ALA and LA has negative effect.
Collapse
Affiliation(s)
- Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiahe Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingjiao Chen
- Office for West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Suzuki D, Sasaki K, Kumamoto S, Tanaka K, Ogawa H. Dynamic Changes of Gene Expression in Mouse Mural Trophectoderm Regulated by Cdx2 During Implantation. Front Cell Dev Biol 2022; 10:945241. [PMID: 36051443 PMCID: PMC9425295 DOI: 10.3389/fcell.2022.945241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Implantation of the blastocyst into the uterus is a specific and essential process for mammalian embryonic development. In mice, implantation is initiated from the mural trophectoderm of the blastocyst and the mTE controls implantation progression by acquiring the ability to attach and invade into the endometrium while differentiating into primary trophoblast giant cells. Nevertheless, it remains largely unclear when and how the mTE differentiates and acquires this ability during implantation. Here, by RNA sequencing analysis with the pre- and peri-implantation mTE, we show that the mTE undergoes stage-specific and dynamic changes of gene expression during implantation. We also reveal that the mTE begins down-regulating Cdx2 and up-regulating differentiation marker genes during the peri-implantation stage. In addition, using trophectoderm (TE) -specific lentiviral vector-mediated gene transduction, we demonstrate that TE-specific Cdx2 overexpression represses differentiation of the mTE into the primary trophoblast giant cells. Moreover, we reveal that TE-specific Cdx2 overexpression also represses the up-regulation of cell adhesion- and migration-related genes, including Slc6a14, Slc16a3, Itga7, Itgav and Itgb3, which are known to regulate migration of trophectoderm cells. In particular, the expression of Itgb3, an integrin subunit gene, exhibits high inverse correlation with that of Cdx2 in the TE. Reflecting the down-regulation of the genes for TE migration, TE-specific Cdx2 overexpression causes suppression of the blastocyst outgrowth in vitro and abnormal progression of implantation in vivo. Thus, our results specify the time-course changes of global gene expression in the mTE during implantation and uncover the significance of Cdx2 down-regulation for implantation progression.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
- *Correspondence: Hidehiko Ogawa,
| |
Collapse
|
112
|
Mitochondrial genome undergoes de novo DNA methylation that protects mtDNA against oxidative damage during the peri-implantation window. Proc Natl Acad Sci U S A 2022; 119:e2201168119. [PMID: 35858425 PMCID: PMC9335330 DOI: 10.1073/pnas.2201168119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.
Collapse
|
113
|
Kohil A, Chouliaras S, Alabduljabbar S, Lakshmanan AP, Ahmed SH, Awwad J, Terranegra A. Female infertility and diet, is there a role for a personalized nutritional approach in assisted reproductive technologies? A Narrative Review. Front Nutr 2022; 9:927972. [PMID: 35938101 PMCID: PMC9353397 DOI: 10.3389/fnut.2022.927972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Female infertility is a major public health concern and a global challenge. It is a disorder of the reproductive system, defined as the inability to achieve a clinical pregnancy. Nutrition and other environmental factors are found to impact reproductive health in women as well as the outcome of assisted reproductive technologies (ART). Dietary factors, such as polyunsaturated fatty acids (PUFA), fiber as well as the intake of Mediterranean diet appear to exert beneficial effects on female reproductive outcomes. The exact mechanisms associating diet to female fertility are yet to be identified, although genomic, epigenomic, and microbial pathways may be implicated. This review aims to summarize the current knowledge on the impact of dietary components on female reproduction and ART outcomes, and to discuss the relevant interplay of diet with genome, epigenome and microbial composition.
Collapse
Affiliation(s)
- Amira Kohil
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra
| |
Collapse
|
114
|
Stojanovic Gavrilovic AZ, Cekovic JM, Parandilovic AZ, Nikolov AB, Sazdanovic PS, Velickovic AM, Andjelkovic MV, Sorak MP. IL-6 of follicular fluid and outcome of in vitro fertilization. Medicine (Baltimore) 2022; 101:e29624. [PMID: 35866786 PMCID: PMC9302246 DOI: 10.1097/md.0000000000029624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The quality of an oocyte is influenced by its microenvironment, which includes cumulus cells and follicular fluid, as well as cells of the immune system and their products. The ovarian interleukins, which are secreted by the granulosa cells and other immune cells within the ovaries and follicles, regulate various functions between the cells. IL-6 is a cytokine that is present in the follicular fluid and may affect the quality of oocytes. There are some inconsistencies in the literature regarding the concentration of interleukin 6 in the follicular fluid. The main objective of this study was to examine whether the concentration of interleukin 6 in the follicular fluid affects the outcome of IVF. This study involved 83 patients who underwent IVF. Follicular fluid was used as the biological material for the analysis. Examination of the obtained follicular fluid and collection of oocytes under a stereomicroscope was performed in the embryological laboratory. The concentration of IL-6 in the follicular fluid was analyzed. IVF and ICSI methods were used as the fertilization methods. Pregnancy was confirmed by the positive serum β-hCG level. The software package SPSS 20 was used for statistical data processing. Analysis of the follicular fluid samples showed a correlation between the concentration of IL-6 in the follicular fluid and the outcome of IVF. The concentration of IL-6 in the follicular fluid was higher in patients with confirmed pregnancy (9.55 ± 7.47 ng/ml). Based on our results, we conclude that the concentration of IL-6 affects the outcome of IVF. If the range of IL-6 concentration is between 3,67 ng/ml and 10 ng/ml, we can expect good IVF outcome with vital pregnancy.
Collapse
Affiliation(s)
- Aleksandra Z. Stojanovic Gavrilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, PhD student, Kragujevac, Serbia
| | - Jelena M. Cekovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aida Z. Parandilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aleksandar B. Nikolov
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Predrag S. Sazdanovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Anatomy, Kragujevac, Serbia
| | - Aleksandra M. Velickovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija V. Andjelkovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija P. Sorak
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Gynecology and Obstetrics, Kragujevac, Serbia
- *Correspondence: Marija Sorak, Faculty of Medical Sciences, University of Kragujevac, 34 000 Kragujevac, SerbiaUniversity Clinical Center Kragujevac, Center for Biomedical Assisted Fertilization, 34 000 Kragujevac, Serbia (e-mail: )
| |
Collapse
|
115
|
Kojima J, Ono M, Kuji N, Nishi H. Human Chorionic Villous Differentiation and Placental Development. Int J Mol Sci 2022; 23:8003. [PMID: 35887349 PMCID: PMC9325306 DOI: 10.3390/ijms23148003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
In humans, the placenta provides the only fetomaternal connection and is essential for establishing a pregnancy as well as fetal well-being. Additionally, it allows maternal physiological adaptation and embryonic immunological acceptance, support, and nutrition. The placenta is derived from extra-embryonic tissues that develop rapidly and dynamically in the first weeks of pregnancy. It is primarily composed of trophoblasts that differentiate into villi, stromal cells, macrophages, and fetal endothelial cells (FEC). Placental differentiation may be closely related to perinatal diseases, including fetal growth retardation (FGR) and hypertensive disorders of pregnancy (HDP), and miscarriage. There are limited findings regarding human chorionic villous differentiation and placental development because conducting in vivo studies is extremely difficult. Placental tissue varies widely among species. Thus, experimental animal findings are difficult to apply to humans. Early villous differentiation is difficult to study due to the small tissue size; however, a detailed analysis can potentially elucidate perinatal disease causes or help develop novel therapies. Artificial induction of early villous differentiation using human embryonic stem (ES) cells/induced pluripotent stem (iPS) cells was attempted, producing normally differentiated villi that can be used for interventional/invasive research. Here, we summarized and correlated early villous differentiation findings and discussed clinical diseases.
Collapse
Affiliation(s)
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (N.K.); (H.N.)
| | | | | |
Collapse
|
116
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
117
|
Jahanshahi M, Aleyasin A, Aghahosseini M, Najafian A, Shabani Nashtaei M, Hosseinimousa S. The effect of intrauterine hCG injection before embryo transfer on pregnancy rate in frozen embryo transfer cycles. Ann Med Surg (Lond) 2022; 79:104091. [PMID: 35860168 PMCID: PMC9289495 DOI: 10.1016/j.amsu.2022.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Objective HCG (human chorionic gonadotropin), which is secreted by cytotrophoblast cells, plays an important role in improving pregnancy outcomes among patients with infertility or related problems. In this study, we evaluate the effect of intrauterine hCG injection prior to frozen embryo transfer on pregnancy outcomes. Methods In this clinical trial study, among women with infertility problems referred to (XXX) and those with frozen embryos were included in the study. 155 patients in the intervention group received 500 units of hCG while 157 in control group received saline prior to embryo transfer. Along with demographic data, successful in vitro fertilization and clinical pregnancy, loss of pregnancy, successful transplantation, and biochemical parameters were compared among the two groups. Results The mean age of the patients included in the study was 32.97 ± 3.31 years. The level of anti-Mullerian hormone, follicle stimulating hormone and the grade of frozen embryos were not significantly different between the two groups (P > 0.05). The rate of laboratory pregnancy in the intervention group was significantly higher than in the control group (51% vs 35%), p = 0.006. The rate of successful implantation and clinical pregnancy in the intervention group was also significantly higher, p = 0.01 and p = 0.006, respectively. Overall loss of pregnancy in intervention group was 78.1% and 86.0% in control group which was not significantly different, p = 0.068. Conclusion The outcomes of our study showed that 500 IU of hCG prior to embryo transfer improves the rate of clinical and laboratory pregnancy. However, it does not reduce the rate of loss of pregnancy. Further studies are therefore required in this area.
Collapse
Affiliation(s)
- Moghadaseh Jahanshahi
- Clinical Research Developmental Center (CRDC), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ashraf Aleyasin
- Department of Obstetrics and Gynecology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Aghahosseini
- Department of Obstetrics and Gynecology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Najafian
- Department of Obstetrics and Gynecology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Hosseinimousa
- Department of Obstetrics and Gynecology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
118
|
The newly non-uniform endometrial echogenicity on transvaginal ultrasound do not impact in vitro fertilization and embryo transfer success: A retrospective cohort study. Eur J Obstet Gynecol Reprod Biol 2022; 274:204-209. [PMID: 35671664 DOI: 10.1016/j.ejogrb.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the effect of newly non-uniform endometrial echogenicity diagnosed by transvaginal ultrasound on the outcome of pregnancy in vitro fertilization-embryo transfer (IVF-ET) during controlled ovarian hyperstimulation (COH) by retrospective cohort analysis. METHODS A retrospective cohort study of a total of 604 patients with newly non-uniform endometrial echogenicity from January 2013 to June 2017, each woman was matched with three control subjects of similar age (±1 year), type of infertility (primary or secondary), the protocol used for COH, and the number of ET cycles in our unit. The patients in the study group and control group were matched according to the strict 1:3 matching principle. Baseline characteristics and pregnancy outcomes were compared. RESULTS There were no statistically significant difference in baseline characteristics, live birth rate, biochemical pregnancy rate, clinical pregnancy rate, clinical pregnancy miscarriage rate and ectopic pregnancy rate between the two groups. But there were significant statistical differences in past history of uterine cavity surgery between the two groups (35.26% VS 21.19%), especially in history of endometrial polyp surgery (94.84% VS 90.10%). CONCLUSIONS Our results demonstrate the newly diagnosed non-uniform endometrial echogenicity during controlled ovarian hyperstimulation does not affect the pregnancy outcome of in vitro fertilization-embryo transfer, and fresh embryo transfer can be continued.
Collapse
|
119
|
Chen Y, Siriwardena D, Penfold C, Pavlinek A, Boroviak TE. An integrated atlas of human placental development delineates essential regulators of trophoblast stem cells. Development 2022; 149:275917. [PMID: 35792865 PMCID: PMC9340556 DOI: 10.1242/dev.200171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/12/2022] [Indexed: 12/21/2022]
Abstract
The trophoblast lineage safeguards fetal development by mediating embryo implantation, immune tolerance, nutritional supply and gas exchange. Human trophoblast stem cells (hTSCs) provide a platform to study lineage specification of placental tissues; however, the regulatory network controlling self-renewal remains elusive. Here, we present a single-cell atlas of human trophoblast development from zygote to mid-gestation together with single-cell profiling of hTSCs. We determine the transcriptional networks of trophoblast lineages in vivo and leverage probabilistic modelling to identify a role for MAPK signalling in trophoblast differentiation. Placenta- and blastoid-derived hTSCs consistently map between late trophectoderm and early cytotrophoblast, in contrast to blastoid-trophoblast, which correspond to trophectoderm. We functionally assess the requirement of the predicted cytotrophoblast network in an siRNA-screen and reveal 15 essential regulators for hTSC self-renewal, including MAZ, NFE2L3, TFAP2C, NR2F2 and CTNNB1. Our human trophoblast atlas provides a powerful analytical resource to delineate trophoblast cell fate acquisition, to elucidate transcription factors required for hTSC self-renewal and to gauge the developmental stage of in vitro cultured cells.
Collapse
Affiliation(s)
- Yutong Chen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
120
|
Kirmizi DA, Baser E, Okan A, Doganyigit Z. Receptivity, autophagy, and implantation in endometriosis; does antioxidant work? An experimental study. J Food Biochem 2022; 46:e14276. [PMID: 35712902 DOI: 10.1111/jfbc.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Implantation is a key point in pathological processes associated with infertility, especially in endometriosis. In this complex process, there is limited evidence to demonstrate the role of receptivity and autophagy. The present study aimed to evaluate LC3A/B, P62/SQSTM1, Beclin 1, and integrin expressions and receptivity and autophagy processes in endometriosis in pregnant rats with healthy endometriosis on day 6 of the process. Pregnancy was observed in all rats in the control group (8/8), while the pregnancy was 4/8 in the endometriosis group, and 6/8 in the endometriosis + ALA group. LC3A/B and P62/SQSTM1 expression increased significantly in the endometriosis + ALA group, compared with endometriosis groups (p < .05). The effect of ALA on autophagy and receptivity in endometriosis was shown for the first time. Antioxidant and anti-inflammatory treatments in endometriosis should be investigated as new treatment modalities for implantation problems. PRACTICAL APPLICATIONS: Endometriosis, the etiology of which remains unknown, is an important cause of infertility. Implantation is the key point in pathological processes associated with infertility. In this complex process, there is limited evidence to demonstrate the role of receptivity and autophagy. The present study aimed to evaluate LC3A/B, P62/SQSTM1, Beclin 1, and integrin expressions and receptivity and autophagy processes in endometriosis in pregnant rats with healthy endometriosis on day 6 of the process. Oral alpha-lipoic acid was administered to one group and the effect of this powerful antioxidant on the process was evaluated.
Collapse
Affiliation(s)
- Demet Aydogan Kirmizi
- Department of Obstetric and Gynecology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Emre Baser
- Department of Obstetric and Gynecology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
121
|
Wang Y, Jiang X, Jia L, Wu X, Wu H, Wang Y, Li Q, Yu R, Wang H, Xiao Z, Liang X. A Single-Cell Characterization of Human Post-implantation Embryos Cultured In Vitro Delineates Morphogenesis in Primary Syncytialization. Front Cell Dev Biol 2022; 10:835445. [PMID: 35784461 PMCID: PMC9240912 DOI: 10.3389/fcell.2022.835445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Implantation of the human blastocyst is a milestone event in embryonic development. The trophoblast is the first cell lineage to differentiate during implantation. Failures in trophoblast differentiation during implantation are correlated to the defects of pregnancy and embryonic growth. However, many gaps remain in the knowledge of human embryonic development, especially regarding trophoblast morphogenesis and function. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on human post-implantation embryos cultured in vitro. A hierarchical model was established, which was characterized by the sequential development of two primitive cytotrophoblast cell (pCTB) subtypes, two primitive syncytiotrophoblast subtypes, and migrative trophoblast cells (MTB) after the trophectoderm . Further analysis characterized cytoskeleton transition of trophoblast cells and morphogenesis, such as irregular nuclei, cell cycle arrest, and cellular aging during implantation. Moreover, we found syncytialization of hTSCs could mimic the morphogenesis, serving as a powerful tool for further understanding of the mechanism during the implantation stage of pregnancy. Our work allows for the reconstruction of trophoblast cell transcriptional transition and morphogenesis during implantation and provides a valuable resource to study pathologies in early pregnancy, such as recurrent implantation failure.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiangxiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Lei Jia
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Zhenyu Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| | - Xiaoyan Liang
- Reproductive Medical Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Hongmei Wang, ; Xiaoyan Liang, ; Zhenyu Xiao,
| |
Collapse
|
122
|
Szydełko-Gorzkowicz M, Poniedziałek-Czajkowska E, Mierzyński R, Sotowski M, Leszczyńska-Gorzelak B. The Role of Kisspeptin in the Pathogenesis of Pregnancy Complications: A Narrative Review. Int J Mol Sci 2022; 23:ijms23126611. [PMID: 35743054 PMCID: PMC9223875 DOI: 10.3390/ijms23126611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022] Open
Abstract
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.
Collapse
|
123
|
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci 2022; 79:345. [PMID: 35661923 PMCID: PMC9167809 DOI: 10.1007/s00018-022-04377-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.
Collapse
Affiliation(s)
- Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
124
|
Lai TH, Chen HT, Wu WB. Trophoblast Coculture Induces Intercellular Adhesion Molecule-1 Expression in Uterine Endometrial Epithelial Cells Through TNF-α Production: Implication of Role of FSH and ICAM-1 during Embryo Implantation. J Reprod Immunol 2022; 152:103650. [DOI: 10.1016/j.jri.2022.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022]
|
125
|
Robertson SA, Moldenhauer LM, Green ES, Care AS, Hull ML. Immune determinants of endometrial receptivity: a biological perspective. Fertil Steril 2022; 117:1107-1120. [PMID: 35618356 DOI: 10.1016/j.fertnstert.2022.04.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
Immune cells are essential for endometrial receptivity to embryo implantation and early placental development. They exert tissue-remodeling and immune regulatory roles-acting to promote epithelial attachment competence, regulate the differentiation of decidual cells, remodel the uterine vasculature, control and resolve inflammatory activation, and suppress destructive immunity to paternally inherited alloantigens. From a biological perspective, the endometrial immune response exerts a form of "quality control"-it promotes implantation success when conditions are favorable but constrains receptivity when physiological circumstances are not ideal. Women with recurrent implantation failure and recurrent miscarriage may exhibit altered numbers or disturbed function of certain uterine immune cell populations-most notably uterine natural killer cells and regulatory T cells. Preclinical and animal studies indicate that deficiencies or aberrant activation states in these cells can be causal in the pathophysiological mechanisms of infertility. Immune cells are, therefore, targets for diagnostic evaluation and therapeutic intervention. However, current diagnostic tests are overly simplistic and have limited clinical utility. To be more informative, they need to account for the full complexity and reflect the range of perturbations that can occur in uterine immune cell phenotypes and networks. Moreover, safe and effective interventions to modulate these cells are in their infancy, and personalized approaches matched to specific diagnostic criteria will be needed. Here we summarize current biological understanding and identify knowledge gaps to be resolved before the promise of therapies to target the uterine immune response can be fully realized.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison S Care
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
126
|
Huang C, Zhang Q, Ni T, Zhou T, Lv C, Li Y, Yan J, Chen ZJ. Deficiency of RARα Suppresses Decidualization via Downregulating CEBPB Transcription in Women With Recurrent Implantation Failure. Front Endocrinol (Lausanne) 2022; 13:753416. [PMID: 35663305 PMCID: PMC9161677 DOI: 10.3389/fendo.2022.753416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recurrent implantation failure (RIF) is a disease associated with endometrial receptivity dysfunction. Retinoic acid receptor alpha (RARα) is an important protein in many biological processes, such as differentiation and development. However, the exact underlying mechanism whereby RARα affects RIF remains unknown. This study investigated RARα expression and its contribution in the mid-luteal phase endometria of patients with RIF. Methods The expression levels of RARα and CCAAT/enhancer-binding protein (C/EBP) β in the endometria of the RIF and normal group were investigated using western blotting and immunohistochemistry. In in vitro experiments, immortal telomerase-transformed human endometrial stromal cells (T-HESCs) were incubated with medroxyprogesterone-17-acetate (MPA) and cyclic adenosine monophosphate (cAMP) for 4 days to induce decidualization. The expression levels of the decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1) were determined using quantitative polymerase chain reaction. RARα was knocked down using a small interfering RNA, and C/EBPβ was overexpressed from an adenoviral vector. The transcriptional regulation of CEBPB by RARα was determined by chromatin immunoprecipitation (ChIP) assay and luciferase assays. Results We found that the expression levels of RARα decreased in the mid-luteal endometria of RIF patients. After 4 days of decidualization induction in vitro, RARα knockdown impaired the decidualization of T-HESCs and downregulated the expression of C/EBPβ. The restoration of C/EBPβ expression rescued the RARα knockdown-induced suppression of T-HESC decidualization. In ChIP analysis of lysates from decidualized T-HESCs, the CEBPB promoter region was enriched in chromatin fragments pulled down using an anti-RARα antibody. However, the relationship between CEBPB transcription and RARα expression levels was only observed when the decidualization of T-HESCs was induced by the addition of cAMP and MPA. To identify the binding site of RARα/retinoid X receptor α, we performed luciferase assays. Mutation of the predicted binding site in CEBPB (-2,009/-1,781) decreased the transcriptional activity of the reporter. To confirm this mechanism, the expression levels of C/EBPβ in the mid-luteal endometria of RIF patients were determined and found to decrease with decreased RARα expression levels. Conclusion A deficiency of RARα expression in the mid-luteal endometrium inhibits decidualization due to the downregulation of CEBPB transcription. This is a potential mechanism contributing to RIF.
Collapse
Affiliation(s)
- Caiyi Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Tingting Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Chunzi Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
127
|
Pang S, Gao Y, Wang Y, Yao X, Cao M, Liang Y, Song M, Jiang G. Tetrabromobisphenol A perturbs cell fate decisions via BMP signaling in the early embryonic development of zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128512. [PMID: 35739651 DOI: 10.1016/j.jhazmat.2022.128512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) readily accumulates in the egg yolk of aquatic oviparous animals and is transferred to their embryos. Early embryogenesis is vital for organ formation and subsequent development. The developmental toxicity of TBBPA in aquatic animals has been extensively reported. However, few studies have assessed the toxic effects of TBBPA in the early embryonic development. In this work, we found that TBBPA perturbed cell fate decisions along the dorsal-ventral (DV) axis during gastrulation, further disrupting early organogenesis in the entire embryo. TBBPA exposure increased the number of embryonic cells that acquired a ventral cell fate, which formed epidermis, blood and heart tissues. In return, the number of embryonic cells that acquired a dorsal cell fate was greatly decreased, causing the TBBPA-exposed embryos to develop a small brain and small eyes. We revealed that TBBPA elevated the activity gradient of bone morphogenetic protein (BMP) signaling which is responsible for cell fate specification along the DV axis, with up-regulation of BMP ligands (bmp4, bmp7a) and target genes (szl) and promotion signal transduction through phosphorylation of Smad1/5. As the function of BMP signaling in embryogenesis is highly conserved among many vertebrates, these findings highlight the ecological and health risks of TBBPA.
Collapse
Affiliation(s)
- Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwu Wang
- School of Basic Medical Science, Wuhan University, Wuhan 430072, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Stanhiser J, Jukic AMZ, McConnaughey DR, Steiner AZ. Omega-3 fatty acid supplementation and fecundability. Hum Reprod 2022; 37:1037-1046. [PMID: 35147198 PMCID: PMC9308390 DOI: 10.1093/humrep/deac027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2022] [Indexed: 02/17/2024] Open
Abstract
STUDY QUESTION Is self-reported use of omega-3 fatty acid supplements associated with fecundability, the probability of natural conception, in a given menstrual cycle? SUMMARY ANSWER Prospectively recorded omega-3 supplement use was associated with an increased probability of conceiving. WHAT IS KNOWN ALREADY In infertile women, omega-3 fatty acid intake has been associated with increased probability of pregnancy following IVF. In natural fertility, studies are conflicting, and no study of natural fertility has evaluated omega-3 fatty acid supplementation and fecundity. STUDY DESIGN, SIZE, DURATION Secondary data analysis of 900 women contributing 2510 cycles in Time to Conceive (TTC), a prospective, time to pregnancy cohort study from 2008 to December 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Women aged 30-44 years, trying to conceive <3 months, without history of infertility were followed using standardized pregnancy testing. While attempting to conceive, women daily recorded menstrual cycle events and supplement and medication intake using the Cerner Multum Drug Database. Supplements and vitamins containing omega-3 were identified. Omega-3 use, defined as use in at least 20% of days in a given menstrual cycle, in each pregnancy attempt cycle was determined. A discrete-time Cox proportional hazards model was used to calculate the fecundability ratio. MAIN RESULTS AND THE ROLE OF CHANCE Women taking omega-3 supplementation were more likely to be younger, thinner, nulligravid, white and to take vitamin D, prenatal and multivitamins compared to women not taking omega-3s. After adjusting for age, obesity, race, previous pregnancy, vitamin D and prenatal and multivitamin use, women taking omega-3 supplements had 1.51 (95% CI 1.12, 2.04) times the probability of conceiving compared to women not taking omega-3s. LIMITATIONS, REASONS FOR CAUTION Our study was not a randomized controlled trial. The women who used omega-3 supplements may represent a more health-conscious population. We sought to address this by adjusting for multiple factors in our model. Additionally, the omega-3 fatty acid supplements that TTC participants used included multiple types and brands with varying dosages of omega-3 fatty acids. Women reported the type of supplement they were taking but not the concentration of omega-3s in that supplement. It is therefore not possible to compare dosing or a dose-response relationship in our study. WIDER IMPLICATIONS OF THE FINDINGS Omega-3 supplementation may present a feasible and inexpensive modifiable factor to improve fertility. Randomized controlled trials are needed to further investigate the benefits of omega-3 supplementation for women trying to conceive naturally. STUDY FUNDING/COMPETING INTERESTS This study was supported by the Division of Reproductive Endocrinology and Infertility at the University of North Carolina at Chapel Hill, the NIH/NICHD (R21 HD060229-01 and R01 HD067683-01), and in part by the Intramural Research Program of the National Institute of Environmental Health Sciences (Z01ES103333). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- J Stanhiser
- Reproductive Endocrinology and Infertility, University of North Carolina Chapel Hill, NC, USA
- Reproductive Partners—San Diego, La Jolla, CA, USA
- Department of Obstetrics and Gynecology, University of California San Diego, La Jolla, CA, USA
| | - A M Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - A Z Steiner
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| |
Collapse
|
129
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
130
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
131
|
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun 2022; 13:1252. [PMID: 35292627 PMCID: PMC8924260 DOI: 10.1038/s41467-022-28663-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles K Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Young
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
132
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
133
|
Tiaojing Cuyun Recipe Enhances Pregnancy Outcome via the VEGF/PI3K/AKT/eNOS Signaling Pathway in EID Mice. DISEASE MARKERS 2022; 2022:9461444. [PMID: 35251378 PMCID: PMC8894059 DOI: 10.1155/2022/9461444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Purpose. In this study, we evaluated the effect of Tiaojing Cuyun Recipe (TJCYR) on embryo implantation dysfunction- (EID-) induced damage of endometrial receptivity in mice and investigated the mechanisms underlying the effect. Methods. The main compounds of TJCYR were identified by high-performance liquid chromatography (HPLC). One hundred and twenty pregnant mice were randomly divided into six groups: control, EID only, progesterone (Prog)+EID, TJCYR-low-dose+EID, TJCYR-medium-dose+EID, and TJCYR-high-dose+EID. Mifepristone was injected to make the EID model. On the fourth day of pregnancy, serum was obtained to analyze hormone level by radioimmunoassay, the uterus was collected to analyze morphology by hematoxylin and eosin (H&E) and scanning electron microscopy (SEM), and a combination of immunofluorescence and Western blot was used to identify the related proteins. On the eighth day of pregnancy, the mice were sacrificed and the number of uterus-implanted blastocysts was counted. Results. Treatment with TJCYR significantly improved the number of implanted sites, the number of well-developed pinopodes, and microvascular formation in the mice. Moreover, TJCYR significantly activated PI3K/Akt/eNOS signaling pathways to promote angiogenesis, resulting in significantly improved endometrial receptivity and fertility outcomes when compared to the model group. Conclusion. These findings demonstrate that TJCYR was able to protect embryo implantation of EID mice due to TJCYR-mediated improvement in endometrial receptivity by promoting endometrial angiogenesis.
Collapse
|
134
|
Perikonzeptioneller Einfluss von Ernährung und Mikronährstoffen auf die Reproduktionsfunktion. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie Bedeutung von Mikronährstoffen und einer insgesamt „gesunden Ernährung“ in der Schwangerschaft ist unstrittig. Im Gegensatz dazu ist die Datenlage zum Einfluss der perikonzeptionellen Ernährung auf die Konzeption, Implantation und den weiteren Schwangerschaftsverlauf weit weniger klar. Gesichert scheint, dass ein hoher Anteil von Vollkornprodukten, Früchten, Gemüse, Fisch und Olivenöl bei moderatem Anteil von Kohlenhydraten günstige Effekte entfaltet. Bei Kinderwunsch ist heute die Folsäuresubstitution obligat, diese kann nach aktuellen Leitlinien der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften durch Vitamin D ergänzt werden.
Collapse
|
135
|
Yagel S, Cohen SM, Goldman-Wohl D. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array. Am J Obstet Gynecol 2022; 226:S963-S972. [PMID: 33712272 DOI: 10.1016/j.ajog.2020.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Maternal tolerance of the semiallogenic fetus necessitates conciliation of competing interests. Viviparity evolved with a placenta to mediate the needs of the fetus and maternal adaptation to the demands of pregnancy and to ensure optimal survival for both entities. The maternal-fetal interface is imagined as a 2-dimensional porous barrier between the mother and fetus, when in fact it is an intricate multidimensional array of tissues and resident and circulating factors at play, encompassing the developing fetus, the growing placenta, the changing decidua, and the dynamic maternal cardiovascular system. Pregnancy triggers dramatic changes to maternal hemodynamics to meet the growing demands of the developing fetus. Nearly a century of extensive research into the development and function of the placenta has revealed the role of placental dysfunction in the great obstetrical syndromes, among them preeclampsia. Recently, a debate has arisen questioning the primacy of the placenta in the etiology of preeclampsia, asserting that the maternal cardiovascular system is the instigator of the disorder. It was the clinical observation of the high rate of preeclampsia in hydatidiform mole that initiated the focus on the placenta in the etiology of the disease. Over many years of research, shallow trophoblast invasion with deficient remodeling of the maternal spiral arteries into vessels of higher capacitance and lower resistance has been recognized as hallmarks of the preeclamptic milieu. The lack of the normal decrease in uterine artery resistance is likewise predictive of preeclampsia. In abdominal pregnancies, however, an extrauterine pregnancy develops without remodeling of the spiral arteries, yet there is reduced resistance in the uterine arteries and distant vessels, such as the maternal ophthalmic arteries. Proponents of the maternal cardiovascular model of preeclampsia point to the observed maternal hemodynamic adaptations to pregnancy and maladaptation in gestational hypertension and preeclampsia and how the latter resembles the changes associated with cardiac disease states. Recognition of the importance of the angiogenic-antiangiogenic balance between placental-derived growth factor and its receptor soluble fms-like tyrosine kinase-1 and disturbance in this balance by an excess of a circulating isoform, soluble fms-like tyrosine kinase-1, which competes for and disrupts the proangiogenic receptor binding of the vascular endothelial growth factor and placental-derived growth factor, opened new avenues of research into the pathways to normal adaptation of the maternal cardiovascular and other systems to pregnancy and maladaptation in preeclampsia. The significance of the "placenta vs heart" debate goes beyond the academic: understanding the mutuality of placental and maternal cardiac etiologies of preeclampsia has far-reaching clinical implications for designing prevention strategies, such as aspirin therapy, prediction and surveillance through maternal hemodynamic studies or serum placental-derived growth factor and soluble fms-like tyrosine kinase-1 testing, and possible treatments to attenuate the effects of insipient preeclampsia on women and their fetuses, such as RNAi therapy to counteract excess soluble fms-like tyrosine kinase-1 produced by the placenta. In this review, we will present an integrated model of the maternal-placental-fetal array that delineates the commensality among the constituent parts, showing how a disruption in any component or nexus may lead to the multifaceted syndrome of preeclampsia.
Collapse
Affiliation(s)
- Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Sarah M Cohen
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
136
|
Yi X, Liu F, Gao K, Chen F, Wang Y, Li H, Wang X, Huang Y, Fu H, Zhou W, Fan JB, Wang S, Gao Y. Reconstructable Uterus-Derived Materials for Uterus Recovery toward Efficient Live Births. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106510. [PMID: 34854148 DOI: 10.1002/adma.202106510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Uterine factor infertility is increasingly common in modern society and has severely affected human life and health. However, the existing biomaterial scaffold-mediated systems remain limited in efficient uterus recovery, leading to low pregnancy rate and live births. Here, reconstructable uterus-derived materials (RUMs) are demonstrated by combining uterus-derived extracellular matrix and seeded chorionic villi mesenchymal stem cells for uterus recovery, achieving highly efficient live births in rats with severe uterine injury. The RUMs can be designed into different states (such as, liquid RUMs and solid RUMs) and shapes (such as, cuboid, triangular-prism, and cube) in terms of requirements. The RUMs can effectively prevent intrauterine adhesion, and promote endometrial regeneration and muscle collagen reconstruction, as well as, accelerate wound healing by constructing a physical barrier and secreting cytokines, allowing efficient uterus recovery. The injured uterus nearly achieves complete recovery after treating with the RUMs and has normal pregnancies for supporting fetal development and live births, similar to the normal rats. The study provides a regenerative medicine therapeutics for uterine factor infertility.
Collapse
Affiliation(s)
- Xiao Yi
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Fan Liu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Kunjie Gao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Feng Chen
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Huayan Li
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Xuefeng Wang
- Department of Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yi Huang
- Department of Gynecology, Nanhai People's Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Huijiao Fu
- Department of Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Weijie Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jun-Bing Fan
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Gao
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
| |
Collapse
|
137
|
Qiu Q, Huang Y, Zhang B, Huang D, Chen X, Fan Z, Lin J, Yang W, Wang K, Qu N, Li J, Li Z, Huang J, Li S, Zhang J, Liu G, Rui G, Chen X, Zhao Q. Noninvasive Dual-Modality Photoacoustic-Ultrasonic Imaging to Detect Mammalian Embryo Abnormalities after Prenatal Exposure to Methylmercury Chloride (MMC): A Mouse Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27002. [PMID: 35108087 PMCID: PMC8809665 DOI: 10.1289/ehp8907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Severe environmental pollution and contaminants left in the environment due to the abuse of chemicals, such as methylmercury, are associated with an increasing number of embryonic disorders. Ultrasound imaging has been widely used to investigate embryonic development malformation and dysorganoplasia in both research and clinics. However, this technique is limited by its low contrast and lacking functional parameters such as the ability to measure blood oxygen saturation (SaO 2 ) and hemoglobin content (HbT) in tissues, measures that could be early vital indicators for embryonic development abnormality. Herein, we proposed combining two highly complementary techniques into a photoacoustic-ultrasound (PA-US) dual-modality imaging approach to noninvasively detect early mouse embryo abnormalities caused by methylmercury chloride (MMC) in real time. OBJECTIVES This study aimed to assess the use of PA-US dual-modality imaging for noninvasive detection of embryonic toxicity at different stages of growth following prenatal MMC exposure. Additionally, we compared the PA-US imagining results to traditional histological methods to determine whether this noninvasive method could detect early developmental defects in utero. METHODS Different dosages of MMC were administrated to pregnant mice by gavage to establish models of different levels of embryonic malformation. Ultrasound, photoacoustic signal intensity (PSI), blood oxygen saturation (SaO 2 ), and hemoglobin content (HbT) were quantified in all experimental groups. Furthermore, the embryos were sectioned and examined for pathological changes. RESULTS Using PA-US imaging, we detected differences in PSI, SaO 2 , HbT, and heart volume at embryonic day (E)14.5 and E11.5 for low and high dosages of MMC, respectively. More important, our results showed that differences between control and treated embryos identified by in utero PA-US imaging were consistent with those identified in ex vivo embryos using histological methods. CONCLUSION Our results suggest that noninvasive dual-modality PA-US is a promising strategy for detecting developmental toxicology in the uterus. Overall, this study presents a new approach for detecting embryonic toxicities, which could be crucial in clinics when diagnosing aberrant embryonic development. https://doi.org/10.1289/EHP8907.
Collapse
Affiliation(s)
- Qi Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yali Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Bei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Jinpei Lin
- Department of Integrated TCM & Western Medicine Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Wensheng Yang
- Department of Pathology Affiliated Chenggong Hospital, Xiamen University, Xiamen, China
| | - Kai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Ning Qu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Juan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhihong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jingyu Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Shenrui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jiaxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
138
|
Zambuto SG, Rattila S, Dveksler G, Harley BAC. Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. Cell Mol Bioeng 2022; 15:175-191. [PMID: 35401843 PMCID: PMC8938592 DOI: 10.1007/s12195-021-00715-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200-400 μg/mL at term. Methods Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal. Results We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues. Conclusions Such models provide an important platform to develop a deeper understanding of early pregnancy.
Collapse
Affiliation(s)
- Samantha G. Zambuto
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shemona Rattila
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Gabriela Dveksler
- grid.265436.00000 0001 0421 5525Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814 USA
| | - Brendan A. C. Harley
- grid.35403.310000 0004 1936 9991Department Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
139
|
Yang H, Kolben T, Kessler M, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Herbst C, Fink SG, Weimer G, Mahner S, Jeschke U, von Schönfeldt V. FAM111A Is a Novel Molecular Marker for Oocyte Aging. Biomedicines 2022; 10:257. [PMID: 35203468 PMCID: PMC8869572 DOI: 10.3390/biomedicines10020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is the main cause of decline in oocyte quality, which can further trigger the failure of assisted reproductive technology (ART). Exploring age-related genes in oocytes is an important way to investigate the molecular mechanisms involved in oocyte aging. To provide novel insight into this field, we performed a pooled analysis of publicly available datasets, using the overlapping results of two statistical methods on two Gene Expression Omnibus (GEO) datasets. The methods utilized in the current study mainly include Spearman rank correlation, the Wilcoxon signed-rank test, t-tests, Venn diagrams, Gene Ontology (GO), Protein-Protein Interaction (PPI), Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and receiver operating characteristic (ROC) curve analysis. We identified hundreds of age-related genes across different gene expression datasets of in vitro maturation-metaphase II (IVM-MII) oocytes. Age-related genes in IVM-MII oocytes were involved in the biological processes of cellular metabolism, DNA replication, and histone modifications. Among these age-related genes, FAM111A expression presented a robust correlation with age, seen in the results of different statistical methods and different datasets. FAM111A is associated with the processes of chromosome segregation and cell cycle regulation. Thus, this enzyme is potentially an interesting novel marker for the aging of oocytes, and warrants further mechanistic study.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Corinna Paul
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Julia van Dorp
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sibel Eren
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Cornelia Herbst
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sabine Gabriele Fink
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Gabriele Weimer
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| |
Collapse
|
140
|
Russell MW. JAHA Spotlight on Pregnancy and Its Impact on Maternal and Offspring Cardiovascular Health. J Am Heart Assoc 2022; 11:e025167. [PMID: 35016536 PMCID: PMC9238538 DOI: 10.1161/jaha.121.025167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mark W Russell
- Division of Pediatric Cardiology University of Michigan Ann Arbor MI
| |
Collapse
|
141
|
Ahmed FA, Klausen C, Zhu H, Leung PCK. Myostatin increases human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 Signaling. Biol Reprod 2022; 106:1267-1277. [PMID: 35020826 DOI: 10.1093/biolre/ioab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/14/2022] Open
Abstract
Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Faten AbdelHafez Ahmed
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
142
|
The First 1000 Days of Infant. Healthcare (Basel) 2022; 10:healthcare10010106. [PMID: 35052270 PMCID: PMC8775982 DOI: 10.3390/healthcare10010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
|
143
|
Segura-Benítez M, Carbajo-García MC, Corachán A, Faus A, Pellicer A, Ferrero H. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Reprod Biol Endocrinol 2022; 20:3. [PMID: 34980157 PMCID: PMC8722215 DOI: 10.1186/s12958-021-00879-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. METHODS Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography-tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. RESULTS Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. CONCLUSIONS EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
144
|
Jiang Y, Li S, Xu W, Ying J, Qu Y, Jiang X, Zhang A, Yue Y, Zhou R, Ruan T, Li J, Mu D. Critical Roles of the Circadian Transcription Factor BMAL1 in Reproductive Endocrinology and Fertility. Front Endocrinol (Lausanne) 2022; 13:818272. [PMID: 35311235 PMCID: PMC8924658 DOI: 10.3389/fendo.2022.818272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 12/31/2022] Open
Abstract
Brain and muscle aryl-hydrocarbon receptor nuclear translocator like protein1 (BMAL1), a core component of circadian oscillation, is involved in many physiological activities. Increasing evidence has demonstrated the essential role of BMAL1 in reproductive physiology. For instance, BMAL1-knockout (KO) mice were infertile, with impaired reproductive organs and gametes. Additionally, in BMAL1-KO mice, hormone secretion and signaling of hypothalamus-pituitary-gonadal (H-P-G) hormones were also disrupted, indicating that H-P-G axis was impaired in BMAL1-KO mice. Moreover, both BMAL1-KO mice and BMAL1-knockdown by small interfering RNA (siRNA) in vitro cultured steroidogenic cells showed that BMAL1 was associated with gonadal steroidogenesis and expression of related genes. Importantly, BMAL1 also participates in pathogenesis of human reproductive diseases. In this review, we elaborate on the impaired reproduction of BMAL1-KO mice including the reproductive organs, reproductive endocrine hormones, and reproductive processes, highlighting the vital role of BMAL1 in fertility and reproductive endocrinology.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ayuan Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Jinhui Li, ; Dezhi Mu,
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Jinhui Li, ; Dezhi Mu,
| |
Collapse
|
145
|
Jin XH, Li Y, Li D. Intrauterine interventions for women with two or more implantation failures: A systematic review and network meta-analysis. Front Endocrinol (Lausanne) 2022; 13:959121. [PMID: 36105395 PMCID: PMC9464901 DOI: 10.3389/fendo.2022.959121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To compare the effectiveness of different intrauterine interventions for women with two or more unexplained implantation failures. DESIGN A systematic review and network meta-analysis of randomized controlled trials (RCTs). PATIENTS Women with two or more implantation failures undergoing fresh or frozen embryo transfer (ET). INTERVENTIONS An electronic search of the following databases: Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), and Embase. MAIN OUTCOME MEASURES Clinical pregnancy, live birth/ongoing pregnancy, and miscarriage. RESULTS We included 21 RCTs(3079 women) in the network meta-analysis. The network meta-analysis showed that compared with control treatment, platelet-rich plasma(PRP), peripheral blood mononuclear cells (PBMC), granulocyte colony-stimulating factor(G-CSF), human chorionic gonadotropin(HCG), and endometrial scratch(ES) significantly increased clinical pregnancy(OR 3.78, 95% CI 2.72 to 5.25; 2.79, 95% CI 1.75 to 4.45; 1.93, 95% CI 1.37 to 2.72; 1.80, 95% CI 1.18 to 2.72; 1.75, 95% CI 1.29 to 2.36, respectively). PRP ranked the highest in improving clinical pregnancy, followed by PBMC, G-CSF, HCG, and ES. Compared with control treatment, PRP, PBMC, and ES significantly increased live birth/ongoing pregnancy (OR 5.96, 95% CI 3.38 to 10.52; OR 2.55, 95% CI 1.27 to 5.11; OR 1.70, 95% CI 1.07 to 2.69, respectively). PRP ranked the highest in improving live birth/ongoing pregnancy, followed by PBMC, and ES. CONCLUSIONS PRP is the most effective intrauterine intervention in improving pregnancy outcome in women with two or more implantation failures.
Collapse
Affiliation(s)
- Xin Hang Jin
- Department of Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xin Hang Jin,
| | - Yang Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Ultrasound, Hangzhou Red Cross Hospital, Hangzhou, China
| |
Collapse
|
146
|
He Q, Zhou Y, Zhou W, Mao C, Kang Q, Pan Y, Wang N, Zhong Y, Pan Z. Nomogram incorporating ultrasonic markers of endometrial receptivity to determine the embryo-endometrial synchrony after in vitro fertilization. Front Endocrinol (Lausanne) 2022; 13:973306. [PMID: 36589827 PMCID: PMC9800505 DOI: 10.3389/fendo.2022.973306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A successful pregnancy using in vitro fertilization and embryo transfer (IVF-ET) requires a receptive endometrium, good-quality embryos, and a synchronized embryo-endometrial dialogue. Although embryo quality and endometrial receptivity (ER) have been fully assessed to exclude substandard conditions, the probability of successful ET is relatively low. Currently, embryo-endometrial synchrony is considered to be a possible explanation, because delayed, advanced, or narrowed window of implantation (WOI) may lead to ET failure. OBJECTIVE This study aims to establish a nomogram incorporating a series of ultrasonic ER markers on the day before implantation to assess the embryo-endometrial synchrony, which may contribute to the improvement of clinical pregnancy outcomes. METHODS Totally 583 women with 1135 complete IVF cycles were retrospectively analyzed. Among them, 357 women with 698 cycles and 226 women with 437 cycles were assigned to the training and validation cohorts, respectively. Ultrasonic ER markers obtained on the day before implantation were collected for analyses. In the training cohort, the screened correlates of clinical pregnancy failure were utilized to develop a nomogram for determining whether an infertile woman is suitable for the ET next day. This model was validated both in the training and validation cohorts. RESULTS Spiral artery (SA) resistance index (RI), vascularisation index (VI), and flow index (FI) were independently associated with the ET failure (all P < 0.05). They were served as the components of the developed nomogram to visualize the likelihood of implantation failure in IVF-ET. This model was validated to present good discrimination and calibration, and obtained clinical net benefits both in the training and validation cohorts. CONCLUSION We developed a nomogram that included SA-RI, VI, and FI on the day before implantation. It may assist physicians to identify patients with displaced WOI, thus avoiding meaningless ET prior to implantation.
Collapse
Affiliation(s)
- Qi He
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zhou
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Ying Zhou, ; Zhansheng Pan,
| | - Weiqin Zhou
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Kang
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanping Pan
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Wang
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanyu Zhong
- Reproductive Medicine Centre, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhansheng Pan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Ying Zhou, ; Zhansheng Pan,
| |
Collapse
|
147
|
Suzuki D, Okura K, Nagakura S, Ogawa H. CDX2 downregulation in mouse mural trophectoderm during peri-implantation is heteronomous, dependent on the YAP-TEAD pathway and controlled by estrogen-induced factors. Reprod Med Biol 2022; 21:e12446. [PMID: 35386376 PMCID: PMC8967280 DOI: 10.1002/rmb2.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the transition of CDX2 expression patterns in mouse trophectoderm (TE) and its regulatory mechanisms during implantation. Methods Mouse E3.5-4.5 blastocysts were used to immunostain CDX2, YAP, TEAD4, and ESRRB. Endogenous estrogen signaling was perturbed by administrating estrogen receptor antagonist ICI 182,780 or ovariectomy followed by administration of progesterone and β-estradiol to elucidate the relationship between the transition of CDX2 expression patterns and ovarian estrogen-dependent change in the uterine environment. Results CDX2 expression was gradually downregulated in the mural TE from E4.0 in vivo, whereas CDX2 downregulation was not observed in blastocysts cultured in KSOM. Fetal bovine serum (FBS) supplementation in KSOM induced CDX2 downregulation independently of blastocyst attachment to dishes. CDX2 downregulation in the mural TE was repressed by administration of ICI 182,780 or by ovariectomy, and administration of β-estradiol into ovariectomized mice retriggered CDX2 downregulation. Furthermore, Cdx2 expression in the mural TE might be controlled by the YAP-TEAD pathway. Conclusions CDX2 downregulation was induced heteronomously in the mural TE from E4.0 by uterus-derived factors, the secretion of which was stimulated by ovarian estrogen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of BioscienceTokyo University of AgricultureTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Keitaro Okura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Seina Nagakura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Hidehiko Ogawa
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| |
Collapse
|
148
|
Fraser R, Zenclussen AC. Killer Timing: The Temporal Uterine Natural Killer Cell Differentiation Pathway and Implications for Female Reproductive Health. Front Endocrinol (Lausanne) 2022; 13:904744. [PMID: 35832424 PMCID: PMC9271944 DOI: 10.3389/fendo.2022.904744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the predominant maternal uterine immune cell component, and they densely populate uterine mucosa to promote key changes in the post-ovulatory endometrium and in early pregnancy. It is broadly accepted that (a) immature, inactive endometrial NK (eNK) cells in the pre-ovulatory endometrium become activated and transition into decidual NK (dNK) cells in the secretory stage, peri-implantation endometrium, and continue to mature into early pregnancy; and (b) that secretory-stage and early pregnancy dNK cells promote uterine vascular growth and mediate trophoblast invasion, but do not exert their killing function. However, this may be an overly simplistic view. Evidence of specific dNK functional killer roles, as well as opposing effects of dNK cells on the uterine vasculature before and after conception, indicates the presence of a transitory secretory-stage dNK cell (s-dNK) phenotype with a unique angiodevelopmental profile during the peri-implantation period, that is that is functionally distinct from the angiomodulatory dNK cells that promote vessel destabilisation and vascular cell apoptosis to facilitate uterine vascular changes in early pregnancy. It is possible that abnormal activation and differentiation into the proposed transitory s-dNK phenotype may have implications in uterine pathologies ranging from infertility to cancer, as well as downstream effects on dNK cell differentiation in early pregnancy. Further, dysregulated transition into the angiomodulatory dNK phenotype in early pregnancy will likely have potential repercussions for adverse pregnancy outcomes, since impaired dNK function is associated with several obstetric complications. A comprehensive understanding of the uterine NK cell temporal differentiation pathway may therefore have important translational potential due to likely NK phenotypic functional implications in a range of reproductive, obstetric, and gynaecological pathologies.
Collapse
Affiliation(s)
- Rupsha Fraser
- Centre for Reproductive Health, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rupsha Fraser,
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| |
Collapse
|
149
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
150
|
Muter J, Kong CS, Brosens JJ. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:804921. [PMID: 36303960 PMCID: PMC9580781 DOI: 10.3389/frph.2021.804921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- *Correspondence: Joanne Muter
| | - Chow-Seng Kong
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|