101
|
Tanabe K, Haag D, Wernig M. Direct somatic lineage conversion. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140368. [PMID: 26416679 DOI: 10.1098/rstb.2014.0368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced.
Collapse
Affiliation(s)
- Koji Tanabe
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
102
|
Haedicke IE, Li T, Zhu YLK, Martinez F, Hamilton AM, Murrell DH, Nofiele JT, Cheng HLM, Scholl TJ, Foster PJ, Zhang XA. An enzyme-activatable and cell-permeable Mn III-porphyrin as a highly efficient T1 MRI contrast agent for cell labeling. Chem Sci 2016; 7:4308-4317. [PMID: 30155077 PMCID: PMC6013825 DOI: 10.1039/c5sc04252f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 01/03/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a preferred technique for noninvasively monitoring the fate of implanted cells, such as stem cells and immune cells in vivo. Cellular MRI requires contrast agents (CAs) to label the cells of interest. Despite promising progress made in this emerging field, highly sensitive, stable and biocompatible T1 CAs with high cell permeability and specificity remains an unmet challenge. To address this need, a novel MnIII-porphyrin, MnAMP was designed and synthesized based on the modification of MnIIItetra(carboxy-porphyrin) (MnTCP), a small and highly stable non-Gd extracellular CA with good biocompatibility and high T1 relaxivity (r1 = 7.9 mM-1 s-1) at clinical field of 3 Tesla (T). Cell permeability was achieved by masking the polar carboxylates of MnTCP with acetoxymethyl-ester (AM) groups, which are susceptible to hydrolysis by intracellular esterases. The enzymatic cleavage of AM groups led to disaggregation of the hydrophobic MnAMP, releasing activated MnTCP with significant increase in T1 relaxivity. Cell uptake of MnAMP is highly efficient as tested on two non-phagocytic human cell lines with no side effects observed on cell viability. MRI of labeled cells exhibited significant contrast enhancement with a short T1 of 161 ms at 3 T, even though a relatively low concentration of MnAMP and short incubation time was applied for cell labeling. Overall, MnAMP is among the most efficient T1 cell labeling agents developed for cellular MRI.
Collapse
Affiliation(s)
- Inga E Haedicke
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Tan Li
- Department of Biological Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Yong Le K Zhu
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Francisco Martinez
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Amanda M Hamilton
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Donna H Murrell
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Joris T Nofiele
- Physiology & Experimental Medicine , The Research Institute , Hospital for Sick Children , Toronto , Ontario , Canada M5G 1X8
| | - Hai-Ling M Cheng
- Physiology & Experimental Medicine , The Research Institute , Hospital for Sick Children , Toronto , Ontario , Canada M5G 1X8
- Translational Biology & Engineering Program , Ted Rogers Centre for Heart Research , University of Toronto , Toronto , Ontario , Canada M5S 3G9
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering , University of Toronto , Toronto , Ontario , Canada M5S 3G9
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Ontario , Canada M5S 3G9 .
| | - Timothy J Scholl
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Paula J Foster
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Xiao-An Zhang
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
- Department of Biological Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| |
Collapse
|
103
|
Nagaraj S. Resurrection of neurodegenerative diseases via stem cells. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
104
|
Korecka J, Levy S, Isacson O. In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells. Mol Cell Neurosci 2016; 73:3-12. [DOI: 10.1016/j.mcn.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
|
105
|
Schirinzi T, Madeo G, Martella G, Maltese M, Picconi B, Calabresi P, Pisani A. Early synaptic dysfunction in Parkinson's disease: Insights from animal models. Mov Disord 2016; 31:802-13. [PMID: 27193205 DOI: 10.1002/mds.26620] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023] Open
Abstract
The appearance of motor manifestations in Parkinson's disease (PD) is invariably linked to degeneration of nigral dopaminergic neurons of the substantia nigra pars compacta. Traditional views on PD neuropathology have been grounded in the assumption that the prime event of neurodegeneration involves neuronal cell bodies with the accumulation of metabolic products. However, this view has recently been challenged by both clinical and experimental evidence. Neuropathological studies in human brain samples and both in vivo and in vitro models support the hypothesis that nigrostriatal synapses may indeed be affected at the earliest stages of the neurodegenerative process. The mechanisms leading to either structural or functional synaptic dysfunction are starting to be elucidated and include dysregulation of axonal transport, impairment of the exocytosis and endocytosis machinery, altered intracellular trafficking, and loss of corticostriatal synaptic plasticity. The aim of this review is to try to integrate different lines of evidence from both pathogenic and genetic animal models that, to different extents, suggest that early synaptic impairment may represent the key event in PD pathogenesis. Understanding the molecular and cellular events underlying such synaptopathy is a fundamental step toward developing specific biomarkers of early dopaminergic dysfunction and, more importantly, designing novel therapies targeting the synaptic apparatus of selective, vulnerable synapses. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Graziella Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marta Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS, Rome, Italy.,Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
106
|
Heiss WD. Hybrid PET/MR Imaging in Neurology: Present Applications and Prospects for the Future. J Nucl Med 2016; 57:993-5. [PMID: 27056615 DOI: 10.2967/jnumed.116.175208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
|
107
|
Yang H, Qiu Y, Zeng X, Ding Y, Zeng J, Lu K, Li D. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells. Exp Ther Med 2016; 11:2321-2328. [PMID: 27313670 DOI: 10.3892/etm.2016.3204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/29/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×108 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.
Collapse
Affiliation(s)
- Hua Yang
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Ying Qiu
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Xianghui Zeng
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Yan Ding
- Life Science Research Institute, Taihe Hospital, Shiyan, Hubei 442000, P.R. China
| | - Jianye Zeng
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Dongsheng Li
- Life Science Research Institute, Taihe Hospital, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
108
|
Papapetrou EP, Schambach A. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy. Mol Ther 2016; 24:678-84. [PMID: 26867951 DOI: 10.1038/mt.2016.38] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
109
|
Merging DBS with viral vector or stem cell implantation: "hybrid" stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15051. [PMID: 26817024 PMCID: PMC4714520 DOI: 10.1038/mtm.2015.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder that is currently managed using a broad array of symptom-based strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain stimulation (DBS), a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization—such as interventional MRI-guided stereotaxy—the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only contribute to our understanding of PD pathology but could introduce a new era of disease modification.
Collapse
|
110
|
Abstract
Regenerative medicine with stem cells holds great hope for the treatment of degenerative disease. The medical potential of embryonic stem cells remains relatively untapped at this point, and significant scientific hurdles remain to be overcome before these cells might be considered safe and effective for uses in patients. Meanwhile, adult stem cells have begun to show significant capabilities of their own in repair of damaged tissues, in both animal models and early patient trials.
Collapse
|
111
|
Dono R. Glypican 4 down-regulation in pluripotent stem cells as a potential strategy to improve differentiation and to impair tumorigenicity of cell transplants. Neural Regen Res 2015; 10:1576-7. [PMID: 26692846 PMCID: PMC4660742 DOI: 10.4103/1673-5374.165274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rosanna Dono
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, 13009 Marseille, France
| |
Collapse
|
112
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
113
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
114
|
Maya-Espinosa G, Collazo-Navarrete O, Millán-Aldaco D, Palomero-Rivero M, Guerrero-Flores G, Drucker-Colín R, Covarrubias L, Guerra-Crespo M. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain. Stem Cells 2015; 33:491-502. [PMID: 25267362 DOI: 10.1002/stem.1856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023]
Abstract
A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies.
Collapse
|
115
|
Zheng B, Vazin T, Goodwill PW, Conway A, Verma A, Ulku Saritas E, Schaffer D, Conolly SM. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 2015; 5:14055. [PMID: 26358296 PMCID: PMC4566119 DOI: 10.1038/srep14055] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023] Open
Abstract
We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Tandis Vazin
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Patrick W. Goodwill
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Magnetic Insight, Inc., Newark, CA 94560, USA
| | - Anthony Conway
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Aradhana Verma
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Emine Ulku Saritas
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David Schaffer
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Steven M. Conolly
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
116
|
Isolation and culture of human oligodendrocyte precursor cells from neurospheres. Brain Res Bull 2015; 118:17-24. [DOI: 10.1016/j.brainresbull.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
|
117
|
Cell therapy for Parkinson's disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts. Brain Res 2015; 1638:15-29. [PMID: 26239914 DOI: 10.1016/j.brainres.2015.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
|
118
|
Cerri S, Greco R, Levandis G, Ghezzi C, Mangione AS, Fuzzati-Armentero MT, Bonizzi A, Avanzini MA, Maccario R, Blandini F. Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson's Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Transl Med 2015. [PMID: 26198165 DOI: 10.5966/sctm.2015-0023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for Parkinson's disease (PD) and systemic administration of these cells has been tested in preclinical and clinical studies. However, no information on survival and actual capacity of MSCs to reach the brain has been provided. In this study, we evaluated homing of intraarterially infused rat MSCs (rMSCs) in the brain of rats bearing a 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal tract, to establish whether the toxin-induced damage is sufficient to grant MSC passage across the blood-brain barrier (BBB) or if a transient BBB disruption is necessary. The rMSC distribution in peripheral organs and the effects of cell infusion on neurodegenerative process and motor deficits were also investigated. rMSCs were infused 14 days after 6-OHDA injection. A hyperosmolar solution of mannitol was used to transiently permeabilize the BBB. Behavioral impairment was assessed by adjusting step test and response to apomorphine. Animals were sacrificed 7 and 28 days after cell infusion. Our work shows that appreciable delivery of rMSCs to the brain of 6-OHDA-lesioned animals can be obtained only after mannitol pretreatment. A notable percentage of infused cells accumulated in peripheral organs. Infusion of rMSCs did not modify the progression of 6-OHDA-induced damage or the motor impairment at the stepping test, but induced progressive normalization of the pathological response (contralateral turning) to apomorphine administration. These findings suggest that many aspects should be further investigated before considering any translation of MSC systemic administration into the clinical setting for PD treatment. SIGNIFICANCE This study demonstrates that mesenchymal stem cells infused through the carotid artery do not efficiently cross the blood-brain barrier in rats with a Parkinson's disease-like degeneration of nigrostriatal neurons, unless a permeabilizing agent (e.g., mannitol) is used. The infusion did not reduce the neuronal damage and associated motor impairment, but abolished the motor abnormalities these animals typically show when challenged with a dopaminergic agonist. Therefore, although arterially infused mesenchymal stem cells did not show neurorestorative effects in this study's Parkinson's disease model, they appeared to normalize the pathological responsiveness of striatal neurons to dopaminergic stimulation. This capability should be further explored in future studies.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rosaria Greco
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonina Stefania Mangione
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arianna Bonizzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rita Maccario
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
119
|
Parsa H, Shamsasenjan K, Movassaghpour A, Akbarzadeh P, Amoghli Tabrizi B, Dehdilani N, Lotfinegad P, Soleimanloo F. Effect of Superparamagnetic Iron Oxide Nanoparticles-Labeling on Mouse Embryonic Stem Cells. CELL JOURNAL 2015. [PMID: 26199901 PMCID: PMC4503836 DOI: 10.22074/cellj.2016.3719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label mammalian cells and to monitor their fate in vivo using magnetic resonance imaging (MRI). However, the effectiveness of phenotype of labeled cells by SPIONs is still a matter of question. The aim of this study was to investigate the efficiency and biological effects of labeled mouse embryonic stem cells (mESCs) using ferumoxide- protamine sulfate complex. MATERIALS AND METHODS In an experimental study, undifferentiated mESCs, C571 line, a generous gift of Stem Cell Technology Company, were cultured on gelatin-coated flasks. The proliferation and viability of SPION-labeled cells were compared with control. ESCs and embryoid bodies (EBs) derived from differentiated hematopoietic stem cells (HSCs) were analyzed for stage-specific cell surface markers using fluorescence-activated cell sorting (FACS). RESULTS Our observations showed that SPIONs have no effect on the self-renewal ability of mESCs. Reverse microscopic observations and prussian blue staining revealed 100% of cells were labeled with iron particles. SPION-labeled mESCs did not significantly alter cell viability and proliferation activity. Furthermore, labeling did not alter expression of representative surface phenotypic markers such as stage-specific embryonic antigen 1 (SSEA1) and cluster of differentiation 117 (CD117) on undifferentiated ESC and CD34, CD38 on HSCs, as measured by flowcytometry. CONCLUSION According to the results of the present study, SPIONs-labeling method as MRI agents in mESCs has no negative effects on growth, morphology, viability, proliferation and differentiation that can be monitored in vivo, noninvasively. Noninvasive cell tracking methods are considered as new perspectives in cell therapy for clinical use and as an easy method for evaluating the placement of stem cells after transplantation.
Collapse
Affiliation(s)
- Hamed Parsa
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Amoghli Tabrizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Dehdilani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfinegad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farzaneh Soleimanloo
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
120
|
Riecke J, Johns KM, Cai C, Vahidy FS, Parsha K, Furr-Stimming E, Schiess M, Savitz SI. A Meta-Analysis of Mesenchymal Stem Cells in Animal Models of Parkinson's Disease. Stem Cells Dev 2015; 24:2082-90. [PMID: 26134374 DOI: 10.1089/scd.2015.0127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple studies have been performed to evaluate the effects of mesenchymal stem cells (MSCs) in animal models of Parkinson's disease (PD). We performed a meta-analysis to estimate the treatment effect of unmodified MSCs on behavioral outcomes in preclinical studies of PD. We performed a systematic literature search to identify studies that used behavioral testing to evaluate the treatment effect of unmodified MSCs in PD models. Meta-analysis was used to determine pooled effect size for rotational behavior and limb function, and meta-regression was performed to explore sources of heterogeneity. Twenty-five studies, including three delivery routes, a wide range of doses, and multiple PD models, were examined. Significant improvement was seen in the pooled standardized mean difference (SMD) for both rotational behavior [SMD: 1.24, 95% confidence interval (95% CI): 0.84, 1.64] and limb function (SMD: 0.84, 95% CI: 0.01, 1.66). Using meta-regression, intravenous administration and higher dose had a larger effect on limb function. Treatment with MSCs improves behavioral outcomes in PD models. Our analyses suggest that MSCs could be considered for early-stage clinical trials in the treatment of PD.
Collapse
Affiliation(s)
- Jenny Riecke
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Katherine M Johns
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Chunyan Cai
- 2 Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas-Houston Medical School , Houston, Texas
| | | | - Kaushik Parsha
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Erin Furr-Stimming
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Mya Schiess
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| | - Sean I Savitz
- 1 Department of Neurology, University of Texas-Houston Medical School , Houston, Texas
| |
Collapse
|
121
|
Bagga V, Dunnett S, Fricker R. The 6-OHDA mouse model of Parkinson's disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res 2015; 288:107-17. [DOI: 10.1016/j.bbr.2015.03.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022]
|
122
|
Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging 2015; 36:2885-92. [PMID: 26242706 DOI: 10.1016/j.neurobiolaging.2015.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Abstract
The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.
Collapse
|
123
|
Daviaud N, Garbayo E, Sindji L, Martínez-Serrano A, Schiller PC, Montero-Menei CN. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease. Stem Cells Transl Med 2015; 4:670-84. [PMID: 25925835 DOI: 10.5966/sctm.2014-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. SIGNIFICANCE Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices.
Collapse
Affiliation(s)
- Nicolas Daviaud
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elisa Garbayo
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laurence Sindji
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alberto Martínez-Serrano
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paul C Schiller
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Claudia N Montero-Menei
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
124
|
Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 2015; 6:259-76. [PMID: 25918990 PMCID: PMC4493511 DOI: 10.3390/jfb6020259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated in laboratories as either 3-D suspension “neurospheres” or 2-D adherent “monolayers”. MNPs deployed with oscillating magnetic fields (“magnetofection technology”) mediate effective gene transfer to neurospheres but the efficacy of this approach for monolayers is unknown. It is important to address this issue as oscillating magnetic fields dramatically enhance MNP-based transfection in transplant cells (e.g., astrocytes and oligodendrocyte precursors) propagated as monolayers. We report for the first time that oscillating magnetic fields enhanced MNP-based transfection with reporter and functional (basic fibroblast growth factor; FGF2) genes in monolayer cultures yielding high transfection versus neurospheres. Transfected NSCs showed high viability and could re-form neurospheres, which is important as neurospheres yield higher post-transplantation viability versus monolayer cells. Our results demonstrate that the combination of oscillating magnetic fields and a monolayer format yields the highest efficacy for MNP-mediated gene transfer to NSCs, offering a viable non-viral alternative for genetic modification of this important neural cell transplant population.
Collapse
|
125
|
Acquarone M, de Melo TM, Meireles F, Brito-Moreira J, Oliveira G, Ferreira ST, Castro NG, Tovar-Moll F, Houzel JC, Rehen SK. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson's disease. Front Cell Neurosci 2015; 9:97. [PMID: 25904842 PMCID: PMC4389407 DOI: 10.3389/fncel.2015.00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is an incurable progressive neurodegenerative disorder. Clinical presentation of PD stems largely from the loss of dopaminergic neurons in the nigrostriatal dopaminergic pathway, motivating experimental strategies of replacement based on cell therapy. Transplantation of dopaminergic neurons derived from embryonic stem cells significantly improves motor functions in rodent and non-human primate models of PD. However, protocols to generate dopaminergic neurons from embryonic stem cells generally meet with low efficacy and high risk of teratoma formation upon transplantation. To address these issues, we have pre-treated undifferentiated mouse embryonic stem cells (mESCs) with the DNA alkylating agent mitomycin C (MMC) before transplantation. MMC treatment of cultures prevented tumorigenesis in a 12 week follow-up after mESCs were injected in nude mice. In 6-OH-dopamine-lesioned mice, intrastriatal injection of MMC-treated mESCs markedly improved motor function without tumor formation for as long as 15 months. Furthermore, we show that halting mitotic activity of undifferentiated mESCs induces a four-fold increase in dopamine release following in vitro differentiation. Our findings indicate that treating mESCs with MMC prior to intrastriatal transplant is an effective to strategy that could be further investigated as a novel alternative for treatment of PD.
Collapse
Affiliation(s)
- Mariana Acquarone
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Thiago M de Melo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda Meireles
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| | - Jordano Brito-Moreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Gabriel Oliveira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Newton G Castro
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil ; D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| | - Jean-Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Stevens K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil ; D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| |
Collapse
|
126
|
Sorting the wheat from the chaff in dopamine neuron-based cell therapies. Proc Natl Acad Sci U S A 2015; 112:4512-3. [PMID: 25848026 DOI: 10.1073/pnas.1503859112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
127
|
Zhang Z, Li F, Sun T. Does repair of spinal cord injury follow the evolutionary theory? Neural Regen Res 2015; 7:849-52. [PMID: 25737713 PMCID: PMC4342713 DOI: 10.3969/j.issn.1673-5374.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/11/2012] [Indexed: 01/13/2023] Open
Abstract
Lower vertebrates, such as fish and amphibians, and higher vertebrates in embryonic development can acquire complete regeneration of complex body structures, including the spinal cord, an important part of the central nervous system. However, with species evolution and development, this regenerative capacity gradually weakens and even disappears, but the cellular and molecular mechanisms remain poorly understood. We explored the differences in mechanisms of spinal cord regeneration capability between lower and higher vertebrates, investigated differences in their cellular and molecular mechanisms and between the spinal cord structures of lower vertebrates and mammals, such as rat and monkey, to search for theoretical evidence and therapeutic targets for nerve regeneration in human spinal cord.
Collapse
Affiliation(s)
- Zhicheng Zhang
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Fang Li
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| | - Tiansheng Sun
- PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing 100700, China
| |
Collapse
|
128
|
Li R. Stem cell transplantation for treating Parkinson's disease: Literature analysis based on the Web of Science. Neural Regen Res 2015; 7:1272-9. [PMID: 25709626 PMCID: PMC4336963 DOI: 10.3969/j.issn.1673-5374.2012.16.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE: To identify global research trends of stem cell transplantation for treating Parkinson's disease using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating Parkinson's disease from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating Parkinson's disease which were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items; (c) year of publication: 2002–2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) we excluded documents that were not published in the public domain; (c) we excluded a number of corrected papers from the total number of articles. MAIN OUTCOME MEASURES: (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to subject areas; (5) distribution according to country; (6) distribution according to institution; (7) comparison of countries that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease; (8) comparison of institutions that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease in the Web of Science from 2002 to 2011; (9) comparison of studies on stem cell transplantation from different cell sources for treating Parkinson's disease RESULTS: In total, 1 062 studies on stem cell transplantation for treating Parkinson's disease appeared in the Web of Science from 2002 to 2011, almost one third of which were from American authors and institutes. The number of studies on stem cell transplantation for treating Parkinson's disease had gradually increased over the past 10 years. Papers on stem cell transplantation for treating Parkinson's disease appeared in journals such as Stem Cells and Experimental Neurology. Although the United States published more articles addressing neural stem cell and embryonic stem cell transplantation for treating Parkinson's disease, China ranked first for articles published on bone marrow mesenchymal stem cell transplantation for treating Parkinson's disease. CONCLUSION: From our analysis of the literature and research trends, we found that stem cell transplantation for treating Parkinson's disease may offer further benefits in regenerative medicine.
Collapse
Affiliation(s)
- Runhui Li
- Department of Neurology, Fengtian Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| |
Collapse
|
129
|
Zhang X, Wang G, Dong F, Wang Z. Application of magnetic resonance imaging for monitoring stem cell transplantation for the treatment of cerebral ischemia. Neural Regen Res 2015; 7:1264-71. [PMID: 25709625 PMCID: PMC4336962 DOI: 10.3969/j.issn.1673-5374.2012.16.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/23/2012] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE: To identify global research trends in the application of MRI for monitoring stem cell transplantation using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies relating to the application of MRI for detecting stem cell transplantation for the treatment of cerebral ischemia using papers in Web of Science published from 2002 to 2011. SELECTION CRITERIA: The inclusion criteria were: (a) peer-reviewed articles on the application of MRI for detecting transplanted stem cells published and indexed in Web of Science; (b) year of publication between 2002 and 2011. Exclusion criteria were: (a) articles that required manual searching or telephone access; (b) some corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to journals; (3) distribution according to institution; (4) distribution according to country; (5) top cited authors over the last 10 years. RESULTS: A total of 1 498 studies related to the application of MRI for monitoring stem cell transplantation appeared in Web of Science from 2002 to 2011, almost half of which were derived from American authors and institutes. The number of studies on the application of MRI for detecting stem cell transplantation has gradually increased over the past 10 years. Most papers on this topic appeared in Magnetic Resonance in Medicine. CONCLUSION: This analysis suggests that few experimental studies have been investigated the use of MRI for tracking SPIO-labeled human umbilical cord blood-derived mesenchymal stem cells during the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Xianglin Zhang
- Department of Radiology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Gang Wang
- Department of Radiology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Furen Dong
- Department of Radiology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zhiming Wang
- Department of Radiology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
130
|
Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, Berg J, Kurtz A, Steiner B. Human adipose-derived mesenchymal stromal cells increase endogenous neurogenesis in the rat subventricular zone acutely after 6-hydroxydopamine lesioning. Cytotherapy 2015; 17:199-214. [DOI: 10.1016/j.jcyt.2014.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/05/2014] [Accepted: 09/20/2014] [Indexed: 01/07/2023]
|
131
|
Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour AR, Sahebjam M, Ghaderi F, Arjmand B. Stem cell-based approach for the treatment of Parkinson's disease. Med J Islam Repub Iran 2015; 29:168. [PMID: 26000262 PMCID: PMC4431356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 04/21/2014] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative brain disorder which is around 1.5 times more common in men than in women. Currently, drug medications, surgery, and lifestyle changes are common approaches to PD, while all of them focused on reducing the symptoms. Therefore, regenerative medicine based on stem cell (SC) therapies has raised a promising hope. Various types of SCs have been used in basic and experimental studies relevant to PD, including embryonic pluripotential stem cells, mesenchymal (MSCs) and induced pluripotent SCs (iPSCs). MSCs have several advantages over other counterparts. They are easily accessible which can be obtained from various tissues such as bone marrow, adipose tissue, peripheral blood, etc. with avoiding ethical problems. Therefore, MSCs is attractive clinically because there are no related ethical and immunological concerns . Further studies are needed to answer some crucial questions about the different issues in SC therapy. Accordingly, SC-based therapy for PD also needed more complementary evaluation in both basic and clinical study areas.
Collapse
Affiliation(s)
- Parisa Goodarzi
- MSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Aghayan
- MD, PhD, Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute & Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- MD, Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Research Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Masoud Soleimani
- PhD, Hematology Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad-Reza Dehpour
- PhD, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnaz Sahebjam
- BSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Firoozeh Ghaderi
- BSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Babak Arjmand
- MD, PhD, GMP-Compliant Stem Cell Facility, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute & Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Shariati Hospital, North Kargar, Tehran, Iran.
| |
Collapse
|
132
|
Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 2015; 7:126-136. [PMID: 25621112 PMCID: PMC4300923 DOI: 10.4252/wjsc.v7.i1.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.
Collapse
|
133
|
Mangani C, Lilienkampf A, Roy M, de Sousa PA, Bradley M. Thermoresponsive hydrogel maintains the mouse embryonic stem cell “naïve” pluripotency phenotype. Biomater Sci 2015; 3:1371-5. [DOI: 10.1039/c5bm00121h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemically defined hydrogel HG21, which allows enzyme-free passaging, is a substitute for gelatin allowing standardised and inexpensive mESC culture.
Collapse
Affiliation(s)
| | | | - Marcia Roy
- Centre for Neuroregeneration
- University of Edinburgh
- Edinburgh
- UK
| | - Paul A. de Sousa
- Scottish Centre for Regenerative Medicine
- University of Edinburgh
- Edinburgh
- UK
| | - Mark Bradley
- School of Chemistry
- EaStCHEM
- University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
134
|
Jgamadze D, Liu L, Vogler S, Chu LY, Pautot S. Thermoswitching Microgel Carriers Improve Neuronal Cell Growth and Cell Release for Cell Transplantation. Tissue Eng Part C Methods 2015; 21:65-76. [DOI: 10.1089/ten.tec.2013.0752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dennis Jgamadze
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Li Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Steffen Vogler
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Sophie Pautot
- TUD- DFG-Research Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
135
|
|
136
|
Park BN, Kim JH, Lee K, Park SH, An YS. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson's disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol 2014; 25:1487-96. [PMID: 25504429 DOI: 10.1007/s00330-014-3549-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/09/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) in a model of Parkinson's disease (PD) using serial F-18 fluoropropylcarbomethoxyiodophenylnortropane (FP-CIT) PET. METHODS Hemiparkinsonian rats were treated with intravenously injected BMSCs, and animals without stem cell therapy were used as the controls. Serial FP-CIT PET was performed after therapy. The ratio of FP-CIT uptake in the lesion side to uptake in the normal side was measured. The changes in FP-CIT uptake were also analyzed using SPM. Behavioural and histological changes were observed using the rotational test and tyrosine hydroxylase (TH)-reactive cells. RESULTS FP-CIT uptake ratio was significantly different in the BMSCs treated group (n = 28) at each time point. In contrast, there was no difference in the ratio in control rats (n = 25) at any time point. SPM analysis also revealed that dopamine transporter binding activity was enhanced in the right basal ganglia area in only the BMSC therapy group. In addition, rats that received BMSC therapy also exhibited significantly improved rotational behaviour and preservation of TH-positive neurons compared to controls. CONCLUSIONS The therapeutic effect of intravenously injected BMSCs in a rat model of PD was confirmed by dopamine transporter PET imaging, rotational functional studies, and histopathological evaluation. KEY POINTS • Mesenchymal stem cells were intravenously injected to treat the PD rats • Dopamine transporter binding activity was improved after stem cell therapy • Stem cell therapy induced functional recovery and preservation of dopaminergic neurons • The effect of stem cells was confirmed by FP-CIT PET.
Collapse
Affiliation(s)
- Bok-Nam Park
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Ajou University, Woncheon-dong, Yeongtong-gu, Gyeonggi-do, Suwon, Korea, 443-749
| | | | | | | | | |
Collapse
|
137
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
138
|
Effenberg A, Stanslowsky N, Klein A, Wesemann M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplant 2014; 24:2099-112. [PMID: 25420114 DOI: 10.3727/096368914x685591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-β) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-β inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.
Collapse
Affiliation(s)
- Anna Effenberg
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Duffy BA, Weitz AJ, Lee JH. In vivo imaging of transplanted stem cells in the central nervous system. Curr Opin Genet Dev 2014; 28:83-8. [PMID: 25461455 DOI: 10.1016/j.gde.2014.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
Abstract
In vivo imaging is increasingly being utilized in studies investigating stem cell-based treatments for neurological disorders. Direct labeling is used in preclinical and clinical studies to track the fate of transplanted cells. To further determine cell viability, experimental studies are able to take advantage of reporter gene technologies. Structural and functional brain imaging can also be used alongside cell imaging as biomarkers of treatment efficacy. Furthermore, it is possible that new imaging techniques could be used to monitor functional integration of stem cell-derived cells with the host nervous system. In this review, we examine recent developments in these areas and identify promising directions for future research at the interface of stem cell therapies and neuroimaging.
Collapse
Affiliation(s)
- Ben A Duffy
- Department of Neurology & Neurological Sciences, Stanford University, CA 94305, USA
| | - Andrew J Weitz
- Department of Bioengineering, Stanford University, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology & Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
140
|
Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc Natl Acad Sci U S A 2014; 111:15804-9. [PMID: 25331880 DOI: 10.1073/pnas.1408484111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.
Collapse
|
141
|
Wang B, Jedlicka S, Cheng X. Maintenance and neuronal cell differentiation of neural stem cells C17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS One 2014; 9:e109815. [PMID: 25310508 PMCID: PMC4195690 DOI: 10.1371/journal.pone.0109815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play an important role in developing potential cell-based therapeutics for neurodegenerative disease. Microfluidics has proven a powerful tool in mechanistic studies of NSC differentiation. However, NSCs are prone to differentiate when the nutrients are limited, which occurs unfavorable by fast medium consumption in miniaturized culture environment. For mechanistic studies of NSCs in microfluidics, it is vital that neuronal cell differentiation is triggered by controlled factors only. Thus, we studied the correlation between available cell medium and spontaneous neuronal cell differentiation of C17.2 NSCs in standard culture medium, and proposed the necessary microfluidic design criteria to prevent undesirable cell phenotype changes. METHODOLOGY/PRINCIPAL FINDINGS A series of microchannels with specific geometric parameters were designed to provide different amount of medium to the cells over time. A medium factor (MF, defined as the volume of stem cell culture medium divided by total number of cells at seeding and number of hours between medium replacement) successfully correlated the amount of medium available to each cell averaged over time to neuronal cell differentiation. MF smaller than 8.3×10(4) µm3/cell⋅hour produced significant neuronal cell differentiation marked by cell morphological change and significantly more cells with positive β-tubulin-III and MAP2 staining than the control. When MF was equal or greater than 8.3×10(4) µm3/cell⋅hour, minimal spontaneous neuronal cell differentiation happened relative to the control. MF had minimal relation with the average neurite length. SIGNIFICANCE MFs can be controlled easily to maintain the stem cell status of C17.2 NSCs or to induce spontaneous neuronal cell differentiation in standard stem cell culture medium. This finding is useful in designing microfluidic culture platforms for controllable NSC maintenance and differentiation. This study also offers insight about consumption rate of serum molecules involved in maintaining the stemness of NSCs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Sabrina Jedlicka
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
142
|
Cell based therapies in Parkinson's Disease. Ann Neurosci 2014; 18:76-83. [PMID: 25205926 PMCID: PMC4117039 DOI: 10.5214/ans.0972.7531.1118209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/09/2011] [Accepted: 04/30/2011] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is characterized by bradykinesia, hypokinesia/ akinesia, rigidity, tremor, and postural instability, caused by dopaminergic (DA) striatal denervation. The prevalence of PD increases from 50 years of age with steep rise after age 60 years. Current treatment of PD relies heavily on replacing lost dopamine either with its precursor L-dopa or dopamine agonists (ropinirole, pramipexole, bromocriptine, lisuride etc). Other pharmacological measures like catechol-O-methyltrasferase (COMT) inhibitors like entacopone, telcapone and monoamine oxidase B (MAO-B) inhibitors like selegiline and rasagiline are also useful, while L-dopa remains the gold standard in the treatment of PD. Emerging therapies are focusing on cell based therapeutics derived from various sources.
Collapse
|
143
|
Molcanyi M, Mehrjardi NZ, Schäfer U, Haj-Yasein NN, Brockmann M, Penner M, Riess P, Reinshagen C, Rieger B, Hannes T, Hescheler J, Bosche B. Impurity of stem cell graft by murine embryonic fibroblasts - implications for cell-based therapy of the central nervous system. Front Cell Neurosci 2014; 8:257. [PMID: 25249934 PMCID: PMC4155790 DOI: 10.3389/fncel.2014.00257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 11/13/2022] Open
Abstract
Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts - MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed.
Collapse
Affiliation(s)
- Marek Molcanyi
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany ; Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Narges Zare Mehrjardi
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz , Graz , Austria
| | - Nadia Nabil Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Michael Brockmann
- Department of Pathology, Kliniken der Stadt Köln, Cologne-Merheim Hospital, University of Witten/Herdecke , Cologne , Germany
| | - Marina Penner
- Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Peter Riess
- Department of Traumatology and Orthopedics, HELIOS Klinik Bad Berleburg , Bad Berleburg , Germany
| | - Clemens Reinshagen
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA ; Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Bernhard Rieger
- Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Tobias Hannes
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany ; Department of Pediatric Cardiology, Heart Center Cologne, Medical Faculty, University Hospital of Cologne , Cologne , Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany
| | - Bert Bosche
- Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Surgery, University of Toronto , Toronto, ON , Canada ; Department of Neurology, University Hospital of Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
144
|
Romli F, Alitheen NB, Hamid M, Ismail R, Abd Rahman NMAN. Current techniques in reprogramming cell potency. J Cell Biochem 2014; 114:1230-7. [PMID: 23239017 DOI: 10.1002/jcb.24477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
Abstract
The first successful attempt to reprogram somatic cell into embryonic-like stem cell was achieved on 2006. Since then, it had sparked a race against time to bring this wonderful invention from bench to bedside but it is not easily achieved due to severe problems in term of epigenetic and genomic. With each problem arise, new technique and protocol will be constructed to try to overcome it. This review addresses the various techniques made available to create iPSC with problems hogging down the technique.
Collapse
Affiliation(s)
- Firdaus Romli
- Faculty of Biotechnology and Biomolecular Sciences, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
145
|
Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, Terzic A, Nelson TJ. Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev 2014; 23:2274-82. [PMID: 25036735 DOI: 10.1089/scd.2014.0259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The advent of induced pluripotent stem cell (iPSC) technology creates new opportunities for transplant-based therapeutic strategies. The potential for clinical translation is currently hindered by the risk of dysregulated cell growth. Pluripotent stem cells reprogrammed by three-factor (Sox2, Klf, and Oct4) and four-factor (Sox2, Klf, Oct4, and c-Myc) strategies result in the capacity for teratogenic growth from residual pluripotent progeny upon in vivo transplantation. However, these pluripotent stem cells also have a stage-specific hypersensitivity to DNA-damaging agents that may allow separation of lineage-specific therapeutic subpopulation of cells. We aimed to demonstrate the selective effect of DNA topoisomerase II inhibitor, etoposide, in eliminating pluripotent cells in the early cardiac progenitor population thus decreasing the effect of teratoma formation. Immunodeficient murine hearts were infarcted and received implantation of a therapeutic dose of cardiac progenitors derived from partially differentiated iPSCs. Etoposide-treated cell implantation reduced mass formation in the intracardiac and extracardiac chest cavity compared with the same dose of iPSC-derived cardiac progenitors in the control untreated group. In vivo bioluminescence imaging confirmed the localization and engraftment of transplanted cells in the myocardium postinjection in both groups. Comparatively, the equivalent cell population without etoposide treatment demonstrated a greater incidence and size of teratoma formation. Hence, pretreatment with genotoxic etoposide significantly lowered the threat of teratogenicity by purging the contaminating pluripotent cells, establishing an adjunctive therapy to further harness the clinical value of iPSC-derived cardiac regeneration.
Collapse
Affiliation(s)
- Saranya P Wyles
- 1 Center for Clinical and Translational Sciences, Mayo Clinic , Rochester, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Alvarim LT, Nucci LP, Mamani JB, Marti LC, Aguiar MF, Silva HR, Silva GS, Nucci-da-Silva MP, DelBel EA, Gamarra LF. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review. Int J Nanomedicine 2014; 9:3749-70. [PMID: 25143726 PMCID: PMC4137998 DOI: 10.2147/ijn.s65616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson’s disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.
Collapse
Affiliation(s)
- Larissa T Alvarim
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | | | | - Marina F Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Helio R Silva
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | | - Elaine A DelBel
- Universidade de São Paulo-Faculdade de Odontologia de Ribeirão Preto, São Paulo, Brazil ; NAPNA-Núcleo de Apoio a Pesquisa em Neurociências Aplicadas, São Paulo, Brazil
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
147
|
Zhou C, Huang Z, Li P, Li W, Liu Y, Li C, Liu Z, Wang X, Wan P, Wang Z. Safety and Efficacy of Embryonic Stem Cell Microenvironment in a Leukemia Mouse Model. Stem Cells Dev 2014; 23:1741-54. [DOI: 10.1089/scd.2013.0585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Chenjing Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Panlong Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengxia Wan
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
148
|
Techanukul T, Lohsiriwat V. Stem cell and tissue engineering in breast reconstruction. Gland Surg 2014; 3:55-61. [PMID: 25083496 DOI: 10.3978/j.issn.2227-684x.2014.02.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/14/2022]
Abstract
Breast cancer worldwide is the most common cancer in women with incidence rate varying from geographic areas. Guidelines for management of breast cancer have been largely established and widely used. Mastectomy is one of the surgical procedures used treating breast cancer. Optionally, after mastectomy, appropriately selected patients could undergo breast reconstruction to create their breast contour. Many techniques have been used for breast reconstructive surgery, mainly implant-based and autologous tissue reconstruction. Even with highly-experienced surgeon and good-quality breast and autologous substitute tissue, still there could be unfilled defect after mastectomy with reconstruction. Stem cell, in particular, adipose-derived stem cell residing within fat tissue, could be used to fill the imperfection providing optimal breast shape and natural feeling of fat tissue. However, whether surgical reconstruction alone or in combination with stem cell and tissue engineering approach be used, the ultimate outcomes are patient safety first and satisfaction second.
Collapse
Affiliation(s)
- Tanasit Techanukul
- 1 Vachira Phuket Hospital, 2 Bangkok Hospital Phuket, Bangkok Hospital Group, Phuket, Thailand ; 3 Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok, Thailand
| | - Visnu Lohsiriwat
- 1 Vachira Phuket Hospital, 2 Bangkok Hospital Phuket, Bangkok Hospital Group, Phuket, Thailand ; 3 Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok, Thailand
| |
Collapse
|
149
|
Wakeman DR, Weiss S, Sladek JR, Elsworth JD, Bauereis B, Leranth C, Hurley PJ, Roth RH, Redmond DE. Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates. Cell Transplant 2014; 23:981-94. [DOI: 10.3727/096368913x664865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A human embryonic stem cell (HESC) line, H1, was studied after differentiation to a dopaminergic phenotype in vitro in order to carry out in vivo studies in Parkinsonian monkeys. To identify morphological characteristics of transplanted donor cells, HESCs were transfected with a GFP lentiviral vector. Gene expression studies were performed at each step of a neural rosette-based dopaminergic differentiation protocol by RT-PCR. In vitro immunofluorescence revealed that >90% of the differentiated cells exhibited a neuronal phenotype by β-III-tubulin immunocytochemistry, with 17% of the cells coexpressing tyrosine hydroxylase prior to implantation. Biochemical analyses demonstrated dopamine release in culture in response to potassium chloride-induced membrane depolarization, suggesting that the cells synthesized and released dopamine. These characterized, HESC-derived neurons were then implanted into the striatum and midbrain of MPTP (1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine)-exposed monkeys that were triple immunosuppressed. Here we demonstrate robust survival of transplanted HESC-derived neurons after 6 weeks, as well as morphological features consistent with polarization, organization, and extension of processes that integrated into the host striatum. Expression of the dopaminergic marker tyrosine hydroxylase was not maintained in HESC-derived neural grafts in either the striatum or substantia nigra, despite a neuronal morphology and expression of β-III-tubulin. These results suggest that dopamine neuronal cells derived from neuroectoderm in vitro will not maintain the correct midbrain phenotype in vivo in nonhuman primates, contrasted with recent studies showing dopamine neuronal survival using an alternative floorplate method.
Collapse
Affiliation(s)
- Dustin R. Wakeman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie Weiss
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John R. Sladek
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO, USA
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO, USA
| | - John D. Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Bauereis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick J. Hurley
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert H. Roth
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - D. Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- St. Kitts Biomedical Research Foundation, St. Kitts-Nevis, West Indies
| |
Collapse
|
150
|
Mochizuki H, Choong CJ, Yasuda T. The promises of stem cells: stem cell therapy for movement disorders. Parkinsonism Relat Disord 2014; 20 Suppl 1:S128-31. [PMID: 24262163 DOI: 10.1016/s1353-8020(13)70031-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying movement disorders including Parkinson's disease, multiple system atrophy and Huntington's disease remain more or less elusive. Treatments to halt these disease progressions are currently unavailable. With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular mechanisms that govern how they develop and work would provide us many fundamental insights into human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source of replacement cells for damaged neurons in movement disorders. While stem cells show potential for regenerative medicine, their use as tools for research and drug testing is thought to have more immediate impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery for these movement disorders. Particular attention should also be given to the involvement of neural stem cells in adult neurogenesis so as to encourage its development as a therapeutic option.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | |
Collapse
|