101
|
Tang D, Miao C, Li Y, Wang H, Liu X, Yu H, Cheng Z. OsRAD51C is essential for double-strand break repair in rice meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:167. [PMID: 24847337 PMCID: PMC4019848 DOI: 10.3389/fpls.2014.00167] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/08/2014] [Indexed: 05/18/2023]
Abstract
RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.
Collapse
Affiliation(s)
- Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chunbo Miao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaofei Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang Distict, Beijing 100101, China e-mail:
| |
Collapse
|
102
|
Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D, Pereira L, Chelysheva L, Kobayashi W, Kurumizaka H, Schlögelhofer P, Grelon M. Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. THE PLANT CELL 2013; 25:4924-40. [PMID: 24363313 PMCID: PMC3903996 DOI: 10.1105/tpc.113.118521] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The homologous-pairing protein2/meiotic nuclear division protein1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases radiation sensitive51 (RAD51) and disrupted meiotic cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair.
Collapse
Affiliation(s)
- Clemens Uanschou
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Arnaud Ronceret
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Mona Von Harder
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Arnaud De Muyt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Daniel Vezon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Lucie Pereira
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Liudmila Chelysheva
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Address correspondence to
| | - Mathilde Grelon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| |
Collapse
|
103
|
Morozumi Y, Ino R, Ikawa S, Mimida N, Shimizu T, Toki S, Ichikawa H, Shibata T, Kurumizaka H. Homologous pairing activities of two rice RAD51 proteins, RAD51A1 and RAD51A2. PLoS One 2013; 8:e75451. [PMID: 24124491 PMCID: PMC3790826 DOI: 10.1371/journal.pone.0075451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/15/2013] [Indexed: 12/24/2022] Open
Abstract
In higher eukaryotes, RAD51 functions as an essential protein in homologous recombination and recombinational repair of DNA double strand breaks. During these processes, RAD51 catalyzes homologous pairing between single-stranded DNA and double-stranded DNA. Japonica cultivars of rice (Oryza sativa) encode two RAD51 proteins, RAD51A1 and RAD51A2, whereas only one RAD51 exists in yeast and mammals. However, the functional differences between RAD51A1 and RAD51A2 have not been elucidated, because their biochemical properties have not been characterized. In the present study, we purified RAD51A1 and RAD51A2, and found that RAD51A2 robustly promotes homologous pairing in vitro. RAD51A1 also possesses homologous-pairing activity, but it is only about 10% of the RAD51A2 activity. Both RAD51A1 and RAD51A2 bind to ssDNA and dsDNA, and their DNA binding strictly requires ATP, which modulates the polymer formation activities of RAD51A1 and RAD51A2. These findings suggest that although both RAD51A1 and RAD51A2 have the potential to catalyze homologous pairing, RAD51A2 may be the major recombinase in rice.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Ryohei Ino
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | | | - Naozumi Mimida
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takeshi Shimizu
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Ichikawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
104
|
Abstract
Arabidopsis is a very powerful tool for understanding meiosis in plants with genetic approaches. We provide here a simple summary of the techniques used to test if a candidate gene has an essential meiotic function. These protocols require no specific prior knowledge and help eliminate easily avoided mistakes in the attribution of a meiotic function to your favorite gene.
Collapse
|
105
|
Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet 2013; 9:e1003787. [PMID: 24086145 PMCID: PMC3784562 DOI: 10.1371/journal.pgen.1003787] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 11/29/2022] Open
Abstract
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis. Recombination ensures coordinated disjunction of pairs of homologous chromosomes and generates genetic exchanges in meiosis and, with some exceptions, involves the co-operation of the RAD51 and DMC1 strand-exchange proteins. We describe here a RAD51-GFP fusion protein that has lost its DNA break repair capacity but retains the ability to assemble at DNA breaks in the plant, Arabidopsis - fully complementing the meiotic chromosomal fragmentation and sterility of rad51 mutants, and this depends upon DMC1. No effect on genetic map distance was observed in complemented rad51 plants even though DMC1 is the only active strand transfer protein. The inactive RAD51 nucleofilaments are thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1 in Arabidopsis. The RAD51-GFP protein confers a dominant-negative inhibition of RAD51-dependent mitotic recombination, while remaining fully fertile - a novel and valuable tool for research in this domain. These phenotypes are equivalent to those of the recently reported yeast rad51-II3A mutant, (Cloud et al. 2012), carrying the implication of their probable generality in other eukaryotes and extending them to a species with a very different relation between numbers of meiotic DNA double-strand breaks and crossing-overs (∼2 DSB/CO in yeast; ∼25–30 DSB/CO in Arabidopsis; ∼15 DSB/CO in mice).
Collapse
|
106
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
107
|
Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One 2013; 8:e72431. [PMID: 23951324 PMCID: PMC3737152 DOI: 10.1371/journal.pone.0072431] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 12/05/2022] Open
Abstract
Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.
Collapse
Affiliation(s)
- Marta Cifuentes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Maud Rivard
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Lucie Pereira
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Raphael Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| |
Collapse
|
108
|
Ji J, Tang D, Wang M, Li Y, Zhang L, Wang K, Li M, Cheng Z. MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma 2013; 122:363-76. [PMID: 23793712 DOI: 10.1007/s00412-013-0421-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/23/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Mre11, a conserved protein found in organisms ranging from yeast to multicellular organisms, is required for normal meiotic recombination. Mre11 interacts with Rad50 and Nbs1/Xrs2 to form a complex (MRN/X) that participates in double-strand break (DSB) ends processing. In this study, we silenced the MRE11 gene in rice and detailed its function using molecular and cytological methods. The OsMRE11-deficient plants exhibited normal vegetative growth but could not set seed. Cytological analysis indicated that in the OsMRE11-deficient plants, homologous pairing was totally inhibited, and the chromosomes were completely entangled as a formation of multivalents at metaphase I, leading to the consequence of serious chromosome fragmentation during anaphase I. Immunofluorescence studies further demonstrated that OsMRE11 is required for homologous synapsis and DSB processing but is dispensable for meiotic DSB formation. We found that OsMRE11 protein was located on meiotic chromosomes from interphase to late pachytene. This protein showed normal localization in zep1, Oscom1 and Osmer3, as well as in OsSPO11-1(RNAi) plants, but not in pair2 and pair3 mutants. Taken together, our results provide evidence that OsMRE11 performs a function essential for maintaining the normal HR process and inhibiting non-homologous recombination during meiosis.
Collapse
Affiliation(s)
- Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Da Ines O, Degroote F, Amiard S, Goubely C, Gallego ME, White CI. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:959-70. [PMID: 23521529 DOI: 10.1111/tpj.12182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 05/12/2023]
Abstract
Homologous recombination is key to the maintenance of genome integrity and the creation of genetic diversity. At the mechanistic level, recombination involves the invasion of a homologous DNA template by broken DNA ends, repair of the break and exchange of genetic information between the two DNA molecules. Invasion of the template in eukaryotic cells is catalysed by the RAD51 and DMC1 recombinases, assisted by a number of accessory proteins, including the RAD51 paralogues. Eukaryotic genomes encode a variable number of RAD51 paralogues, ranging from two in yeast to five in animals and plants. The RAD51 paralogues form at least two distinct protein complexes, believed to play roles in the assembly and stabilization of the RAD51-DNA nucleofilament. Somatic recombination assays and immunocytology confirm that the three 'non-meiotic' paralogues of Arabidopsis, RAD51B, RAD51D and XRCC2, are involved in somatic homologous recombination, and that they are not required for the formation of radioinduced RAD51 foci. Given the presence of all five proteins in meiotic cells, the apparent absence of a meiotic role for RAD51B, RAD51D and XRCC2 is surprising, and perhaps simply the result of a more subtle meiotic phenotype in the mutants. Analysis of meiotic recombination confirms this, showing that the absence of XRCC2, and to a lesser extent RAD51B, but not RAD51D, increases rates of meiotic crossing over. The roles of RAD51B and XRCC2 in recombination are thus not limited to mitotic cells.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171, Aubière, France
| | | | | | | | | | | |
Collapse
|
110
|
Rosa M, Von Harder M, Aiese Cigliano R, Schlögelhofer P, Mittelsten Scheid O. The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis. THE PLANT CELL 2013; 25:1990-2001. [PMID: 23780875 PMCID: PMC3723608 DOI: 10.1105/tpc.112.104067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All processes requiring interaction with DNA are attuned to occur within the context of the complex chromatin structure. As it does for programmed transcription and replication, this also holds true for unscheduled events, such as repair of DNA damage. Lesions such as double-strand breaks occur randomly; their repair requires that enzyme complexes access DNA at potentially any genomic site. This is achieved by chromatin remodeling factors that can locally slide, evict, or change nucleosomes. Here, we show that the Swi2/Snf2-related (SWR1 complex), known to deposit histone H2A.Z, is also important for DNA repair in Arabidopsis thaliana. Mutations in genes for Arabidopsis SWR1 complex subunits photoperiod-independent Early Flowering1, actin-related protein6, and SWR1 complex6 cause hypersensitivity to various DNA damaging agents. Even without additional genotoxic stress, these mutants show symptoms of DNA damage accumulation. The reduced DNA repair capacity is connected with impaired somatic homologous recombination, in contrast with the hyper-recombinogenic phenotype of yeast SWR1 mutants. This suggests functional diversification between lower and higher eukaryotes. Finally, reduced fertility and irregular gametogenesis in the Arabidopsis SWR1 mutants indicate an additional role for the chromatin-remodeling complex during meiosis. These results provide evidence for the importance of Arabidopsis SWR1 in somatic DNA repair and during meiosis.
Collapse
Affiliation(s)
- Marisa Rosa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Mona Von Harder
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Riccardo Aiese Cigliano
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|
111
|
Pathan N, Stronghill P, Hasenkampf C. Transmission electron microscopy and serial reconstructions reveal novel meiotic phenotypes for the ahp2 mutant of Arabidopsis thaliana. Genome 2013; 56:139-45. [PMID: 23659697 DOI: 10.1139/gen-2012-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found novel phenotypes for the previously studied Arabidopsis thaliana (L.) Heynh. meiotic mutant ahp2. These phenotypes were revealed by analysis of reconstructions of normal and ahp2 nuclei that were imaged using transmission electron microscopy. Previous studies of the ahp2 mutant demonstrated that it has a general failure to form synaptonemal complexes, except for the nucleolus organizing regions, and it fails to complete reciprocal genetic exchange. Here, we show that even though the ahp2 chromosome axes have only 5% of the normal amount of synaptonemal complex formation, it nonetheless has slightly more than 40% of the axes involved in close alignment. We also observed two striking nuclear envelope associated abnormalities. Wild type nuclei contain two nucleoli, one nucleolus-like structure, and nuclear envelope associated structures that we refer to as nuclear envelope associated disks. The ahp2 nuclei have the two nucleoli, but they lack the third nucleolus-like structure and instead have a previously uncharacterized structure that spans the nuclear envelope. Additionally, ahp2 meiocytes have nuclear envelope associated disks that are narrower and more numerous (∼2×) than those seen in wild type, and unlike the wild type disks, they are in direct contact with the nuclear envelope.
Collapse
Affiliation(s)
- Nazia Pathan
- Department of Biological Science, University of Toronto (Scarborough), Scarborough, ON M1C 1A4, Canada
| | | | | |
Collapse
|
112
|
Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong Y, Todd GK, Boosalis CA, Zhang Z, Zhou X, Ma H, Anishkin A, van Rossum DB, Patterson RL. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC Genomics 2013; 14:240. [PMID: 23574621 PMCID: PMC3637515 DOI: 10.1186/1471-2164-14-240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/28/2013] [Indexed: 11/20/2022] Open
Abstract
Background The recA/RAD51 gene family encodes a diverse set of recombinase proteins that affect homologous recombination, DNA-repair, and genome stability. The recA gene family is expressed across all three domains of life - Eubacteria, Archaea, and Eukaryotes - and even in some viruses. To date, efforts to resolve the deep evolutionary origins of this ancient protein family have been hindered by the high sequence divergence between paralogous groups (i.e. ~30% average pairwise identity). Results Through large taxon sampling and the use of a phylogenetic algorithm designed for inferring evolutionary events in highly divergent paralogs, we obtained a robust, parsimonious and more refined phylogenetic history of the recA/RAD51 superfamily. Conclusions In summary, our model for the evolution of recA/RAD51 family provides a better understanding of the ancient origin of recA proteins and the multiple events that lead to the diversification of recA homologs in eukaryotes, including the discovery of additional RAD51 sub-families.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Department of Physiology and Membrane Biology, School of Medicine, University of California-Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet 2013; 9:e1003165. [PMID: 23300481 PMCID: PMC3536722 DOI: 10.1371/journal.pgen.1003165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/28/2012] [Indexed: 11/25/2022] Open
Abstract
Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails. Species that reproduce sexually have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. This recombination process is initiated by DNA breaks that must be repaired efficiently to maintain fertility. Using the model plant Arabidopsis thaliana we revealed here that the gene AtMCM8 is required to repair a subset of these DNA breaks. However MCM8 appears to not be required for recombination with the homologous chromosome. Instead MCM8 appears to be involved in a safety system that operates to repair DNA breaks that have not been used for homologous recombination. Interestingly the equivalent gene also has an essential meiotic function in the fly and the mouse. However the three species require MCM8 for different aspects of meiosis.
Collapse
Affiliation(s)
- Wayne Crismani
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Virginie Portemer
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nicole Froger
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Christine Horlow
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nathalie Vrielynck
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Raphaël Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
114
|
Liu Y, Deng Y, Li G, Zhao J. Replication factor C1 (RFC1) is required for double-strand break repair during meiotic homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:154-165. [PMID: 22974522 DOI: 10.1111/tpj.12024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Replication factor C1 (RFC1), which is conserved in eukaryotes, is involved in DNA replication and checkpoint control. However, a RFC1 product participating in DNA repair at meiosis has not been reported in Arabidopsis. Here, we report functional characterization of AtRFC1 through analysis of the rfc1-2 mutant. The rfc1-2 mutant displayed normal vegetative growth but showed silique sterility because the male gametophyte was arrested at the uninucleus microspore stage and the female at the functional megaspore stage. Expression of AtRFC1 was concentrated in the reproductive organ primordia, meiocytes and developing gametes. Chromosome spreads showed that pairing and synapsis were normal, and the chromosomes were broken when desynapsis began at late prophase I, and chromosome fragments remained in the subsequent stages. For this reason, homologous chromosomes and sister chromatids segregated unequally, leading to pollen sterility. Immunolocalization revealed that the AtRFC1 protein localized to the chromosomes during zygotene and pachytene in wild-type but were absent in the spo11-1 mutant. The chromosome fragmentation of rfc1-2 was suppressed by spo11-1, indicating that AtRFC1 acted downstream of AtSPO11-1. The similar chromosome behavior of rad51 rfc1-2 and rad51 suggests that AtRFC1 may act with AtRAD51 in the same pathway. In summary, AtRFC1 is required for DNA double-strand break repair during meiotic homologous recombination of Arabidopsis.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
115
|
Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H. The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:781-90. [PMID: 22860689 DOI: 10.1111/j.1365-313x.2012.05119.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, multiple factors involved in DNA double-strand break (DSB) repair have been characterised in Arabidopsis thaliana. Using homologous sequences in somatic cells, DSBs are mainly repaired by two different pathways: synthesis-dependent strand annealing (SDSA) and single-strand annealing (SSA). By applying recombination substrates in which recombination is initiated by the induction of a site-specific DSB by the homing endonuclease I-SceI, we were able to characterise the involvement of different factors in both pathways. The nucleases MRE11 and COM1, both involved in DSB end processing, were not required for either SDSA or SSA in our assay system. Both SDSA and SSA were even more efficient without MRE11, in accordance with the fact that a loss of MRE11 might negatively affect the efficiency of non-homologous end joining. Loss of the classical recombinase RAD51 or its two paralogues RAD51C and XRCC3, as well as the SWI2/SNF2 remodelling factor RAD54, resulted in a drastic deficiency in SDSA but had hardly any influence on SSA, confirming that a strand exchange reaction is only required for SDSA. The helicase FANCM, which is postulated to be involved in the stabilisation of recombination intermediates, is surprisingly not only needed for SDSA but to a lesser extent also for SSA. Both SSA and SDSA were affected only weakly when the SMC6B protein, implicated in sister chromatid recombination, was absent, indicating that SSA and SDSA are in most cases intrachromatid recombination reactions.
Collapse
Affiliation(s)
- Nadine Roth
- Botany II, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
116
|
Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003039. [PMID: 23144629 PMCID: PMC3493451 DOI: 10.1371/journal.pgen.1003039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways. Meiotic recombination is important for pairing and sustained association of homologous chromosomes (homologs), thereby ensuring proper homolog segregation and normal fertility. DNA synthesis is thought to be required for meiotic recombination, but few genes coding for DNA synthesis factors have been studied for possible meiotic functions because their essential roles in the mitotic cell cycle make it difficult to study their meiotic functions due to the lethality of corresponding null mutations. Current models for meiotic recombination only include leading strand DNA synthesis. We found that the Arabidopsis gene encoding the DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis promotes meiotic recombination via a specific pathway for crossovers (COs) that involves the formation of double Holliday Junction (dHJ) intermediates. Therefore, lagging strand DNA synthesis is likely important for meiotic recombination. Because DNA synthesis is a highly conserved process and meiotic recombination is highly similar among budding yeast, mammals, and flowering plants, the proposed function of lagging strand synthesis for meiotic recombination might be a general feature of meiosis.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
117
|
Feng B, Lu D, Ma X, Peng Y, Sun Y, Ning G, Ma H. Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:612-24. [PMID: 22775442 DOI: 10.1111/j.1365-313x.2012.05104.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several genes encoding transcription factors have been shown to be essential for male fertility in plants, suggesting that transcriptional regulation is a major mechanism controlling anther development in Arabidopsis. DYSFUNCTIONAL TAPETUM 1 (DYT1), a putative bHLH transcription factor, plays a critical role in regulating tapetum function and pollen development. Here, we compare the transcriptomes of young anthers of wild-type and the dyt1 mutant, demonstrating that DYT1 is upstream of at least 22 genes encoding transcription factors and regulates the expression of a large number of genes, including genes involved in specific metabolic pathways. We also show that DYT1 can bind to DNA in a sequence-specific manner in vitro, and induction of DYT1 activity in vivo activated the expression of the downstream transcription factor genes MYB35 and MS1. We generated DYT1-SRDX transgenic plants whose fertility was dramatically reduced, implying that DYT1 probably acts as a transcriptional activator. Furthermore, we used yeast two-hybrid assays to show that DYT1 forms homodimers and heterodimers with other bHLH transcription factors. Our results demonstrate the important role of DYT1 in regulating anther transcriptome and function, and supporting normal pollen development.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin FCH. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. THE PLANT CELL 2012; 24:4096-109. [PMID: 23104831 PMCID: PMC3517238 DOI: 10.1105/tpc.112.102483] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/20/2012] [Accepted: 10/09/2012] [Indexed: 05/18/2023]
Abstract
Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.
Collapse
Affiliation(s)
- James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ruth M. Perry
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Abdellah Barakate
- Division of Plant Sciences at James Hutton Institute, University of Dundee, Invergowrie, Dundee DD1 5EH, Scotland
| | - Luke Ramsay
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Robbie Waugh
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Claire Halpin
- Division of Plant Sciences at James Hutton Institute, University of Dundee, Invergowrie, Dundee DD1 5EH, Scotland
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Address correspondence to
| |
Collapse
|
119
|
Kou Y, Chang Y, Li X, Xiao J, Wang S. The rice RAD51C gene is required for the meiosis of both female and male gametocytes and the DNA repair of somatic cells. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5323-35. [PMID: 22859673 PMCID: PMC3431001 DOI: 10.1093/jxb/ers190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RecA/RAD51 family of rice (Oryza sativa) consists of at least 13 members. However, the functions of most of these members are unknown. Here the functional characterization of one member of this family, RAD51C, is reported. Knockout (KO) of RAD51C resulted in both female and male sterility in rice. Transferring RAD51C to the RAD51C-KO line restored fertility. Cytological analyses showed that the sterility of RAD51C-KO plants was associated with abnormal early meiotic processes in both megasporocytes and pollen mother cells (PMCs). PMCs had an absence of normal pachytene chromosomes and had abnormal chromosome fragments. The RAD51C-KO line showed no obvious difference from wild-type plants in mitosis in the anther wall cells, which was consistent with the observation that the RAD51C-KO line did not have obviously abnormal morphology during vegetative development. However, the RAD51C-KO line was sensitive to different DNA-damaging agents. These results suggest that RAD51C is essential for reproductive development by regulating meiosis as well as for DNA damage repair in somatic cells.
Collapse
MESH Headings
- Agrobacterium/genetics
- Chromosomes, Plant/drug effects
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/radiation effects
- DNA Fragmentation/drug effects
- DNA Fragmentation/radiation effects
- DNA Repair/drug effects
- DNA Repair/radiation effects
- DNA, Bacterial/genetics
- Gene Knockout Techniques
- Genes, Plant
- Genetic Complementation Test
- Germ Cells, Plant/drug effects
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/radiation effects
- Meiosis/drug effects
- Meiosis/radiation effects
- Mitosis/drug effects
- Mitosis/radiation effects
- Molecular Sequence Data
- Mutagens/pharmacology
- Oryza/cytology
- Oryza/drug effects
- Oryza/genetics
- Oryza/growth & development
- Phylogeny
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Pollen/drug effects
- Pollen/growth & development
- Pollen/radiation effects
- Rad51 Recombinase/genetics
- Rad51 Recombinase/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Yanjun Kou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan 430070China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
120
|
The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet 2012; 8:e1002799. [PMID: 22844245 PMCID: PMC3405992 DOI: 10.1371/journal.pgen.1002799] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022] Open
Abstract
In numerous species, the formation of meiotic crossovers is largely under the control of a group of proteins known as ZMM. Here, we identified a new ZMM protein, HEI10, a RING finger-containing protein that is well conserved among species. We show that HEI10 is structurally and functionally related to the yeast Zip3 ZMM and that it is absolutely required for class I crossover (CO) formation in Arabidopsis thaliana. Furthermore, we show that it is present as numerous foci on the chromosome axes and the synaptonemal complex central element until pachytene. Then, from pachytene to diakinesis, HEI10 is retained at a limited number of sites that correspond to class I COs, where it co-localises with MLH1. Assuming that HEI10 early staining represents an early selection of recombination intermediates to be channelled into the ZMM pathway, HEI10 would therefore draw a continuity between early chosen recombination intermediates and final class I COs. During meiosis two successive chromosomal divisions follow a single S phase, resulting in the formation of four haploid cells, each with half of the parental genetic material. This ploidy reduction occurs during the first meiotic division, when homologous chromosomes (paternal and maternal) are separated from each other. For this to happen, homologous chromosomes associate in bivalents, where each chromosome is linked to its homologue by chiasmata. These chiasmata reflect the formation of crossovers (COs), one of the manifestations of the exchange of genetic material occurring during homologous recombination. In most species, the final number of COs represents only a small proportion of all meiotic recombination events (4% in Arabidopsis thaliana). The mechanisms that drive the choice of recombination intermediates that will mature into COs are still unknown. In this study, we identified the HEI10 protein that is present as numerous foci on chromosome axes during early meiotic prophase and is retained until the end of prophase at a limited number of sites corresponding to COs. We also showed that HEI10 is necessary for the formation of most of the COs. HEI10 is therefore a good candidate for a ZMM protein involved in generating continuity between chosen early recombination intermediates and final COs.
Collapse
|
121
|
Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R. FANCM limits meiotic crossovers. Science 2012; 336:1588-90. [PMID: 22723424 DOI: 10.1126/science.1220381] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major factor limiting meiotic CO formation. The fancm mutant has a threefold-increased CO frequency as compared to the wild type. These extra COs arise not from the pathway that accounts for most of the COs in wild type, but from an alternate, normally minor pathway. Thus, FANCM is a key factor imposing an upper limit on the number of meiotic COs, and its manipulation holds much promise for plant breeding.
Collapse
Affiliation(s)
- Wayne Crismani
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Qiao H, Offenberg HH, Anderson LK. Altered distribution of MLH1 foci is associated with changes in cohesins and chromosome axis compaction in an asynaptic mutant of tomato. Chromosoma 2012; 121:291-305. [PMID: 22350750 DOI: 10.1007/s00412-012-0363-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/03/2012] [Accepted: 01/21/2012] [Indexed: 12/25/2022]
Abstract
In most multicellular eukaryotes, synapsis [synaptonemal complex (SC) formation] between pairs of homologous chromosomes during prophase I of meiosis is closely linked with crossing over. Asynaptic mutants in plants have reduced synapsis and increased univalent frequency, often resulting in genetically unbalanced gametes and reduced fertility. Surprisingly, some asynaptic mutants (like as1 in tomato) have wild-type or increased levels of crossing over. To investigate, we examined SC spreads from as1/as1 microsporocytes using both light and electron microscopic immunolocalization. We observed increased numbers of MLH1 foci (a crossover marker) per unit length of SC in as1 mutants compared to wild-type. These changes are associated with reduced levels of detectable cohesin proteins in the axial and lateral elements (AE/LEs) of SCs, and the AE/LEs of as1 mutants are also significantly longer than those of wild-type or another asynaptic mutant. These results indicate that chromosome axis structure, synapsis, and crossover control are all closely linked in plants.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
123
|
Kurzbauer MT, Uanschou C, Chen D, Schlögelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis. THE PLANT CELL 2012; 24:2058-70. [PMID: 22589466 PMCID: PMC3442587 DOI: 10.1105/tpc.112.098459] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 05/18/2023]
Abstract
Meiosis ensures the reduction of the genome before the formation of generative cells and promotes the exchange of genetic information between homologous chromosomes by recombination. Essential for these events are programmed DNA double strand breaks (DSBs) providing single-stranded DNA overhangs after their processing. These overhangs, together with the RADiation sensitive51 (RAD51) and DMC1 Disrupted Meiotic cDNA1 (DMC1) recombinases, mediate the search for homologous sequences. Current models propose that the two ends flanking a meiotic DSB have different fates during DNA repair, but the molecular details remained elusive. Here we present evidence, obtained in the model plant Arabidopsis thaliana, that the two recombinases, RAD51 and DMC1, localize to opposite sides of a meiotic DSB. We further demonstrate that the ATR kinase is involved in regulating DMC1 deposition at meiotic DSB sites, and that its elimination allows DMC1-mediated meiotic DSB repair even in the absence of RAD51. DMC1's ability to promote interhomolog DSB repair is not a property of the protein itself but the consequence of an ASYNAPTIC1 (Hop1)-mediated impediment for intersister repair. Taken together, these results demonstrate that DMC1 functions independently and spatially separated from RAD51 during meiosis and that ATR is an integral part of the regular meiotic program.
Collapse
|
124
|
Da Ines O, Abe K, Goubely C, Gallego ME, White CI. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002636. [PMID: 22532804 PMCID: PMC3330102 DOI: 10.1371/journal.pgen.1002636] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. Meiosis is a specialised cell division that acts to halve the chromosome complement, or ploidy, in the production of gametes for sexual reproduction in eukaryotes. To ensure that each gamete has a full complement of the genetic material, homologous chromosomes must pair and then separate in a coordinated manner during meiosis, and this is mediated by recombination in the majority of studied eukaryotes. To better understand the relationship between recombination and meiotic homologue pairing, we have analysed meiotic chromosome pairing in plant mutants lacking key recombination proteins. This work provides new insights into the homologous chromosome pairing mechanisms occurring in meiotic prophase of Arabidopsis thaliana: heterochromatic centromeres and 5S rDNA regions pair early, and their pairing has different requirements for recombination proteins than does that of the chromosome arms. These data raise a number of questions concerning the specificities and roles of recombination at different chromosome and/or chromatin regions in the synapsis of homologous chromosomes at meiosis.
Collapse
Affiliation(s)
| | | | | | | | - Charles I. White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France
- * E-mail:
| |
Collapse
|
125
|
Knoll A, Higgins JD, Seeliger K, Reha SJ, Dangel NJ, Bauknecht M, Schröpfer S, Franklin FCH, Puchta H. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis. THE PLANT CELL 2012; 24:1448-64. [PMID: 22547783 PMCID: PMC3398556 DOI: 10.1105/tpc.112.096644] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 05/18/2023]
Abstract
The human hereditary disease Fanconi anemia leads to severe symptoms, including developmental defects and breakdown of the hematopoietic system. It is caused by single mutations in the FANC genes, one of which encodes the DNA translocase FANCM (for Fanconi anemia complementation group M), which is required for the repair of DNA interstrand cross-links to ensure replication progression. We identified a homolog of FANCM in Arabidopsis thaliana that is not directly involved in the repair of DNA lesions but suppresses spontaneous somatic homologous recombination via a RecQ helicase (At-RECQ4A)-independent pathway. In addition, it is required for double-strand break-induced homologous recombination. The fertility of At-fancm mutant plants is compromised. Evidence suggests that during meiosis At-FANCM acts as antirecombinase to suppress ectopic recombination-dependent chromosome interactions, but this activity is antagonized by the ZMM pathway to enable the formation of interference-sensitive crossovers and chromosome synapsis. Surprisingly, mutation of At-FANCM overcomes the sterility phenotype of an At-MutS homolog4 mutant by apparently rescuing a proportion of crossover-designated recombination intermediates via a route that is likely At-MMS and UV sensitive81 dependent. However, this is insufficient to ensure the formation of an obligate crossover. Thus, At-FANCM is not only a safeguard for genome stability in somatic cells but is an important factor in the control of meiotic crossover formation.
Collapse
Affiliation(s)
- Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sarah J. Reha
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalie J. Dangel
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Address correspondence to
| |
Collapse
|
126
|
Pradillo M, López E, Linacero R, Romero C, Cuñado N, Sánchez-Morán E, Santos JL. Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:921-33. [PMID: 22066484 DOI: 10.1111/j.1365-313x.2011.04845.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cisplatin/pharmacology
- DNA Breaks, Double-Stranded/radiation effects
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gamma Rays
- Gene Knockout Techniques
- Genetic Complementation Test
- Homologous Recombination
- Meiosis
- Metaphase
- Models, Genetic
- Phenotype
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/radiation effects
- Rad51 Recombinase/genetics
- Rad51 Recombinase/metabolism
- Rec A Recombinases/genetics
- Rec A Recombinases/metabolism
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | | | | | | | | | | | | |
Collapse
|
127
|
Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cuñado N, Franklin FCH. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet 2012; 8:e1002507. [PMID: 22319460 PMCID: PMC3271061 DOI: 10.1371/journal.pgen.1002507] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/11/2011] [Indexed: 12/13/2022] Open
Abstract
In this study we have analysed AtASY3, a coiled-coil domain protein that is required for normal meiosis in Arabidopsis. Analysis of an Atasy3-1 mutant reveals that loss of the protein compromises chromosome axis formation and results in reduced numbers of meiotic crossovers (COs). Although the frequency of DNA double-strand breaks (DSBs) appears moderately reduced in Atasy3-1, the main recombination defect is a reduction in the formation of COs. Immunolocalization studies in wild-type meiocytes indicate that the HORMA protein AtASY1, which is related to Hop1 in budding yeast, forms hyper-abundant domains along the chromosomes that are spatially associated with DSBs and early recombination pathway proteins. Loss of AtASY3 disrupts the axial organization of AtASY1. Furthermore we show that the AtASY3 and AtASY1 homologs BoASY3 and BoASY1, from the closely related species Brassica oleracea, are co-immunoprecipitated from meiocyte extracts and that AtASY3 interacts with AtASY1 via residues in its predicted coiled-coil domain. Together our results suggest that AtASY3 is a functional homolog of Red1. Since studies in budding yeast indicate that Red1 and Hop1 play a key role in establishing a bias to favor inter-homolog recombination (IHR), we propose that AtASY3 and AtASY1 may have a similar role in Arabidopsis. Loss of AtASY3 also disrupts synaptonemal complex (SC) formation. In Atasy3-1 the transverse filament protein AtZYP1 forms small patches rather than a continuous SC. The few AtMLH1 foci that remain in Atasy3-1 are found in association with the AtZYP1 patches. This is sufficient to prevent the ectopic recombination observed in the absence of AtZYP1, thus emphasizing that in addition to its structural role the protein is important for CO formation. Homologous recombination (HR) during prophase I of meiosis leads to the formation of physical connections, known as chiasmata, between homologous chromosomes (homologs). Chiasmata are essential for accurate homolog segregation at the first meiotic division. HR is initiated by the formation of DNA double-strand breaks (DSBs). As DNA replication prior to meiosis results in the duplication of each homolog to form two identical sister chromatids, a DSB in one sister chromatid could potentially be repaired using the other as the repair template rather than one of the two non-sister chromatids of the homolog. If this route were predominant, the formation of chiasmata would be disfavored and chromosome segregation would be compromised. However, during meiosis there is a strong bias towards inter-homolog recombination (IHR). In this study we have identified AtASY3, a component of the proteinaceous axes that organize the chromosomes during meiosis in Arabidopsis. We find that AtASY3 interacts with AtASY1, a previously identified axis protein that is essential for crossover formation. We show that loss of AtASY3 disrupts the axis-organization of AtASY1. This results in a substantial reduction in chiasmata, and there is extensive chromosome mis-segregation. We propose that loss of AtASY3 affects the efficiency of the inter-homolog bias.
Collapse
Affiliation(s)
- Maheen Ferdous
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christophe Lambing
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Ruth Perry
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Mónica Pradillo
- Departamento de Génetica, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nieves Cuñado
- Departamento de Génetica, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
128
|
Srivastava S, Chaudhry V, Mishra A, Chauhan PS, Rehman A, Yadav A, Tuteja N, Nautiyal CS. Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. PLANT SIGNALING & BEHAVIOR 2012; 7:235-45. [PMID: 22353860 PMCID: PMC3405686 DOI: 10.4161/psb.18957] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca⁺² dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.
Collapse
Affiliation(s)
| | - Vasvi Chaudhry
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Ateequr Rehman
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Archana Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
129
|
Tiang CL, He Y, Pawlowski WP. Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. PLANT PHYSIOLOGY 2012; 158:26-34. [PMID: 22095045 PMCID: PMC3252114 DOI: 10.1104/pp.111.187161] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
130
|
Seeliger K, Dukowic-Schulze S, Wurz-Wildersinn R, Pacher M, Puchta H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:364-75. [PMID: 22077663 DOI: 10.1111/j.1469-8137.2011.03947.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.
Collapse
Affiliation(s)
- Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
131
|
Komakhin RA, Komakhina VV, Milyukova NA, Zhuchenko AA. Analysis of the meiotic recombination frequency in transgenic tomato hybrids expressing recA and NLS-recA-licBM3 genes. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795411110093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
132
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
133
|
Deveshwar P, Bovill WD, Sharma R, Able JA, Kapoor S. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC PLANT BIOLOGY 2011; 11:78. [PMID: 21554676 PMCID: PMC3112077 DOI: 10.1186/1471-2229-11-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/09/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed in many plant species at progressive stages of development by using microarray and sequence-by synthesis-technologies to identify genes that regulate anther development. Here we report a comprehensive analysis of rice anther transcriptomes at four distinct stages, focusing on identifying regulatory components that contribute to male meiosis and germline development. Further, these transcriptomes have been compared with the transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. RESULTS Transcriptome profiling of four stages of anther development in rice including pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA) revealed about 22,000 genes expressing in at least one of the anther developmental stages, with the highest number in MA (18,090) and the lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes specifically expressed in anther stages. From this sub-set, 453 genes were specific to TPA, while 78 and 184 genes were expressed specifically in MA and SCP, respectively. The expression pattern of selected genes has been validated using real time PCR and in situ hybridizations. Gene ontology and pathway analysis of stage-specific genes revealed that those encoding transcription factors and components of protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. CONCLUSIONS Not only have we provided the transcriptome constituents of four landmark stages of anther development in rice but we have also identified genes that express exclusively in these stages. It is likely that many of these candidates may therefore contribute to specific aspects of anther and/or male gametophyte development in rice. In addition, the gene sets that have been produced will assist the plant reproductive community in building a deeper understanding of underlying regulatory networks and in selecting gene candidates for functional validation.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
134
|
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH. Pathways to meiotic recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 190:523-44. [PMID: 21366595 DOI: 10.1111/j.1469-8137.2011.03665.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
135
|
Homologous recombination is stimulated by a decrease in dUTPase in Arabidopsis. PLoS One 2011; 6:e18658. [PMID: 21541310 PMCID: PMC3082524 DOI: 10.1371/journal.pone.0018658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants.
Collapse
|
136
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
137
|
Knoll A, Puchta H. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1565-79. [PMID: 21081662 DOI: 10.1093/jxb/erq357] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.
Collapse
Affiliation(s)
- Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
138
|
Yang H, Lu P, Wang Y, Ma H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:503-16. [PMID: 21208307 DOI: 10.1111/j.1365-313x.2010.04439.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction, with two consecutive rounds of nuclear divisions, allowing production of haploid gametes. Information regarding the meiotic transcriptome should provide valuable clues about global expression patterns and detailed gene activities. Here we used RNA sequencing to explore the transcriptome of a single plant cell type, the Arabidopsis male meiocyte, detecting the expression of approximately 20 000 genes. Transcription of introns of >400 genes was observed, suggesting previously unannotated exons. More than 800 genes may be preferentially expressed in meiocytes, including known meiotic genes. Of the 3378 Pfam gene families in the Arabidopsis genome, 3265 matched meiocyte-expressed genes, and 18 gene families were over-represented in male meiocytes, including transcription factor and other regulatory gene families. Expression was detected for many genes thought to encode meiosis-related proteins, including MutS homologs (MSHs), kinesins and ATPases. We identified more than 1000 orthologous gene clusters that are also expressed in meiotic cells of mouse and fission yeast, including 503 single-copy genes across the three organisms, with a greater number of gene clusters shared between Arabidopsis and mouse than either share with yeast. Interestingly, approximately 5% transposable element genes were apparently transcribed in male meiocytes, with a positive correlation to the transcription of neighboring genes. In summary, our RNA-Seq transcriptome data provide an overview of gene expression in male meiocytes and invaluable information for future functional studies.
Collapse
Affiliation(s)
- Hongxing Yang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | |
Collapse
|
139
|
Abstract
Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.
Collapse
|
140
|
Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC PLANT BIOLOGY 2010; 10:280. [PMID: 21167045 PMCID: PMC3018465 DOI: 10.1186/1471-2229-10-280] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. RESULTS A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes. CONCLUSION These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Raymond J Langley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Immunology, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Gregory D May
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - James Huntley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Illumina Inc., Hayward, California 94545, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| |
Collapse
|
141
|
Komakhin RA, Komakhina VV, Milyukova NA, Goldenkova-Pavlova IV, Fadina OA, Zhuchenko AA. Transgenic tomato plants expressing recA and NLS-recA-licBM3 genes as a model for studying meiotic recombination. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410120069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. Proc Natl Acad Sci U S A 2010; 107:22716-21. [PMID: 21149701 DOI: 10.1073/pnas.1005978107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2-RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2-RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses.
Collapse
|
143
|
Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW. FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1281-93. [PMID: 20813909 PMCID: PMC2971606 DOI: 10.1104/pp.110.164095] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/31/2010] [Indexed: 05/20/2023]
Abstract
The fibrillins are a large family of chloroplast proteins that have been linked with stress tolerance and disease resistance. FIBRILLIN4 (FIB4) is found associated with the photosystem II light-harvesting complex, thylakoids, and plastoglobules, which are chloroplast compartments rich in lipophilic antioxidants. For this study, FIB4 expression was knocked down in apple (Malus 3 domestica) using RNA interference. Plastoglobule osmiophilicity was decreased in fib4 knockdown (fib4 KD) tree chloroplasts compared with the wild type, while total plastoglobule number was unchanged. Compared with the wild type, net photosynthetic CO(2) fixation in fib4 KD trees was decreased at high light intensity but was increased at low light intensity. Furthermore, fib4 KD trees produced more anthocyanins than the wild type when transferred from low to high light intensity, indicating greater sensitivity to high light stress. Relative to the wild type, fib4 KD apples were more sensitive to methyl viologen and had higher superoxide levels during methyl viologen treatment. Arabidopsis (Arabidopsis thaliana) fib4 mutants and fib4 KD apples were more susceptible than their wild-type counterparts to the bacterial pathogens Pseudomonas syringae pathovar tomato and Erwinia amylovora, respectively, and were more sensitive to ozone-induced tissue damage. Following ozone stress, plastoglobule osmiophilicity decreased in wild-type apple and remained low in fib4 KD trees; total plastoglobule number increased in fib4 KD apples but not in the wild type. These results indicate that FIB4 is required for plastoglobule development and resistance to multiple stresses. This study suggests that FIB4 is involved in regulating plastoglobule content and that defective regulation of plastoglobule content leads to broad stress sensitivity and altered photosynthetic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy W. McNellis
- Intercollege Graduate Degree Program in Plant Biology (D.K.S.), Department of Plant Pathology (D.K.S., P.J.J., H.K.N., T.W.M.), and Department of Horticulture (S.N.M.), The Pennsylvania State University, University Park, Pennsylvania 16802; The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania 17307 (B.L.L., H.K.N.)
| |
Collapse
|
144
|
Wang Y, Suo H, Zheng Y, Liu K, Zhuang C, Kahle KT, Ma H, Yan X. The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:230-42. [PMID: 20735771 DOI: 10.1111/j.1365-313x.2010.04320.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In humans, members of the WNK protein kinase family are osmosensitive regulators of cell volume homeostasis and epithelial ion transport, and mutation of these proteins causes a rare inherited form of hypertension due to increased renal NaCl re-absorption. A related class of kinases was recently discovered in plants, but their functions are largely unknown. We have identified a root-specific WNK kinase homolog, GmWNK1, in soybean (Glycine max). GmWNK1 expression was detected in the root, specifically in root cells associated with lateral root formation, and was down-regulated by abscisic acid (ABA), as well as by mannitol, sucrose, polyethylene glycol and NaCl. In vitro and in vivo experiments showed that GmWNK1 interacts with another soybean protein, GmCYP707A1, which is a key ABA 8'-hydroxylase that functions in ABA catabolism. Furthermore, 35S-GmWNK1 transgenic soybean plants had reduced lateral root number and length compared with wild-type, suggesting a role of GmWNK1 in the regulation of root system architecture. We propose that GmWNK1 functions to fine-tune ABA-dependent ABA homeostasis, thereby mediating the regulation of the root system architecture by ABA and osmotic signals. The study has revealed a new function of a plant WNK1 gene from the important staple crop soybean, and has identified a new component of a regulatory pathway that is involved not only in ABA signaling, but also in the repression of lateral root formation by an ABA-dependent mechanism distinct from known ABA signaling pathways.
Collapse
Affiliation(s)
- Yingxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Devisetty UK, Mayes K, Mayes S. The RAD51 and DMC1 homoeologous genes of bread wheat: cloning, molecular characterization and expression analysis. BMC Res Notes 2010; 3:245. [PMID: 20920212 PMCID: PMC2962619 DOI: 10.1186/1756-0500-3-245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meiotic recombination in eukaryotes requires two homologues of the E. coli RecA proteins: Rad51 and Dmc1. Both proteins play important roles in the binding of single stranded DNA, homology search, strand invasion and strand exchange. Meiotic recombination has been well studied in Arabidopsis, rice, maize and the orthologues of RAD51 and DMC1 have been characterized. However genetic analysis of the RAD51 and DMC1 genes in bread wheat has been hampered due to the absence of complete sequence information and because of the existence of multiple copies of each gene in the hexaploid wheat genome. FINDINGS In this study we have identified that TaRAD51 and TaDMC1 homoeologues are located on group 7 and group 5 chromosomes of hexaploid wheat, respectively. Comparative sequence analysis of cDNA derived from the TaRAD51 and TaDMC1 homoeologues revealed limited sequence divergence at both the nucleotide and the amino acid level. Indeed, comparisons between the predicted amino acid sequences of TaRAD51 and TaDMC1 and those of other eukaryotes reveal a high degree of evolutionary conservation. Despite the high degree of sequence conservation at the nucleotide level, genome-specific primers for cDNAs of TaRAD51 and TaDMC1 were developed to evaluate expression patterns of individual homoeologues during meiosis. QRT-PCR analysis showed that expression of the TaRAD51 and TaDMC1 cDNA homoeologues was largely restricted to meiotic tissue, with elevated levels observed during the stages of prophase I when meiotic recombination occurs. All three homoeologues of both strand-exchange proteins (TaRAD51 and TaDMC1) are expressed in wheat. CONCLUSIONS Bread wheat contains three expressed copies of each of the TaRAD51 and TaDMC1 homoeologues. While differences were detected between the three cDNA homoeologues of TaRAD51 as well as the three homoeologues of TaDMC1, it is unlikely that the predicted amino acid substitutions would have an effect on the protein structure, based on our three-dimensional structure prediction analyses. There are differences in the levels of expression of the three homoeologues of TaRAD51 and TaDMC1 as determined by QRT-PCR and if these differences are reflected at the protein level, bread wheat may be more dependent upon a particular homoeologue to achieve full fertility than all three equally.
Collapse
Affiliation(s)
- Upendra Kumar Devisetty
- Department of Plant and Crop sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
- Department of Plant Biology, 1 Shields Ave, University of California Davis, CA 95616, USA
| | - Katie Mayes
- Department of Plant and Crop sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Sean Mayes
- Department of Plant and Crop sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
146
|
Yang Z, Tang L, Li M, Chen L, Xu J, Wu G, Li H. Monitoring homologous recombination in rice (Oryza sativa L.). Mutat Res 2010; 691:55-63. [PMID: 20670635 DOI: 10.1016/j.mrfmmm.2010.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 04/11/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3x10(-5) recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.
Collapse
Affiliation(s)
- Zhuanying Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
147
|
Stronghill P, Pathan N, Ha H, Supijono E, Hasenkampf C. Ahp2 (Hop2) function in Arabidopsis thaliana (Ler) is required for stabilization of close alignment and synaptonemal complex formation except for the two short arms that contain nucleolus organizer regions. Chromosoma 2010; 119:443-58. [PMID: 20358378 DOI: 10.1007/s00412-010-0270-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/20/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
A cytological comparative analysis of male meiocytes was performed for Arabidopsis wild type and the ahp2 (hop2) mutant with emphasis on ahp2's largely uncharacterized prophase I. Leptotene progression appeared normal in ahp2 meiocytes; chromosomes exhibited regular axis formation and assumed a typical polarized nuclear organization. In contrast, 4',6'-diamidino-2-phenylindole-stained ahp2 pachytene chromosome spreads demonstrated a severe reduction in stabilized pairing. However, transmission electron microscopy (TEM) analysis of sections from meiocytes revealed that ahp2 chromosome axes underwent significant amounts of close alignment (44% of total axis). This apparent paradox strongly suggests that the Ahp2 protein is involved in the stabilization of homologous chromosome close alignment. Fluorescent in situ hybridization in combination with Zyp1 immunostaining revealed that ahp2 mutants undergo homologous synapsis of the nucleolus-organizer-region-bearing short arms of chromosomes 2 and 4, despite the otherwise "nucleus-wide" lack of stabilized pairing. The duration of ahp2 zygotene was significantly prolonged and is most likely due to difficulties in chromosome alignment stabilization and subsequent synaptonemal complex formation. Ahp2 and Mnd1 proteins have previously been shown, "in vitro," to form a heterodimer. Here we show, "in situ," that the Ahp2 and Mnd1 proteins are synchronous in their appearance and disappearance from meiotic chromosomes. Both the Ahp2 and Mnd1 proteins localize along the chromosomal axis. However, localization of the Ahp2 protein was entirely foci-based whereas Mnd1 protein exhibited an immunostaining pattern with some foci along the axis and a diffuse staining for the rest of the chromosome.
Collapse
Affiliation(s)
- P Stronghill
- Department of Cell and Systems Biology, University of Toronto, Scarborough, Ontario, Canada.
| | | | | | | | | |
Collapse
|
148
|
|
149
|
Liu Q, Wang J, Miki D, Xia R, Yu W, He J, Zheng Z, Zhu JK, Gong Z. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. THE PLANT CELL 2010; 22:2336-52. [PMID: 20639449 PMCID: PMC2929113 DOI: 10.1105/tpc.110.076349] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 05/18/2023]
Abstract
Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylation-independent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junguo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Daisuke Miki
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ran Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenxiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Zheng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
150
|
Harrison CJ, Alvey E, Henderson IR. Meiosis in flowering plants and other green organisms. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2863-75. [PMID: 20576791 DOI: 10.1093/jxb/erq191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.
Collapse
Affiliation(s)
- C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|