101
|
Varna M, Soliman H, Feugeas JP, Turpin E, Chapelin D, Legrès L, Plassa LF, de Roquancourt A, Espié M, Misset JL, Janin A, de Thé H, Bertheau P. Changes in allelic imbalances in locally advanced breast cancers after chemotherapy. Br J Cancer 2007; 97:1157-64. [PMID: 17876337 PMCID: PMC2360433 DOI: 10.1038/sj.bjc.6603937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In advanced breast cancers, TP53 mutation is highly predictive of complete response to high-dose epirubicin/cyclophosphamide chemotherapy. In these tumours with an altered control of genomic stability, accumulation of chemotherapy-induced genetic alterations may contribute to cell death and account for complete response. To explore the effects of chemotherapy on stability of the tumour genome, allelic profiles were obtained from microdissected tumour samples before and after chemotherapy in 29 unresponsive breast cancers (9 with TP53 mutation). Ninety-four per cent allelic profiles remained unchanged after treatment. Interestingly, 11 profiles (6%) showed important changes after treatment; allelic imbalances significantly increased (four cases) or decreased (seven cases) after chemotherapy in three distinct experiments, two of which using laser microdissected tumour cells. These genetic changes were not linked to the TP53 status, but one tumour showed complete disappearance of TP53-mutated cells in the residual tumour after treatment. Altogether, these observations carry important implications for the clonal evolution of breast cancers treated with DNA-damaging agents, as they point both to the importance of tumour heterogeneity and chemotherapy-driven selection of subclones.
Collapse
Affiliation(s)
- M Varna
- INSERM U728, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
| | - H Soliman
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - J-P Feugeas
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - E Turpin
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
- CNRS UMR 7151, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
| | - D Chapelin
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - L Legrès
- INSERM U728, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
| | - L-F Plassa
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - A de Roquancourt
- Department of Pathology, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - M Espié
- Department of Oncology, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - J-L Misset
- Department of Oncology, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - A Janin
- INSERM U728, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
- Department of Pathology, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
| | - H de Thé
- Department of Biochemistry, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
- CNRS UMR 7151, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
| | - P Bertheau
- INSERM U728, University Hematology Institute, University Paris 7 Denis Diderot, Paris, France
- Department of Pathology, Hospital Saint-Louis APHP, 1 av. C. Vellefaux, 75010 Paris, France
- E-mail:
| |
Collapse
|
102
|
Davis E, Teng H, Bilican B, Parker MI, Liu B, Carriera S, Goding CR, Prince S. Ectopic Tbx2 expression results in polyploidy and cisplatin resistance. Oncogene 2007; 27:976-84. [PMID: 17700536 DOI: 10.1038/sj.onc.1210701] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T-box factors play critical roles in embryonic development and have been implicated in cell cycle regulation and cancer. For example, Tbx2 can suppress senescence through a mechanism involving the repression of the cyclin-dependent kinase inhibitors, p19(ARF) and p21(WAF1/CIP1/SDII), and the Tbx2 gene is deregulated in melanoma, breast and pancreatic cancers. In this study, several transformed human lung fibroblast cell lines were shown to downregulate Tbx2. To further investigate the role of Tbx2 in oncogenesis we therefore stably reexpressed Tbx2 in one such cell line. Compared to their parental cells, the resulting Tbx2-expressing cells are larger, with binucleate and lobular nuclei containing double the number of chromosomes. Moreover, these cells had an increase in frequency of several features of genomic instability such as chromosome missegregation, chromosomal rearrangements and polyploidy. While grossly abnormal, these cells still divide and give rise to cells that are resistant to the chemotherapeutic drug cisplatin. Furthermore, this is shown to be neither species nor cell type dependent, as ectopically expressing Tbx2 in a murine melanoma cell line also induce mitotic defects and polyploidy. These results have important implications for our understanding of the role of Tbx2 in tumorigenesis because polyploidy frequently precedes aneuploidy, which is associated with high malignancy and poor prognosis.
Collapse
Affiliation(s)
- E Davis
- Division of Cell Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Province, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Chou YH, Ho YS, Wu CC, Chai CY, Chen SC, Lee CH, Tsai PS, Wu CH. Tubulozole-induced G2/M cell cycle arrest in human colon cancer cells through formation of microtubule polymerization mediated by ERK1/2 and Chk1 kinase activation. Food Chem Toxicol 2007; 45:1356-67. [PMID: 17329004 DOI: 10.1016/j.fct.2007.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/03/2006] [Accepted: 01/16/2007] [Indexed: 01/05/2023]
Abstract
Our studies demonstrated that human colon cancer cells (COLO 205), with higher expression level of check point kinase 1 (Chk1), were more sensitive to microtubule damage agent Tubulozole (TUBU) induced G2/M phase arrest than normal human colon epithelial (CRL) cells. TUBU (10 microM, for 3h) treatment resulted in rapid and sustained phosphorylation of Cdc25C (Ser-216) leading to increased 14-3-3beta binding. This resulted in increased nuclear translocation. In addition, TUBU induced phosphorylation of the Cdc25C (Ser-216) and Bad (Ser-155) proteins were blocked by Chk1 SiRNA-transfection. Surprisingly, cellular apotosis was observed in cells treated with TUBU after Chk1 SiRNA inhibition. We further demonstrated that extracellular signal-regulated kinase (ERK) activation by TUBU was needed for Chk1 kinase activation and microtubule formation as shown by the attenuation of these responses by the ERK1/2 specific inhibitor PD98059. However, TUBU induced ERK1/2 phosphorylation was not blocked in the Chk1 SiRNA-transfected COLO 205 cells. These results imply that ERK1/2 mediated Chk1 activation may be play an important role in determining TUBU induced G2/M arrest or apoptosis in COLO 205 cells.
Collapse
Affiliation(s)
- Yean-Hwei Chou
- Department of Surgery, Division of General Surgery, School of Medicine, Taipei Medical University and Hospital, No. 252 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Liu Y, Heilman SA, Illanes D, Sluder G, Chen JJ. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy. Cancer Res 2007; 67:2603-10. [PMID: 17363579 DOI: 10.1158/0008-5472.can-06-3436] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyploidy is often an early event during cervical carcinogenesis, and it predisposes cells to aneuploidy, which is thought to play a causal role in tumorigenesis. Cervical and anogenital cancers are induced by the high-risk types of human papillomavirus (HPV). The HPV E6 oncoprotein induces polyploidy in human keratinocytes, yet the mechanism is not known. It was believed that E6 induces polyploidy by abrogating the spindle checkpoint after mitotic stress. We have tested this hypothesis using human keratinocytes in which E6 expression induces a significant amount of polyploidy. We found that E6 expression does not affect the spindle checkpoint. Instead, we provide direct evidence that E6 is capable of abrogating the subsequent G(1) arrest after adaptation of the mitotic stress. E6 targets p53 for degradation, and previous studies have shown an important role for p53 in modulation of the G(1) arrest after mitotic stress. Importantly, we have discovered that E6 mutants defective in p53 degradation also induce polyploidy, although with lower efficiency. These results suggest that E6 is able to induce polyploidy via both p53-dependent and p53-independent mechanisms. Therefore, our studies highlight a novel function of HPV E6 that may contribute to HPV-induced carcinogenesis and improve our understanding of the onset of the disease.
Collapse
Affiliation(s)
- Yingwang Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | | | |
Collapse
|
105
|
Herman-Antosiewicz A, Stan SD, Hahm ER, Xiao D, Singh SV. Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic. Mol Cancer Ther 2007; 6:1249-61. [PMID: 17406033 DOI: 10.1158/1535-7163.mct-06-0477] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diallyl trisulfide (DATS), a cancer chemopreventive constituent of garlic, inhibits growth of cancer cells by interfering with cell cycle progression, but the mechanism is not fully understood. Here, we show the existence of a novel ataxia-telangiectasia mutated and Rad3 related (ATR)/checkpoint kinase 1 (Chk1)-dependent checkpoint partially responsible for DATS-mediated prometaphase arrest in cancer cells, which is different from the recently described gamma irradiation-induced mitotic exit checkpoint. The PC-3 human prostate cancer cells synchronized in prometaphase by nocodazole treatment and released to DATS-containing medium remained arrested in prometaphase, whereas the cells released to normal medium exited mitosis and resumed cell cycle. The mitotic arrest was maintained even after 4 h of culture of DATS-treated cells (4-h treatment) in drug-free medium. The DATS-arrested mitotic cells exhibited accumulation of anaphase-promoting complex/cyclosome (APC/C) substrates cyclin A and cyclin B1 and hyperphosphorylation of securin, which was accompanied by increased phosphorylation of the APC/C regulatory subunits Cdc20 and Cdh1. The DATS-mediated accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 were partially but markedly attenuated by knockdown of Chk1 or ATR protein. The U2OS osteosarcoma cells expressing doxycycline-inducible kinase dead ATR were significantly more resistant not only to DATS-mediated prometaphase arrest but also to the accumulation of cyclin B1 and hyperphosphorylation of securin, Cdc20, and Cdh1 compared with cells expressing wild-type ATR. However, securin protein knockdown failed to rescue cells from DATS-induced prometaphase arrest. In conclusion, the present study describes a novel signaling pathway involving ATR/Chk1 in the regulation of DATS-induced prometaphase arrest.
Collapse
Affiliation(s)
- Anna Herman-Antosiewicz
- Department of Pharmacology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
106
|
Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR. Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 2006; 6:25. [PMID: 17092342 PMCID: PMC1664585 DOI: 10.1186/1475-2867-6-25] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/08/2006] [Indexed: 12/20/2022] Open
Abstract
We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape senescence due to mutations or epimutations in the senescent checkpoint pathway. A historical review of neosis-like events is presented and implications of neosis in relation to the current dogmas of cancer biology are discussed. Genesis and repetitive re-genesis of Raju cells with transient "stemness" via neosis are of vital importance to the origin and continuous growth of tumors, a process that appears to be common to all types of tumors. We suggest that unlike current anti-mitotic therapy of cancers, anti-neotic therapy would not cause undesirable side effects. We propose a rational hypothesis for the origin and progression of tumors in which neosis plays a major role in the multistep carcinogenesis in different types of cancers. We define cancers as a single disease of uncontrolled neosis due to failure of senescent checkpoint controls.
Collapse
Affiliation(s)
- Rengaswami Rajaraman
- Department of Medicine, Division of Hematology, Dalhousie University, Halifax NS. B3H 1X5
| | - Duane L Guernsey
- Department of Pathology, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | - Murali M Rajaraman
- Nova Scotia Cancer Centre, Department of Radiation Oncology, QEII Health Sciences Center, Dalhousie University, Halifax NS. B3H 1X5, Canada
| | | |
Collapse
|
107
|
Kakizaki T, Hamada N, Wada S, Funayama T, Sakashita T, Hohdatsu T, Sano T, Natsuhori M, Kobayashi Y, Ito N. Distinct modes of cell death by ionizing radiation observed in two lines of feline T-lymphocytes. JOURNAL OF RADIATION RESEARCH 2006; 47:237-43. [PMID: 16960338 DOI: 10.1269/jrr.0618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have examined in vitro radiosensitivities and radioresponses to (60)Co gamma-rays irradiation in feline T-lymphocyte cell lines, FeT-J and FL-4. There seemed to be no significant difference in clonogenic survival between the two lines. The mean lethal dose for both was both 1.9 Gy, and surviving fraction at 2 Gy was 0.30 and 0.48 for FeT-J and FL-4 cells, respectively. However, TUNEL assay indicated much higher degrees of apoptosis induction in FeT-J cells (>40%) than in FL-4 cells (<10%) at 4 days after 15 Gy irradiation. Microscopic examination revealed a larger population of multi-nucleate cells in FL-4 cells (60.3%) than in FeT-J cells (16.0%) at 4 days after 15 Gy irradiation, suggesting that a larger ratio of mitotic catastrophe occurred in FL-4 cells. These results suggest that FeT-J is more likely to be induced into apoptosis and FL-4 is more likely to fall into mitotic catastrophe, and eventually necrosis; both of them showed a similar surviving fraction against gamma-rays. The results also indicate that FL-4 cells follow a process other than apoptosis to cell death, suggesting the presence of a regulatory mechanism that may control the relationship between mitotic catastrophe and apoptosis in feline T-lymphocytes.
Collapse
Affiliation(s)
- Takehiko Kakizaki
- Laboratory of Veterinary Radiology and Radiation Biology, Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Towada, Aomori
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Churikov D, Wei C, Price CM. Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol Cell Biol 2006; 26:6971-82. [PMID: 16943437 PMCID: PMC1592853 DOI: 10.1128/mcb.01011-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although vertebrate POT1 is thought to play a role in both telomere capping and length regulation, its function has proved difficult to analyze. We therefore generated a conditional cell line that lacks wild-type POT1 but expresses an estrogen receptor-POT1 fusion. The cells grow normally in tamoxifen, but drug removal causes loss of POT1 from the telomere, rapid cell cycle arrest, and eventual cell death. The arrested cells have a 4N DNA content, and addition of caffeine causes immediate entry into mitosis, suggesting a G(2) arrest due to an ATM- and/or ATR-mediated checkpoint. gammaH2AX accumulates at telomeres, indicating a telomeric DNA damage response, the likely cause of the checkpoint. However, POT1 loss does not cause degradation of the G-strand overhang. Instead, the amount of G overhang increases two- to threefold. Some cells eventually escape the cell cycle arrest and enter mitosis. They rarely exhibit telomere fusions but show severe chromosome segregation defects due to centrosome amplification. Our data indicate that vertebrate POT1 is required for telomere capping but that it functions quite differently from TRF2. Instead of being required for G-overhang protection, POT1 is required to suppress a telomeric DNA damage response. Our results also indicate significant functional similarities between POT1 and Cdc13 from budding yeast (Saccharomyces cerevisiae).
Collapse
Affiliation(s)
- Dmitri Churikov
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
109
|
Chen JS, Lin SY, Tso WL, Yeh GC, Lee WS, Tseng H, Chen LC, Ho YS. Checkpoint kinase 1-mediated phosphorylation of Cdc25C and bad proteins are involved in antitumor effects of loratadine-induced G2/M phase cell-cycle arrest and apoptosis. Mol Carcinog 2006; 45:461-78. [PMID: 16649252 DOI: 10.1002/mc.20165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we first demonstrated that loratadine (LOR), a promising world widely used oral anti-histamine, effectively inhibits growth of tumors derived from human colon cancer cells (COLO 205) in an in vivo setting. In vitro study demonstrated that the anti-tumor effects of LOR in COLO 205 cells were mediated by causing G(2)/M phase cell growth cycle arrest and caspase 9-mediated apoptosis. Cell-cycle arrest induced by LOR (75 microM, 24 h) was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated Cdc2 (inactive form). Interestingly, LOR (75 microM, for 4 h) treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3. We further demonstrated that the LOR-induced Cdc25C (Ser-216) phosphorylation was blocked in the presence of checkpoint kinase 1 (Chk1) specific inhibitor (SB-218078). The cells treated with LOR in the presence of Chk1 specific inhibitor (SB-218078) were then released from G(2)/M arrest into apoptosis. These results implied that Chk1-mediated phosphorylation of Cdc25C plays a major role in response to LOR-mediated G(2)/M arrest. Although the Chk1-mediated cell growth arrest in response to DNA damage is well documented, our results presented in this study was the first report to describe the Chk1-mediated G(2)/M cell-cycle arrest by the histamine H1 antagonist, LOR.
Collapse
Affiliation(s)
- Jinn-Shiun Chen
- Department of Surgery, Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Mansilla S, Priebe W, Portugal J. Transcriptional changes facilitate mitotic catastrophe in tumour cells that contain functional p53. Eur J Pharmacol 2006; 540:34-45. [PMID: 16735036 DOI: 10.1016/j.ejphar.2006.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 01/11/2023]
Abstract
Exposure of Jurkat T lymphocytes containing functional p53 to nanomolar concentrations of bisanthracycline WP631 resulted in arrest at the G2/M checkpoint and transient senescence-like phenotype in the presence of DNA synthesis. The cells entered crisis, became polyploid, showed aberrant mitotic figures, and died through mitotic catastrophe. Cell death was accompanied by changes in the expression profile of various oncogenes and tumour suppressor genes including the down-regulation of p53. The changed expression was confirmed for some of these genes using semi-quantitative RT-PCR, and the decline in p53 protein levels was established. Our results suggest that WP631 induced changes in cell cycle control pathways leading to death of Jurkat T cells through mitotic catastrophe, which occurred in the absence of caspase-2 and caspase-3 activities, rather than apoptosis.
Collapse
Affiliation(s)
- Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Josep Samitier, 1-5, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
111
|
Shiromizu T, Goto H, Tomono Y, Bartek J, Totsukawa G, Inoko A, Nakanishi M, Matsumura F, Inagaki M. Regulation of mitotic function of Chk1 through phosphorylation at novel sites by cyclin-dependent kinase 1 (Cdk1). Genes Cells 2006; 11:477-85. [PMID: 16629900 DOI: 10.1111/j.1365-2443.2006.00955.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chk1 is phosphorylated at Ser317 and Ser345 by ATR in response to stalled replication and genotoxic stresses. This Chk1 activation is thought to play critical roles in the prevention of premature mitosis. However, the behavior of Chk1 in mitosis remains largely unknown. Here we reported that Chk1 was phosphorylated in mitosis. The reduction of this phosphorylation was observed at the metaphase-anaphase transition. Two-dimensional phosphopeptide mapping revealed that Chk1 phosphorylation sites in vivo were completely overlapped with the in vitro sites by cyclin-dependent protein kinase (Cdk) 1 or by p38 MAP kinase. Ser286 and Ser301 were identified as novel phosphorylation sites on Chk1. Treatment with Cdk inhibitor butyrolactone I induced the reduction of Chk1-S301 phosphorylation, although treatment with p38-specific inhibitor SB203580 or siRNA did not. In addition, ionizing radiation (IR) or ultraviolet (UV) light did not induce Chk1 phosphorylation at Ser317 and Ser345 in nocodazole-arrested mitotic cells. These observations imply the regulation of mitotic Chk1 function through Chk1 phosphorylation at novel sites by Cdk1.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 2006; 26:2661-74. [PMID: 16537910 PMCID: PMC1430322 DOI: 10.1128/mcb.26.7.2661-2674.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gene encoding the SNF5/Ini1 core subunit of the SWI/SNF chromatin remodeling complex is a tumor suppressor in humans and mice, with an essential role in early embryonic development. To investigate further the function of this gene, we have generated a Cre/lox-conditional mouse line. We demonstrate that Snf5 deletion in primary fibroblasts impairs cell proliferation and survival without the expected derepression of most retinoblastoma protein-controlled, E2F-responsive genes. Furthermore, Snf5-deficient cells are hypersensitive to genotoxic stress, display increased aberrant mitotic features, and accumulate phosphorylated p53, leading to elevated expression of a specific subset of p53 target genes, suggesting a role for Snf5 in the DNA damage response. p53 inactivation does not rescue the proliferation defect caused by Snf5 deficiency but reduces apoptosis and strongly accelerates tumor formation in Snf5-heterozygous mice.
Collapse
Affiliation(s)
- Agnes Klochendler-Yeivin
- Department of Animal and Cell Biology, The Institute for Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
113
|
Abstract
Loss of DNA mismatch repair (MMR) in mammalian cells, as well as having a causative role in cancer, has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. MMR-deficient cells exhibit defects in G2/M cell cycle arrest and cell killing when treated with these agents. MMR-dependent cell cycle arrest occurs, at least for low doses of alkylating agents, only after the second S-phase following DNA alkylation, suggesting that two rounds of DNA replication are required to generate a checkpoint signal. These results point to an indirect role for MMR proteins in damage signalling where aberrant processing of mismatches leads to the generation of DNA structures (single-strand gaps and/or double-strand breaks) that provoke checkpoint activation and cell killing. Significantly, recent studies have revealed that the role of MMR proteins in mismatch repair can be uncoupled from the MMR-dependent damage responses. Thus, there is a threshold of expression of MSH2 or MLH1 required for proper checkpoint and cell-death signalling, even though sub-threshold levels are sufficient for fully functional MMR repair activity. Segregation is also revealed through the identification of mutations in MLH1 or MSH2 that provide alleles functional in MMR but not in DNA damage responses and mutations in MSH6 that compromise MMR but not in apoptotic responses to DNA damaging agents. These studies suggest a direct role for MMR proteins in recognizing and signalling DNA damage responses that is independent of the MMR catalytic repair process. How MMR-dependent G2 arrest may link to cell death remains elusive and we speculate that it is perhaps the resolution of the MMR-dependent G2 cell cycle arrest following DNA damage that is important in terms of cell survival.
Collapse
Affiliation(s)
- Vincent O'Brien
- Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, Garscube Estate, Glasgow G61 1BD, UK.
| | | |
Collapse
|
114
|
Park SS, Eom YW, Choi KS. Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis. Biochem Biophys Res Commun 2005; 334:1014-21. [PMID: 16036217 DOI: 10.1016/j.bbrc.2005.06.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
In Huh-7 hepatoma cells, low dose (LD) doxorubicin treatment induces cell death through mitotic catastrophe accompanying the formation of large cells with multiple micronuclei, whereas high dose (HD) doxorubicin induces apoptosis. In this study, we investigated the role of Cdc2 and Cdk2 kinase in the regulation of the two modes of cell death induced by doxorubicin. During HD doxorubicin-induced apoptosis, the histone H1-associated activities of Cdc2 and Cdk2 both progressively declined in parallel with reductions in cyclin A and cyclin B protein levels. In contrast, during LD doxorubicin-induced cell death through mitotic catastrophe, the Cdc2 and Cdk2 kinases were transiently activated 1 day post-treatment, with similar changes seen in the protein levels of cyclin A, cyclin B, and Cdc2. Treatment with roscovitine, a specific inhibitor of Cdc2 and Cdk2, significantly blocked LD doxorubicin-induced mitotic catastrophe and cell death, but did not affect HD doxorubicin-induced apoptosis in Huh-7, SNU-398, and SNU-449 hepatoma cell lines. Our results demonstrate that differential regulation of Cdc2 and Cdk2 activity by different doses of doxorubicin may contribute to the induction of two distinct modes of cell death in hepatoma cells, either apoptosis or cell death through mitotic catastrophe.
Collapse
Affiliation(s)
- Seok Soon Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 442-749, Republic of Korea
| | | | | |
Collapse
|
115
|
Herman-Antosiewicz A, Singh SV. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J Biol Chem 2005; 280:28519-28. [PMID: 15961392 DOI: 10.1074/jbc.m501443200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have shown previously that diallyl trisulfide (DATS), a constituent of processed garlic, inhibits proliferation of PC-3 and DU145 human prostate cancer cells by causing G(2)-M phase cell cycle arrest in association with inhibition of cyclin-dependent kinase 1 activity and hyperphosphorylation of Cdc25C at Ser(216). Here, we report that DATS-treated PC-3 and DU145 cells are also arrested in mitosis as judged by microscopy following staining with anti-alpha-tubulin antibody and 4',6-diamidino-2-phenylindole and flow cytometric analysis of Ser(10) phosphorylation of histone H3. The DATS treatment caused activation of checkpoint kinase 1 and checkpoint kinase 2, which are intermediaries of DNA damage checkpoints and implicated in Ser(216) phosphorylation of Cdc25C. The diallyl trisulfide-induced Ser(216) phosphorylation of Cdc25C as well as mitotic arrest were significantly attenuated by knockdown of check-point kinase 1 protein in both PC-3 and DU145 cells. On the other hand, depletion of checkpoint kinase 2 protein did not have any appreciable effect on G(2) or M phase arrest or Cdc25C phosphorylation caused by diallyl trisulfide. The lack of a role of checkpoint kinase 2 in diallyl trisulfide-induced phosphorylation of Cdc25C or G(2)-M phase cell cycle arrest was confirmed using HCT-15 cells stably transfected with phosphorylation-deficient mutant (T68A mutant) of checkpoint kinase 2. In conclusion, the results of the present study suggest existence of a checkpoint kinase 1-dependent mechanism for diallyl trisulfide-induced mitotic arrest in human prostate cancer cells.
Collapse
Affiliation(s)
- Anna Herman-Antosiewicz
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|