101
|
Larijani M, Martin A. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol 2007; 27:8038-48. [PMID: 17893327 PMCID: PMC2169167 DOI: 10.1128/mcb.01046-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/06/2007] [Accepted: 09/12/2007] [Indexed: 01/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates antibody diversification processes by deaminating immunoglobulin sequences. Since transcription of target genes is required for deamination in vivo and AID exclusively mutates single-stranded DNA (ssDNA) in vitro, AID has been postulated to mutate transcription bubbles. However, since ssDNA generated by transcription can assume multiple structures, it is unknown which of these are targeted in vivo. Here we examine the enzymatic and binding properties of AID for different DNA structures. We report that AID has minimal activity on stem-loop structures and preferentially deaminates five-nucleotide bubbles. We compared AID activity on cytidines placed at various distances from the single-stranded/double-stranded DNA junction of bubble substrates and found that the optimal target consists of a single-stranded NWRCN motif. We also show that high-affinity binding is required for but does not necessarily lead to efficient deamination. Using nucleotide analogues, we show that AID's WRC preference (W = A or T; R = A or G) involves the recognition of a purine in the R position and that the carbonyl or amino side chains of guanosine negatively influence specificity at the W position. Our results indicate that AID is likely to target short-tract regions of ssDNA produced by transcription elongation and that it requires a fully single-stranded WRC motif.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
102
|
Chatterji M, Unniraman S, McBride KM, Schatz DG. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5274-80. [PMID: 17911613 DOI: 10.4049/jimmunol.179.8.5274] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) is thought to initiate somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR) by the transcription-coupled deamination of cytosine residues in Ig genes. Phosphorylation of AID by protein kinase A (PKA) and subsequent interaction of AID with replication protein A (RPA) have been proposed to play important roles in allowing AID to deaminate DNA during transcription. Serine 38 (S38) of mouse AID is phosphorylated in vivo and lies in a consensus target site for PKA, and mutation of this residue interferes with CSR and SHM. In this study, we demonstrate that S38 in mouse and chicken AID is phosphorylated in chicken DT40 cells and is required for efficient GCV and SHM in these cells. Paradoxically, zebra fish AID, which lacks a serine at the position corresponding to S38, has previously been shown to be active for CSR and we demonstrate that it is active for GCV/SHM. Aspartate 44 (D44) of zebra fish AID has been proposed to compensate for the absence of the S38 phosphorylation site but we demonstrate that mutation of D44 has no effect on GCV/SHM. Some features of zebra fish AID other than D44 might compensate for the absence of S38. Alternatively, the zebra fish protein might function in a manner that is independent of PKA and RPA in DT40 cells, raising the possibility that, under some circumstances, AID mediates efficient Ig gene diversification without the assistance of RPA.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
103
|
Callén E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, Pellegrini M, McBride K, Wangsa D, Bredemeyer AL, Sleckman BP, Ried T, Nussenzweig M, Nussenzweig A. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 2007; 130:63-75. [PMID: 17599403 DOI: 10.1016/j.cell.2007.06.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/17/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
DNA double-strand breaks (DSBs) induce a signal transmitted by the ataxia-telangiectasia mutated (ATM) kinase, which suppresses illegitimate joining of DSBs and activates cell-cycle checkpoints. Here we show that a significant fraction of mature ATM-deficient lymphocytes contain telomere-deleted ends produced by failed end joining during V(D)J recombination. These RAG-1/2 endonuclease-dependent, terminally deleted chromosomes persist in peripheral lymphocytes for at least 2 weeks in vivo and are stable over several generations in vitro. Restoration of ATM kinase activity in mature lymphocytes that have transiently lost ATM function leads to loss of cells with terminally deleted chromosomes. Thus, maintenance of genomic stability in lymphocytes requires faithful end joining as well a checkpoint that prevents the long-term persistence and transmission of DSBs. Silencing this checkpoint permits DNA ends produced by V(D)J recombination in a lymphoid precursor to serve as substrates for translocations with chromosomes subsequently damaged by other means in mature cells.
Collapse
Affiliation(s)
- Elsa Callén
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Basu U, Chaudhuri J, Phan RT, Datta A, Alt FW. Regulation of activation induced deaminase via phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:129-37. [PMID: 17338181 DOI: 10.1007/0-387-46530-8_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunoglobulin gene diversification by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion is dependent upon activation-induced cytidine deaminase (AID). AID is a single-stranded DNA specific cytidine deaminase that is expressed primarily in activated mature B lymphocytes. AID appears to catalyze DNA cytidine deamination of immunoglobulin heavy (IgH) and light chain (IgL) variable region (V) exons and IgH switch (S) region sequences to initiate, respectively, IgH and IgL somatic hypermutation (SHM) and IgH class switch recombination (CSR). Here, we will discuss the implications of recent studies that demonstrate the role of AID phosphorylation in augmenting AID activity with respect to these two processes.
Collapse
Affiliation(s)
- Uttiya Basu
- The Howard Hughes Medical Institute, The Children's Hospital, The CBR Institute for Biomedical Research, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
105
|
Feldhahn N, Henke N, Melchior K, Duy C, Soh BN, Klein F, von Levetzow G, Giebel B, Li A, Hofmann WK, Jumaa H, Müschen M. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. ACTA ACUST UNITED AC 2007; 204:1157-66. [PMID: 17485517 PMCID: PMC2118573 DOI: 10.1084/jem.20062662] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Philadelphia chromosome (Ph) encoding the oncogenic BCR-ABL1 kinase defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. ALL cells are derived from B cell precursors in most cases and typically carry rearranged immunoglobulin heavy chain (IGH) variable (V) region genes devoid of somatic mutations. Somatic hypermutation is restricted to mature germinal center B cells and depends on activation-induced cytidine deaminase (AID). Studying AID expression in 108 cases of ALL, we detected AID mRNA in 24 of 28 Ph+ ALLs as compared with 6 of 80 Ph− ALLs. Forced expression of BCR-ABL1 in Ph− ALL cells and inhibition of the BCR-ABL1 kinase showed that aberrant expression of AID depends on BCR-ABL1 kinase activity. Consistent with aberrant AID expression in Ph+ ALL, IGH V region genes and BCL6 were mutated in many Ph+ but unmutated in most Ph− cases. In addition, AID introduced DNA single-strand breaks within the tumor suppressor gene CDKN2B in Ph+ ALL cells, which was sensitive to BCR-ABL1 kinase inhibition and silencing of AID expression by RNA interference. These findings identify AID as a BCR-ABL1–induced mutator in Ph+ ALL cells, which may be relevant with respect to the particularly unfavorable prognosis of this leukemia subset.
Collapse
Affiliation(s)
- Niklas Feldhahn
- Leukemia Research Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Gourzi P, Leonova T, Papavasiliou FN. Viral induction of AID is independent of the interferon and the Toll-like receptor signaling pathways but requires NF-kappaB. ACTA ACUST UNITED AC 2007; 204:259-65. [PMID: 17242162 PMCID: PMC2118730 DOI: 10.1084/jem.20061801] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID) is expressed in germinal centers of lymphoid organs during immunoglobulin diversification, in bone marrow B cells after infection with Abelson murine leukemia retrovirus (Ab-MLV), and in human B cells after infection by hepatitis C virus. To understand how viruses signal AID induction in the host we asked whether the AID response was abrogated in cells deficient in the interferon pathway or in signaling via the Toll-like receptors. Here we show that AID is not an interferon responsive gene and abrogation of Toll-like receptor signaling does not diminish the AID response. However, we found that NF-κB was required for expression of virally induced AID. Since NF-κB binds and activates the AID promoter, these results mechanistically link viral infection with AID transcription. Thus, induction of AID by viruses could be the result of several signaling pathways that culminate in NF-κB activation, underscoring the versatility of this host defense program.
Collapse
Affiliation(s)
- Polyxeni Gourzi
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
107
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
Functional antibody genes are assembled by V-D-J joining and then diversified by somatic hypermutation. This hypermutation results from stepwise incorporation of single nucleotide substitutions into the V gene, underpinning much of antibody diversity and affinity maturation. Hypermutation is triggered by activation-induced deaminase (AID), an enzyme which catalyzes targeted deamination of deoxycytidine residues in DNA. The pathways used for processing the AID-generated U:G lesions determine the variety of base substitutions observed during somatic hypermutation. Thus, DNA replication across the uracil yields transition mutations at C:G pairs, whereas uracil excision by UNG uracil-DNA glycosylase creates abasic sites that can also yield transversions. Recognition of the U:G mismatch by MSH2/MSH6 triggers a mutagenic patch repair in which polymerase eta plays a major role and leads to mutations at A:T pairs. AID-triggered DNA deamination also underpins immunoglobulin variable (IgV) gene conversion, isotype class switching, and some oncogenic translocations in B cell tumors.
Collapse
Affiliation(s)
- Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Québec, Canada.
| | | |
Collapse
|
109
|
Abstract
After their assembly by V(D)J recombination, immunoglobulin (Ig) genes undergo somatic hypermutation, gene conversion, and class switch recombination to generate additional antibody diversity. The three diversification processes depend on activation-induced cytidine deaminase (AID) and are tightly linked to transcription. The reactions occur primarily on Ig genes and the molecular mechanisms that underlie their targeting to Ig loci have been of intense interest. In this chapter, we discuss the evidence linking transcription and transcriptional control elements to the three diversification pathways, and we consider how various features of chromatin could render parts of the genome permissive for AID-mediated sequence diversification.
Collapse
Affiliation(s)
- Shu Yuan Yang
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
110
|
Abstract
Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
111
|
Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 2007; 27:367-97. [PMID: 18197815 PMCID: PMC2994649 DOI: 10.1615/critrevimmunol.v27.i4.60] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression and activity of activation-induced cytidine deaminase (AID) encoded by the aicda gene are essential for immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR). SHM and CSR unfold, in general, in germinal centers and/are central to the maturation of effective antibody responses. AID expression is induced by activated B-cell CD40 signaling, which is critical for the germinal center reaction, and is further enhanced by other stimuli, including interleukin-4 (IL-4) secreted from CD4+ T cells or Toll-like receptor (TLR)-activating bacterial and/or viral molecules. Integration of different intracellular signal transduction pathways, as activated by these stimuli, leads to a dynamic aicda-regulating program, which involves both positively acting trans-factors, such as Pax5, HoxC4, E47, and Irf8, and negative modulators, such as Blimp1 and Id2, to restrict aicda expression primarily to germinal center B cells. The phosphatidylinositol 3-kinase (PI 3-K), which functions downstream of activated B-cell receptor (BCR) signaling, likely plays an important role in triggering the downregulation of aicda expression in postgerminal center B cells and throughout plasmacytoid differentiation. In B cells undergoing SHM and CSR, AID activity, and, possibly, AID targeting to the Ig locus are regulated at a posttranslational level, including AID dimerization/oligomerization, nuclear/cytoplasmic AID translocation, and phosphorylation of the AID Ser38 residue by protein kinase A (PKA). Here, we discuss the role of B-cell activation signals, transcription regulation programs, and posttranslational modifications in controlling aicda expression and AID activity, thereby delineating an integrated model of modulation of SHM and CSR in the germinal center reaction.
Collapse
Affiliation(s)
- Zhenming Xu
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | | | |
Collapse
|
112
|
Ramiro A, Reina San-Martin B, McBride K, Jankovic M, Barreto V, Nussenzweig A, Nussenzweig MC. The Role of Activation‐Induced Deaminase in Antibody Diversification and Chromosome Translocations. Adv Immunol 2007; 94:75-107. [PMID: 17560272 DOI: 10.1016/s0065-2776(06)94003-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although B and T lymphocytes are similar in many respects including diversification of their antigen receptor genes by V(D)J recombination, 95% of all lymphomas diagnosed in the western world are of B-cell origin. Many of these are derived from mature B cells [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262] and display hallmark chromosome translocations involving immunoglobulin genes and a proto-oncogene partner whose expression becomes deregulated as a result of the translocation reaction [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262; Kuppers, R., and Dalla-Favera, R. (2001). Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580-5594]. These translocations are essential to the etiology of B-cell neoplasms. Here we will review how the B-cell specific molecular events required for immunoglobulin class switch recombination are initiated and how they contribute to chromosome translocations in vivo.
Collapse
Affiliation(s)
- Almudena Ramiro
- DNA Hypermutation and Cancer Group, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
113
|
Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B‐Cell Intrinsic Immunoglobulin Class Switch Recombination Deficiencies. Adv Immunol 2007; 94:275-306. [PMID: 17560278 DOI: 10.1016/s0065-2776(06)94009-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
Collapse
|
114
|
Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A. AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol Cell Biol 2006; 27:20-30. [PMID: 17060445 PMCID: PMC1800660 DOI: 10.1128/mcb.00824-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates secondary antibody diversification processes by deaminating cytidines on single-stranded DNA. AID preferentially mutates cytidines preceded by W(A/T)R(A/G) dinucleotides, a sequence specificity that is evolutionarily conserved from bony fish to humans. To uncover the biochemical mechanism of AID, we compared the catalytic and binding kinetics of AID on WRC (a hot-spot motif, where W equals A or T and R equals A or G) and non-WRC motifs. We show that although purified AID preferentially deaminates WRC over non-WRC motifs to the same degree observed in vivo, it exhibits similar binding affinities to either motif, indicating that its sequence specificity is not due to preferential binding of WRC motifs. AID preferentially deaminates bubble substrates of five to seven nucleotides rather than larger bubbles and preferentially binds to bubble-type rather than to single-stranded DNA substrates, suggesting that the natural targets of AID are either transcription bubbles or stem-loop structures. Importantly, AID displays remarkably high affinity for single-stranded DNA as indicated by the low dissociation constants and long half-life of complex dissociation that are typical of transcription factors and single-stranded DNA binding protein. These findings suggest that AID may persist on immunoglobulin and other target sequences after deamination, possibly acting as a scaffolding protein to recruit other factors.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
115
|
de Yébenes VG, Ramiro AR. Activation-induced deaminase: light and dark sides. Trends Mol Med 2006; 12:432-9. [PMID: 16861038 DOI: 10.1016/j.molmed.2006.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/23/2006] [Accepted: 07/07/2006] [Indexed: 01/08/2023]
Abstract
Activation-induced deaminase (AID) is required for class switch recombination (CSR) and somatic hypermutation (SHM), which are responsible for secondary diversification of antibodies in germinal centers. AID initiates these processes by deamination of cytosines on the immunoglobulin (Ig) locus, a potentially mutagenic activity. AID expression is restricted to germinal-center B cells, but the mechanisms that regulate its target specificity are not completely understood. Here, we review the most recent findings on the regulation of AID targeting and discuss how AID activity on non-Ig genes is relevant to the generation of chromosome translocations and to lymphomagenesis.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- DNA Hypermutation and Cancer Group, Spanish National Cancer Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | | |
Collapse
|