101
|
Platt II RN, Ray DA. A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene 2012; 500:47-53. [DOI: 10.1016/j.gene.2012.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
|
102
|
Ramulu HG, Raoult D, Pontarotti P. The rhizome of life: what about metazoa? Front Cell Infect Microbiol 2012; 2:50. [PMID: 22919641 PMCID: PMC3417402 DOI: 10.3389/fcimb.2012.00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/23/2012] [Indexed: 02/03/2023] Open
Abstract
The increase in huge number of genomic sequences in recent years has contributed to various genetic events such as horizontal gene transfer (HGT), gene duplication and hybridization of species. Among them HGT has played an important role in the genome evolution and was believed to occur only in Bacterial and Archaeal genomes. As a result, genomes were found to be chimeric and the evolution of life was represented in different forms such as forests, networks and species evolution was described more like a rhizome, rather than a tree. However, in the last few years, HGT has also been evidenced in other group such as metazoa (for example in root-knot nematodes, bdelloid rotifers and mammals). In addition to HGT, other genetic events such as transfer by retrotransposons and hybridization between more closely related lineages are also well established. Therefore, in the light of such genetic events, whether the evolution of metazoa exists in the form of a tree, network or rhizome is highly questionable and needs to be determined. In the current review, we will focus on the role of HGT, retrotransposons and hybridization in the metazoan evolution.
Collapse
Affiliation(s)
- Hemalatha G. Ramulu
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
- URMITE CNRS-IRD UMR6236-198Marseille, France
| | | | - Pierre Pontarotti
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
| |
Collapse
|
103
|
Pagán HJT, Macas J, Novák P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 2012; 4:575-85. [PMID: 22491057 PMCID: PMC3342881 DOI: 10.1093/gbe/evs038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (∼5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3–4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family.
Collapse
Affiliation(s)
- Heidi J T Pagán
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | | | | | | | | | | |
Collapse
|
104
|
Jiang XY, Du XD, Tian YM, Shen RJ, Sun CF, Zou SM. Goldfish transposase Tgf2 presumably from recent horizontal transfer is active. FASEB J 2012; 26:2743-52. [PMID: 22441985 DOI: 10.1096/fj.11-199273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hobo/Activator/Tam3 (hAT) superfamily transposons occur in plants and animals and play a role in genomic evolution. Certain hAT transposons are active and have been developed as incisive genetic tools. Active vertebrate elements are rarely discovered; however, Tgf2 transposon was recently discovered in goldfish (Carassius auratus). Here, we found that the endogenous Tgf2 element can transpose in goldfish genome. Seven different goldfish mRNA transcripts, encoding three lengths of Tgf2 transposase, were identified. Tgf2 transposase mRNA was detected in goldfish embryos, mainly in epithelial cells; levels were high in ovaries and mature eggs and in all adult tissues tested. Endogenous Tgf2 transposase mRNA is active in mature eggs and can mediate high rates of transposition (>30%) when injected with donor plasmids harboring a Tgf2 cis-element. When donor plasmid was coinjected with capped Tgf2 transposase mRNA, the insertion rate reached >90% at 1 yr. Nonautonomous copies of the Tgf2 transposon with large-fragment deletions and low levels of point mutations were also detected in common goldfish. Phylogenetic analysis indicates the taxonomic distribution of Tgf2 in goldfish is not due to vertical inheritance. We propose that the goldfish Tgf2 transposon originated by recent horizontal transfer and maintains a highly native activity.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
105
|
Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U. Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol 2012; 29:2223-30. [PMID: 22411854 PMCID: PMC3424411 DOI: 10.1093/molbev/mss089] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, we report likely recurrent horizontal (lateral) gene transfer events of genes encoding pore-forming toxins of the aerolysin family between species belonging to different kingdoms of life. Clustering based on pairwise similarity and phylogenetic analysis revealed several distinct aerolysin sequence groups, each containing proteins from multiple kingdoms of life. These results strongly support at least six independent transfer events between distantly related phyla in the evolutionary history of one protein family and discount selective retention of ancestral genes as a plausible explanation for this patchy phylogenetic distribution. We discuss the possible roles of these proteins and show evidence for a convergent new function in two extant species. We hypothesize that certain gene families are more likely to be maintained following horizontal gene transfer from commensal or pathogenic organism to its host if they 1) can function alone; and 2) are immediately beneficial for the ecology of the organism, as in the case of pore-forming toxins which can be utilized in multicellular organisms for defense and predation.
Collapse
Affiliation(s)
- Yehu Moran
- Department for Molecular Evolution and Development, Center for Organismal Systems Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
106
|
Ricou J, Pollock JA. The Tree, the Spiral and the Web of Life: A Visual Exploration of Biological Evolution for Public Murals. LEONARDO (OXFORD, ENGLAND) 2012; 45:18-25. [PMID: 38770276 PMCID: PMC11105756 DOI: 10.1162/leon_a_00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The authors created the Spiral of Life as a new, accessible symbol for the evolution of life. This novel visual interpretation of evolution challenges traditional tenets of the field in light of emerging new themes in research. The Spiral brings recent principles to the general public and also provides scientists with a new visual concept to support further discussion. The Spiral emerged from the combination of the analysis of the latest scientific research with an artistic process to create new images and icons. A resulting complementary series of artworks was installed in five cultural institutions and museums in Pittsburgh, PA.
Collapse
Affiliation(s)
- Joana Ricou
- 631 Grand Street, Floor 4, Brooklyn, NY 11211, U.S.A
| | - John Archie Pollock
- Department of Biological Sciences, 222 Mellon Hall, Duquesne University, Pittsburgh, PA 15282, U.S.A
| |
Collapse
|
107
|
Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proc Natl Acad Sci U S A 2012; 109:1907-12. [PMID: 22308402 DOI: 10.1073/pnas.1116168109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Next-generation sequencing is a valuable tool in our growing understanding of the genetic diversity of viral populations. Using this technology, we have investigated the RNA content of a purified nonenveloped single-stranded RNA virus, flock house virus (FHV). We have also investigated the RNA content of virus-like particles (VLPs) of FHV and the related Nudaurelia capensis omega virus. VLPs predominantly package ribosomal RNA and transcripts of their baculoviral expression vectors. In addition, we find that 5.3% of the packaged RNAs are transposable elements derived from the Sf21 genome. This observation may be important when considering the therapeutic use of VLPs. We find that authentic FHV virions also package a variety of host RNAs, accounting for 1% of the packaged nucleic acid. Significant quantities of host messenger RNAs, ribosomal RNA, noncoding RNAs, and transposable elements are readily detected. The packaging of these host RNAs elicits the possibility of horizontal gene transfer between eukaryotic hosts that share a viral pathogen. We conclude that the genetic content of nonenveloped RNA viruses is variable, not just by genome mutation, but also in the diversity of RNA transcripts that are packaged.
Collapse
|
108
|
Hellen EHB, Brookfield JFY. Investigation of the origin and spread of a Mammalian transposable element based on current sequence diversity. J Mol Evol 2012; 73:287-96. [PMID: 22222953 PMCID: PMC3268980 DOI: 10.1007/s00239-011-9475-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023]
Abstract
Almost half the human genome consists of mobile DNA elements, and their analysis is a vital part of understanding the human genome as a whole. Many of these elements are ancient and have persisted in the genome for tens or hundreds of millions of years, providing a window into the evolution of modern mammals. The Golem family have been used as model transposons to highlight computational analyses which can be used to investigate these elements, particularly the use of molecular dating with large transposon families. Whole-genome searches found Golem sequences in 20 mammalian species. Golem A and B subsequences were only found in primates and squirrel. Interestingly, the full-length Golem, found as a few copies in many mammalian genomes, was found abundantly in horse. A phylogenetic profile suggested that Golem originated after the eutherian–metatherian divergence and that the A and B subfamilies originated at a much later date. Molecular dating based on sequence diversity suggests an early age, of 175 Mya, for the origin of the family and that the A and B lineages originated much earlier than expected from their current taxonomic distribution and have subsequently been lost in some lineages. Using publically available data, it is possible to investigate the evolutionary history of transposon families. Determining in which organisms a transposon can be found is often used to date the origin and expansion of the families. However, in this analysis, molecular dating, commonly used for determining the age of gene sequences, has been used, reducing the likelihood of errors from deleted lineages.
Collapse
Affiliation(s)
- Elizabeth H B Hellen
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, University Park, Nottingham, UK
| | | |
Collapse
|
109
|
Abstract
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes.
Collapse
Affiliation(s)
- Cheng Ran Lisa Huang
- Institute of Genetic Medicine and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kathleen H. Burns
- Department of Pathology, Department of Oncology, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jef D. Boeke
- Molecular Biology and Genetics, Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
110
|
Kusumi K, Kulathinal RJ, Abzhanov A, Boissinot S, Crawford NG, Faircloth BC, Glenn TC, Janes DE, Losos JB, Menke DB, Poe S, Sanger TJ, Schneider CJ, Stapley J, Wade J, Wilson-Rawls J. Developing a community-based genetic nomenclature for anole lizards. BMC Genomics 2011; 12:554. [PMID: 22077994 PMCID: PMC3248570 DOI: 10.1186/1471-2164-12-554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/11/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics. RESULTS Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations. CONCLUSIONS This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.
Collapse
Affiliation(s)
- Kenro Kusumi
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
| | - Rob J Kulathinal
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | - Stephane Boissinot
- Department of Biology, Queens College, The City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367-1597; USA
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, USA
| | - Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA 30602-7223, USA
| | - Steven Poe
- Department of Biology, University of New Mexico, 167 Castetter Hall, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Thomas J Sanger
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | | | - Jessica Stapley
- Smithsonian Tropical Research Institute, Unit 9100 BOX 0948, DPO AA 34002-9998, USA
| | - Juli Wade
- Departments of Psychology and Zoology, Michigan State University, 212 Giltner Hall, East Lansing, MI 48824-1101, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
| |
Collapse
|
111
|
Jurka J, Bao W, Kojima KK. Families of transposable elements, population structure and the origin of species. Biol Direct 2011; 6:44. [PMID: 21929767 PMCID: PMC3183009 DOI: 10.1186/1745-6150-6-44] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background Eukaryotic genomes harbor diverse families of repetitive DNA derived from transposable elements (TEs) that are able to replicate and insert into genomic DNA. The biological role of TEs remains unclear, although they have profound mutagenic impact on eukaryotic genomes and the origin of repetitive families often correlates with speciation events. We present a new hypothesis to explain the observed correlations based on classical concepts of population genetics. Presentation of the hypothesis The main thesis presented in this paper is that the TE-derived repetitive families originate primarily by genetic drift in small populations derived mostly by subdivisions of large populations into subpopulations. We outline the potential impact of the emerging repetitive families on genetic diversification of different subpopulations, and discuss implications of such diversification for the origin of new species. Testing the hypothesis Several testable predictions of the hypothesis are examined. First, we focus on the prediction that the number of diverse families of TEs fixed in a representative genome of a particular species positively correlates with the cumulative number of subpopulations (demes) in the historical metapopulation from which the species has emerged. Furthermore, we present evidence indicating that human AluYa5 and AluYb8 families might have originated in separate proto-human subpopulations. We also revisit prior evidence linking the origin of repetitive families to mammalian phylogeny and present additional evidence linking repetitive families to speciation based on mammalian taxonomy. Finally, we discuss evidence that mammalian orders represented by the largest numbers of species may be subject to relatively recent population subdivisions and speciation events. Implications of the hypothesis The hypothesis implies that subdivision of a population into small subpopulations is the major step in the origin of new families of TEs as well as of new species. The origin of new subpopulations is likely to be driven by the availability of new biological niches, consistent with the hypothesis of punctuated equilibria. The hypothesis also has implications for the ongoing debate on the role of genetic drift in genome evolution. Reviewers This article was reviewed by Eugene Koonin, Juergen Brosius and I. King Jordan.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
112
|
Gross SM, Williamson VM. Tm1: a mutator/foldback transposable element family in root-knot nematodes. PLoS One 2011; 6:e24534. [PMID: 21931741 PMCID: PMC3169594 DOI: 10.1371/journal.pone.0024534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species.
Collapse
Affiliation(s)
- Stephen M. Gross
- Department of Nematology, University of California Davis, Davis, California, United States of America
| | - Valerie M. Williamson
- Department of Nematology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
113
|
Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 2011; 29:503-15. [PMID: 21771716 DOI: 10.1093/molbev/msr181] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes.
Collapse
|
114
|
Castoe TA, Bronikowski AM, Brodie ED, Edwards SV, Pfrender ME, Shapiro MD, Pollock DD, Warren WC. A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Stand Genomic Sci 2011; 4:257-70. [PMID: 21677863 PMCID: PMC3111982 DOI: 10.4056/sigs.1664145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here we develop an argument in support of sequencing a garter snake (Thamnophis sirtalis) genome, and outline a plan to accomplish this. This snake is a common, widespread, nonvenomous North American species that has served as a model for diverse studies in evolutionary biology, physiology, genomics, behavior and coevolution. The anole lizard is currently the only genome sequence available for a non-avian reptile. Thus, the garter snake at this time would be the first available snake genome sequence and as such would provide much needed comparative representation of non-avian reptilian genomes, and would also allow critical new insights for vertebrate comparative genomic studies. We outline the major areas of discovery that the availability of the garter snake genome would enable, and describe a plan for whole-genome sequencing.
Collapse
Affiliation(s)
- Todd A. Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
- Corresponding Author: Todd A. Castoe,
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA
| | - Edmund D. Brodie
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | | | | | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
| | - Wesley C. Warren
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
115
|
Gilbert C, Pace JK, Feschotte C. Horizontal SPINning of transposons. Commun Integr Biol 2011; 2:117-9. [PMID: 19704906 DOI: 10.4161/cib.7720] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 01/26/2023] Open
Abstract
The term 'horizontal transfer (HT)' refers to the transfer of genetic material between two reproductively isolated organisms. HT is thought to occur rarely in eukaryotes compared to vertical inheritance, the transmission of DNA from parent to offspring. In a recent study we have provided evidence that a family of DNA transposons, called SPACE INVADERS or SPIN, independently invaded horizontally the genome of seven distantly related tetrapod species and subsequently amplified to high copy number in each of them. This discovery calls for further investigations to better characterize the extent to which genomes have been shaped through HT events. In this addendum, we briefly discuss some general issues regarding the study of HT and further speculate on the sequence of events that could explain the current taxonomic distribution of SPIN. We propose that the presence of SPIN in the opossum (Monodelphis domestica), a taxon endemic to South America, reflects a transoceanic HT event that occurred from Old to New World, between 46 and 15 million years ago.
Collapse
Affiliation(s)
- Clément Gilbert
- Department of Biology; University of Texas at Arlington; Arlington, TX USA
| | | | | |
Collapse
|
116
|
Tollis M, Boissinot S. The transposable element profile of the anolis genome: How a lizard can provide insights into the evolution of vertebrate genome size and structure. Mob Genet Elements 2011; 1:107-111. [PMID: 22016857 DOI: 10.4161/mge.1.2.17733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022] Open
Abstract
The recent sequencing of the lizard genome provides a unique opportunity to examine the evolution of vertebrate genomes in a phylogenetic context. The lizard genome contains an extraordinary diversity of active transposable elements that far exceeds the diversity reported in extant mammals and birds. Retrotransposons and DNA transposons are represented by multiple active families, contributing to the very diverse repetitive landscape of the lizard. Surprisingly, ancient transposon copies are relatively rare suggesting that the transposon copy number is tightly controlled in lizard. This bias in favor of young copies results from the joint effect of purifying selection acting on novel insertions and a high rate of DNA loss. Recent analyses have revealed that the repetitive landscape of reptiles differ drastically from other extant amniotes by their diversity but also by the dynamics of amplification of their transposons. Thus, from the point of view of mobile elements, reptile genomes show more similarity to fish and amphibians than to other amniotes.
Collapse
Affiliation(s)
- Marc Tollis
- Department of Biology; Queens College; The City University of New York; Flushing, NY USA; The Graduate Center; The City University of New York; New York, NY USA
| | | |
Collapse
|
117
|
Castoe TA, Hall KT, Guibotsy Mboulas ML, Gu W, de Koning APJ, Fox SE, Poole AW, Vemulapalli V, Daza JM, Mockler T, Smith EN, Feschotte C, Pollock DD. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 2011; 3:641-53. [PMID: 21572095 PMCID: PMC3157835 DOI: 10.1093/gbe/evr043] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We conducted a comprehensive assessment of genomic repeat content in two snake genomes, the venomous copperhead (Agkistrodon contortrix) and the Burmese python (Python molurus bivittatus). These two genomes are both relatively small (∼1.4 Gb) but have surprisingly extensive differences in the abundance and expansion histories of their repeat elements. In the python, the readily identifiable repeat element content is low (21%), similar to bird genomes, whereas that of the copperhead is higher (45%), similar to mammalian genomes. The copperhead's greater repeat content arises from the recent expansion of many different microsatellites and transposable element (TE) families, and the copperhead had 23-fold greater levels of TE-related transcripts than the python. This suggests the possibility that greater TE activity in the copperhead is ongoing. Expansion of CR1 LINEs in the copperhead genome has resulted in TE-mediated microsatellite expansion ("microsatellite seeding") at a scale several orders of magnitude greater than previously observed in vertebrates. Snakes also appear to be prone to horizontal transfer of TEs, particularly in the copperhead lineage. The reason that the copperhead has such a small genome in the face of so much recent expansion of repeat elements remains an open question, although selective pressure related to extreme metabolic performance is an obvious candidate. TE activity can affect gene regulation as well as rates of recombination and gene duplication, and it is therefore possible that TE activity played a role in the evolution of major adaptations in snakes; some evidence suggests this may include the evolution of venom repertoires.
Collapse
Affiliation(s)
- Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
119
|
Gilbert C, Schaack S, Feschotte C. [Mobile elements jump between parasites and vertebrate hosts]. Med Sci (Paris) 2011; 26:1025-7. [PMID: 21187035 DOI: 10.1051/medsci/201026121025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
120
|
Abstract
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We have identified two new active hAT transposons, AeBuster1, from the mosquito Aedes aegypti and TcBuster from the red flour beetle Tribolium castaneum. Activity of both transposons is illustrated by excision and transposition assays performed in Drosophila melanogaster and Ae. aegypti and by in vitro strand transfer assays. These two active insect transposons are more closely related to the Buster sequences identified in humans than they are to the previously identified active hAT transposons, Ac, Tam3, Tol2, hobo, and Hermes. We therefore reexamined the structural and functional relationships of hAT and hAT-like transposase sequences extracted from genome databases and found that the hAT superfamily is divided into at least two families. This division is supported by a difference in target-site selections generated by active transposons of each family. We name these families the Ac and Buster families after the first identified transposon or transposon-like sequence in each. We find that the recently discovered SPIN transposons of mammals are located within the family of Buster elements.
Collapse
|
121
|
Diao Y, Qi Y, Ma Y, Xia A, Sharakhov I, Chen X, Biedler J, Ling E, Tu ZJ. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes. PLoS One 2011; 6:e16743. [PMID: 21379317 PMCID: PMC3037385 DOI: 10.1371/journal.pone.0016743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/12/2011] [Indexed: 12/15/2022] Open
Abstract
Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs). For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145–200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of different TEs and provide the evolutionary context of these lateral transfer events.
Collapse
Affiliation(s)
- Yupu Diao
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yajun Ma
- Department of Etiologic Biology, Second Military Medical University, Shanghai, China
| | - Ai Xia
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Igor Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Xiaoguang Chen
- Department of Parasitology, Southern Medical University, Guangzhou, China
| | - Jim Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Erjun Ling
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
122
|
Abstract
The medaka fish, Oryzias latipes, is an emerging vertebrate model and now has a high quality draft genome and a number of unique mutants. The long history of medaka research in Japan has provided medaka with unique features, which are complementary to other vertebrate models. A large collection of spontaneous mutants collected over a century, the presence of highly polymorphic inbred lines established over decades, and the recently completed genome sequence all give the medaka a big boost. This review focuses on the state of the art in medaka genetics and genomics, such as the first isolation of active transposons in vertebrates, the influence of chromatin structure on sequence variation, fine quantitative trait locus (QTL) analysis, and versatile mutants as human disease models.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
123
|
The limited distribution of Helitrons to vesper bats supports horizontal transfer. Gene 2010; 474:52-8. [PMID: 21193022 DOI: 10.1016/j.gene.2010.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022]
Abstract
Transposable elements (TEs) have the unique ability to move and replicate within the genome and therefore engender dramatic changes to genome architecture. Among different types of TEs, rolling-circle transposons (Helitrons) are well known for their ability to capture and amplify host gene fragments. Bioinformatic analysis revealed that Helitrons constitute ~3% of the Myotis lucifugus, (little brown bat) genome, while no Helitrons were found in any of the other 44+ sequenced mammalian genomes. Recently horizontal transfer has been implicated for some of the M. lucifugus Helitrons, in part explaining this disparate distribution among mammals. The purpose of this work is to determine both the distribution of Helitrons among bats and to estimate the number of independent invasions. We employed a combination of in silico, PCR and hybridization based techniques to identify Helitrons from diverse bat species belonging to ten different families. This work reveals that Helitrons invaded the vesper bat lineage, at least once. Indeed, Helitrons were not identified in the sister taxa 'Miniopterus', which suggests that the amplification of Helibat occurred (30-36 mya) only in the vesper bat lineage. The estimated age of amplification of the Helibats and the rapid radiation of vesper bats are roughly coincidental and suggest that the invasion and amplification of these elements might have influenced their evolutionary trajectory potentially contributing to phenotypic and genotypic diversity.
Collapse
|
124
|
Occurrence of a short variant of the Tol2 transposable element in natural populations of the medaka fish. Genet Res (Camb) 2010; 93:13-21. [PMID: 21134318 DOI: 10.1017/s0016672310000479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tol2 is a member of the hAT (hobo/Activator/Tam3) transposable element family, residing as 10-30 copies per diploid genome in the medaka fish. We previously reported that this element is highly homogeneous in structure at both the restriction map level and the nucleotide sequence level. It was, however, possible that there is variation of such a low frequency as not to have been detected in our previous surveys, in which samples from 12 geographical locations were used. In the present study, we first conducted searches of genome sequence databases of medaka, and found a 119-bp-long internal deletion. We then conducted a survey of samples from 58 locations for this deletion by performing PCR preceded by restriction enzyme digestion to increase the sensitivity to this deletion. We found that copies suffering this deletion have spread, or have been generated by multiple origins, in the northern-to-central part of mainland Japan. Thus, although the high homogeneity in structure is a distinct feature of Tol2, variation does exist at low frequencies in natural populations of medaka. The current status of Tol2 is expected to provide information with which results of future surveys can be compared for clarification of determinants of population dynamics of this DNA-based element.
Collapse
|
125
|
Novick PA, Smith JD, Floumanhaft M, Ray DA, Boissinot S. The evolution and diversity of DNA transposons in the genome of the Lizard Anolis carolinensis. Genome Biol Evol 2010; 3:1-14. [PMID: 21127169 PMCID: PMC3014272 DOI: 10.1093/gbe/evq080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2010] [Indexed: 01/19/2023] Open
Abstract
DNA transposons have considerably affected the size and structure of eukaryotic genomes and have been an important source of evolutionary novelties. In vertebrates, DNA transposons are discontinuously distributed due to the frequent extinction and recolonization of these genomes by active elements. We performed a detailed analysis of the DNA transposons in the genome of the lizard Anolis carolinensis, the first non-avian reptile to have its genome sequenced. Elements belonging to six of the previously recognized superfamilies of elements (hAT, Tc1/Mariner, Helitron, PIF/Harbinger, Polinton/Maverick, and Chapaev) were identified. However, only four (hAT, Tc1/Mariner, Helitron, and Chapaev) of these superfamilies have successfully amplified in the anole genome, producing 67 distinct families. The majority (57/67) are nonautonomous and demonstrate an extraordinary diversity of structure, resulting from frequent interelement recombination and incorporation of extraneous DNA sequences. The age distribution of transposon families differs among superfamilies and reveals different dynamics of amplification. Chapaev is the only superfamily to be extinct and is represented only by old copies. The hAT, Tc1/Mariner, and Helitron superfamilies show different pattern of amplification, yet they are predominantly represented by young families, whereas divergent families are exceedingly rare. Although it is likely that some elements, in particular long ones, are subjected to purifying selection and do not reach fixation, the majority of families are neutral and accumulate in the anole genome in large numbers. We propose that the scarcity of old copies in the anole genome results from the rapid decay of elements, caused by a high rate of DNA loss.
Collapse
Affiliation(s)
- Peter A. Novick
- Department of Biology, Queens College, the City University of New York
- Graduate School and University Center, the City University of New York
| | - Jeremy D. Smith
- Department of Biochemistry and Molecular Biology, Mississippi State University
| | - Mark Floumanhaft
- Department of Biology, Queens College, the City University of New York
| | - David A. Ray
- Department of Biochemistry and Molecular Biology, Mississippi State University
| | - Stéphane Boissinot
- Department of Biology, Queens College, the City University of New York
- Graduate School and University Center, the City University of New York
| |
Collapse
|
126
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
127
|
Gilbert C, Feschotte C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 2010; 8:e1000495. [PMID: 20927357 PMCID: PMC2946954 DOI: 10.1371/journal.pbio.1000495] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/16/2010] [Indexed: 11/18/2022] Open
Abstract
Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale.
Collapse
Affiliation(s)
- Clément Gilbert
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| | - Cédric Feschotte
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| |
Collapse
|
128
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
129
|
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010; 25:537-46. [PMID: 20591532 PMCID: PMC2940939 DOI: 10.1016/j.tree.2010.06.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 11/25/2022]
Abstract
Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation.
Collapse
Affiliation(s)
| | | | - Cédric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|
130
|
Thomas J, Schaack S, Pritham EJ. Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2010; 2:656-64. [PMID: 20693155 PMCID: PMC2997563 DOI: 10.1093/gbe/evq050] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Horizontal transfer (HT) of genes is known to be an important mechanism of genetic innovation, especially in prokaryotes. The impact of HT of transposable elements (TEs), however, has only recently begun to receive widespread attention and may be significant due to their mutagenic potential, inherent mobility, and abundance. Helitrons, also known as rolling-circle transposons, are a distinctive subclass of TE with a unique transposition mechanism. Here, we describe the first evidence for the repeated HT of four different families of Helitrons in an unprecedented array of organisms, including mammals, reptiles, fish, invertebrates, and insect viruses. The Helitrons present in these species have a patchy distribution and are closely related (80–98% sequence identity), despite the deep divergence times among hosts. Multiple lines of evidence indicate the extreme conservation of sequence identity is not due to selection, including the highly fragmented nature of the Helitrons identified and the lack of any signatures of selection at the nucleotide level. The presence of horizontally transferred Helitrons in insect viruses, in particular, suggests that this may represent a potential mechanism of transfer in some taxa. Unlike genes, Helitrons that have horizontally transferred into new host genomes can amplify, in some cases reaching up to several hundred copies and representing a substantial fraction of the genome. Because Helitrons are known to frequently capture and amplify gene fragments, HT of this unique group of DNA transposons could lead to horizontal gene transfer and incur dramatic shifts in the trajectory of genome evolution.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | | | | |
Collapse
|
131
|
Marquez CP, Pritham EJ. Phantom, a new subclass of Mutator DNA transposons found in insect viruses and widely distributed in animals. Genetics 2010; 185:1507-17. [PMID: 20457878 PMCID: PMC2927773 DOI: 10.1534/genetics.110.116673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
Transposons of the Mutator (Mu) superfamily have been shown to play a critical role in the evolution of plant genomes. However, the identification of Mutator transposons in other eukaryotes has been quite limited. Here we describe a previously uncharacterized group of DNA transposons designated Phantom identified in the genomes of a wide range of eukaryotic taxa, including many animals, and provide evidence for its inclusion within the Mutator superfamily. Interestingly three Phantom proteins were also identified in two insect viruses and phylogenetic analysis suggests horizontal movement from insect to virus, providing a new line of evidence for the role of viruses in the horizontal transfer of DNA transposons in animals. Many of the Phantom transposases are predicted to harbor a FLYWCH domain in the amino terminus, which displays a WRKY-GCM1 fold characteristic of the DNA binding domain (DBD) of Mutator transposases and of several transcription factors. While some Phantom elements have terminal inverted repeats similar in length and structure to Mutator elements, some display subterminal inverted repeats (sub-TIRs) and others have more complex termini reminiscent of so-called Foldback (FB) transposons. The structural plasticity of Phantom and the distant relationship of its encoded protein to known transposases may have impeded the discovery of this group of transposons and it suggests that structure in itself is not a reliable character for transposon classification.
Collapse
Affiliation(s)
| | - Ellen J. Pritham
- Department of Biology, University of Texas, Arlington, Texas 76019
| |
Collapse
|
132
|
Abstract
Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.
Collapse
Affiliation(s)
- Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
133
|
Pagan HJT, Smith JD, Hubley RM, Ray DA. PiggyBac-ing on a primate genome: novel elements, recent activity and horizontal transfer. Genome Biol Evol 2010; 2:293-303. [PMID: 20624734 PMCID: PMC2997546 DOI: 10.1093/gbe/evq021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To better understand the extent of Class II transposable element activity in mammals, we investigated the mouse lemur, Microcebus murinus, whole genome shotgun (2X) draft assembly. Analysis of this strepsirrhine primate extended previous research that targeted anthropoid primates and found no activity within the last 37 Myr. We tested the hypothesis that members of the piggyBac Class II superfamily have been inactive in the strepsirrhine lineage of primates during the same period. Evidence against this hypothesis was discovered in the form of three nonautonomous piggyBac elements with activity periods within the past 40 Myr and possibly into the very recent past. In addition, a novel family of piggyBac transposons was identified, suggesting introduction via horizontal transfer. A second autonomous element was also found with high similarity to an element recently described from the little brown bat, Myotis lucifugus, further implicating horizontal transfer in the evolution of this genome. These findings indicate a more complex history of transposon activity in mammals rather than a uniform shutdown of Class II transposition, which had been suggested by analyses of more common model organisms.
Collapse
Affiliation(s)
| | - Jeremy D. Smith
- Department of Biology, West Virginia University
- Life Sciences and Biotechnology Institute, Mississippi State University
| | | | - David A. Ray
- Department of Biology, West Virginia University
- Present address: Department of Biochemistry and Molecular Biology, 402 Dorman Hall, Mississippi State University, Mississippi
- Corresponding author: E-mail:
| |
Collapse
|
134
|
|
135
|
Guttenberg N, Goldenfeld N. Emergence of heterogeneity and political organization in information exchange networks. Phys Rev E 2010; 81:046111. [PMID: 20481790 DOI: 10.1103/physreve.81.046111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Indexed: 11/07/2022]
Abstract
We present a simple model of the emergence of the division of labor and the development of a system of resource subsidy from an agent-based model of directed resource production with variable degrees of trust between the agents. The model has three distinct phases corresponding to different forms of societal organization: disconnected (independent agents), homogeneous cooperative (collective state), and inhomogeneous cooperative (collective state with a leader). Our results indicate that such levels of organization arise generically as a collective effect from interacting agent dynamics and may have applications in a variety of systems including social insects and microbial communities.
Collapse
Affiliation(s)
- Nicholas Guttenberg
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | | |
Collapse
|
136
|
Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 2010; 464:1347-50. [PMID: 20428170 PMCID: PMC3004126 DOI: 10.1038/nature08939] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/18/2010] [Indexed: 11/09/2022]
Abstract
Horizontal transfer (HT), or the passage of genetic material between non-mating species, is increasingly recognized as an important force in the evolution of eukaryotic genomes. Transposons, with their inherent ability to mobilize and amplify within genomes, may be especially prone to HT. However, the means by which transposons can spread across widely diverged species remain elusive. Here we present evidence that host-parasite interactions have promoted the HT of four transposon families between invertebrates and vertebrates. We found that Rhodnius prolixus, a triatomine bug feeding on the blood of various tetrapods and vector of Chagas' disease in humans, carries in its genome four distinct transposon families that also invaded the genomes of a diverse, but overlapping, set of tetrapods. The bug transposons are approximately 98% identical and cluster phylogenetically with those of the opossum and squirrel monkey, two of its preferred mammalian hosts in South America. We also identified one of these transposon families in the pond snail Lymnaea stagnalis, a cosmopolitan vector of trematodes infecting diverse vertebrates, whose ancestral sequence is nearly identical and clusters with those found in Old World mammals. Together these data provide evidence for a previously hypothesized role of host-parasite interactions in facilitating HT among animals. Furthermore, the large amount of DNA generated by the amplification of the horizontally transferred transposons supports the idea that the exchange of genetic material between hosts and parasites influences their genomic evolution.
Collapse
Affiliation(s)
- Clément Gilbert
- Department of Biology, University of Texas, Arlington, TX 76019 USA
| | - Sarah Schaack
- Department of Biology, University of Texas, Arlington, TX 76019 USA
| | - John K. Pace
- Department of Biology, University of Texas, Arlington, TX 76019 USA
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, DC 20037 USA
| | - Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019 USA
| |
Collapse
|
137
|
Deprá M, Panzera Y, Ludwig A, Valente VLS, Loreto ELS. hosimary: a new hAT transposon group involved in horizontal transfer. Mol Genet Genomics 2010; 283:451-9. [DOI: 10.1007/s00438-010-0531-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
138
|
Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PRH, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TCG, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE. The dynamic genome of Hydra. Nature 2010; 464:592-6. [PMID: 20228792 PMCID: PMC4479502 DOI: 10.1038/nature08830] [Citation(s) in RCA: 577] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 01/11/2010] [Indexed: 02/08/2023]
Abstract
The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.
Collapse
Affiliation(s)
- Jarrod A Chapman
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Koga A, Wakamatsu Y, Sakaizumi M, Hamaguchi S, Shimada A. Distribution of complete and defective copies of the Tol1 transposable element in natural populations of the medaka fish Oryzias latipes. Genes Genet Syst 2010; 84:345-52. [PMID: 20154421 DOI: 10.1266/ggs.84.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA-based transposable elements are present in the genomes of various organisms, and generally occur in autonomous and nonautonomous forms, with a good correspondence to complete and defective copies, respectively. In vertebrates, however, the vast majority of DNA-based elements occur only in the nonautonomous form. Until now, the only clear exception known has been the Tol2 element of the medaka fish, which still causes mutations in genes of the host species. Here, we report another exception: the Tol1 element of the same species. This element was thought likely to be a "dead" element like the vast majority of vertebrate elements, but recent identification of an autonomous Tol1 copy in a laboratory medaka strain gave rise to the possibility that the element is still "alive" in medaka natural populations. We examined variation in the structure of Tol1 copies through genomic Southern blot analysis, and revealed that 10 of the 32 fish samples examined contained full-length Tol1 copies in their genomes. The frequency at which these copies occur among Tol1 copies is at most 0.5%, yet some of them still have the ability to produce a functional transposase. The medaka fish thus harbors two active DNA-based elements in its genome, and is in this respect unique among vertebrates.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 464-8506, Japan
| | | | | | | | | |
Collapse
|
140
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
141
|
de Setta N, Van Sluys MA, Capy P, Carareto CMA. Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus Drosophila. BMC Evol Biol 2009; 9:279. [PMID: 19954522 PMCID: PMC2797524 DOI: 10.1186/1471-2148-9-279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022] Open
Abstract
Background The Zaprionus genus shares evolutionary features with the melanogaster subgroup, such as space and time of origin. Although little information about the transposable element content in the Zaprionus genus had been accumulated, some of their elements appear to be more closely related with those of the melanogaster subgroup, indicating that these two groups of species were involved in horizontal transfer events during their evolution. Among these elements, the Gypsy and the Micropia retroelements were chosen for screening in seven species of the two Zaprionus subgenera, Anaprionus and Zaprionus. Results Screening allowed the identification of diverse Gypsy and Micropia retroelements only in species of the Zaprionus subgenus, showing that they are transcriptionally active in the sampled species. The sequences of each retroelement were closely related to those of the melanogaster species subgroup, and the most parsimonious hypothesis would be that 15 horizontal transfer events shaped their evolution. The Gypsy retroelement of the melanogaster subgroup probably invaded the Zaprionus genomes about 11 MYA. In contrast, the Micropia retroelement may have been introduced into the Zaprionus subgenus and the melanogaster subgroup from an unknown donor more recently (~3 MYA). Conclusion Gypsy and Micropia of Zaprionus and melanogaster species share similar evolutionary patterns. The sharing of evolutionary, ecological and ethological features probably allowed these species to pass through a permissive period of transposable element invasion, explaining the proposed waves of horizontal transfers.
Collapse
Affiliation(s)
- Nathalia de Setta
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil.
| | | | | | | |
Collapse
|
142
|
Abstract
The importance of lateral gene transfer in genome evolution of microbial eukaryotes is slowly being appreciated. Acquisitions of genes have led to metabolic adaptation in diverse eukaryotic lineages. In most cases the metabolic genes have originated from prokaryotes, often followed by sequential transfers between eukaryotes. However, the knowledge of gene transfer in eukaryotes is still mainly based on anecdotal evidence. Some of the observed patterns may be biases in experimental approaches and sequence databases rather than evolutionary trends. Rigorous systematic studies of gene acquisitions that allow for the possibility of exchanges of all categories of genes from all sources are needed to get a more objective view of gene transfer in eukaryote evolution. It may be that the role of gene transfer in the diversification process of microbial eukaryotes currently is underestimated.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Evolution, Genomics and Systematics, Uppsala University, Uppsala S-752 36, Sweden.
| |
Collapse
|
143
|
Ray DA, Platt RN, Batzer MA. Reading between the LINEs to see into the past. Trends Genet 2009; 25:475-9. [PMID: 19837475 DOI: 10.1016/j.tig.2009.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are an important source of genome diversity and play a crucial role in genome evolution. A recent study by Zhao et al. describes novel patterns of TE diversification in the genome of the extinct mammoth Mammuthus primigenius. Analysis of Mammuthus has provided a unique genome landscape, a pivotal species for understanding TEs and genome evolution and hints at the diversity we verge on discovering by expanding our taxonomic sampling among genomes. Strategies based on this work might also revolutionize investigations of the interface between TE dynamics and genome diversity.
Collapse
Affiliation(s)
- David A Ray
- Department of Biochemistry and Molecular Biology, Box 9650, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
144
|
The Conflict Between Horizontal Gene Transfer and the Safeguard of Identity: Origin of Meiotic Sexuality. J Mol Evol 2009; 69:470-80. [DOI: 10.1007/s00239-009-9277-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
145
|
Novick P, Smith J, Ray D, Boissinot S. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene 2009; 449:85-94. [PMID: 19747963 DOI: 10.1016/j.gene.2009.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/08/2009] [Accepted: 08/28/2009] [Indexed: 01/31/2023]
Abstract
In animals, the mode of transmission of transposable elements is generally vertical. However, recent studies have suggested that lateral transfer has occurred repeatedly in several distantly related tetrapod lineages, including mammals. Using transposons extracted from the genome of the lizard Anolis carolinensis as probes, we identified four novel families of hAT transposons that share extremely high similarity with elements in other genomes including several mammalian lineages (primates, chiropters, marsupials), one amphibian and one flatworm, the planarian Schmidtea mediterranea. The discontinuous phylogenetic distribution of these hAT families, coupled with very low synonymous divergence between species, strongly suggests that these elements were laterally transferred to these different species. This indicates that the horizontal transfer of DNA transposons in vertebrates might be more common than previously thought. Yet, it appears that the transfer of DNA transposons did not occur randomly as the same genomes have been invaded independently by different, unrelated transposon families whereas others seem to be immune to lateral transfer. This suggests that some organisms might be intrinsically more vulnerable to DNA transposon lateral transfer, possibly because of a weakened defense against transposons or because they have developed mechanisms to tolerate their impact.
Collapse
Affiliation(s)
- Peter Novick
- Department of Biology, Queens College, the City University of New York, Flushing, NY 11367, USA
| | | | | | | |
Collapse
|
146
|
Levin BR, Cornejo OE. The population and evolutionary dynamics of homologous gene recombination in bacterial populations. PLoS Genet 2009; 5:e1000601. [PMID: 19680442 PMCID: PMC2717328 DOI: 10.1371/journal.pgen.1000601] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022] Open
Abstract
In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination—broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT)—plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation. For many species of bacteria, recombination in the form of the acquisition and expression of genes and genetic elements acquired from other bacteria, eukaryotes, and archaea, HGT is an important source of variation for adaptive evolution. Not so clear is the contribution of recombination of homologous genes to adaptive evolution and as a selective pressure for the evolution and maintenance of HGT. Using computer simulations, we explore the role of HGR to adaptive evolution and selection for the evolution and maintenance of HGT. We demonstrate that under realistic conditions by shuffling genes within a bacterial population, HGR will increase its rate of adaptive evolution. Once established, this capacity to increase the rate of adaptive evolution can serve as a selective force for the maintenance of HGT. On the other hand, HGR cannot provide an advantage to a population when its density is low or when the recombining population is rare relative to non-recombining competitors. Thus, we postulate that it is unlikely that the only bacteria—rather than plasmid (or phage)—determined mechanism of HGR, transformation, evolved in response to selection for higher rates of evolution by gene shuffling.
Collapse
Affiliation(s)
- Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
147
|
Adelson DL, Raison JM, Edgar RC. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proc Natl Acad Sci U S A 2009; 106:12855-60. [PMID: 19625614 PMCID: PMC2722308 DOI: 10.1073/pnas.0901282106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Indexed: 12/11/2022] Open
Abstract
Interspersed repeat composition and distribution in mammals have been best characterized in the human and mouse genomes. The bovine genome contains typical eutherian mammal repeats, but also has a significant number of long interspersed nuclear element RTE (BovB) elements proposed to have been horizontally transferred from squamata. Our analysis of the BovB repeats has indicated that only a few of them are currently likely to retrotranspose in cattle. However, bovine L1 repeats (L1 BT) have many likely active copies. Comparison of substitution rates for BovB and L1 BT indicates that L1 BT is a younger repeat family than BovB. In contrast to mouse and human, L1 occurrence is not negatively correlated with G+C content. However, BovB, Bov A2, ART2A, and Bov-tA are negatively correlated with G+C, although Bov-tAs correlation is weaker. Also, by performing genome wide correlation analysis of interspersed and simple sequence repeats, we have identified genome territories by repeat content that appear to define ancestral vs. ruminant-specific genomic regions. These ancestral regions, enriched with L2 and MIR repeats, are largely conserved between bovine and human.
Collapse
Affiliation(s)
- David L Adelson
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.
| | | | | |
Collapse
|
148
|
|
149
|
Zeh DW, Zeh JA, Ishida Y. Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 2009; 31:715-26. [DOI: 10.1002/bies.200900026] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
150
|
Gladyshev EA, Arkhipova IR. A single-copy IS5-like transposon in the genome of a bdelloid rotifer. Mol Biol Evol 2009; 26:1921-9. [PMID: 19443853 PMCID: PMC7187635 DOI: 10.1093/molbev/msp104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the course of sequencing telomeric chromosomal regions of the bdelloid rotifer Adineta vaga, we encountered an unusual DNA transposon. Unlike other bdelloid and, more generally, eukaryotic transposable elements (TEs), it exhibits similarity to prokaryotic insertion sequences (ISs). Phylogenetic analysis indicates that this transposon, named IS5_Av, is related to the ISL2 group of the IS5 family of bacterial IS elements. Despite the apparent intactness of the single open reading frame coding for a DDE transposase and the perfect identity of its 213-bp terminal inverted repeats (TIRs), the element is present in only one copy per diploid genome. It does not exhibit any detectable levels of transcription, so that its transposase gene appears to be silent in the bdelloid host. Although horizontal transfers of TEs between kingdoms are not known to happen in nature, it appears likely that IS5_Av underwent integration into the A. vaga genome relatively recently, but was not successful in adapting to the new host and failed to increase in copy number. Alternatively, it might be the only known member of a novel eukaryotic DNA TE superfamily which is so rare that its other members, if any, have not yet been identified in eukaryotic genomes sequenced to date.
Collapse
Affiliation(s)
- Eugene A Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
| | | |
Collapse
|