101
|
McLelland BT, Gravano D, Castillo J, Montoy S, Manilay JO. Enhanced isolation of adult thymic epithelial cell subsets for multiparameter flow cytometry and gene expression analysis. J Immunol Methods 2011; 367:85-94. [PMID: 21354161 DOI: 10.1016/j.jim.2011.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/13/2010] [Accepted: 02/18/2011] [Indexed: 12/17/2022]
Abstract
The epithelial cells (TECs) are microenvironmental niche cells which support T lymphocyte development in the thymus. Most studies of TEC biology have focused on TEC at the fetal stage of development, whereas the biology of adult-stage TECs is not as well-understood. Delineating the molecular mechanisms that control adult TEC differentiation has implications for the success of T-lymphocyte based therapies for autoimmune diseases and induction of immunological tolerance to stem cell-derived tissues. Detailed analysis of adult TECs is technically challenging due to their rarity, their diminishing numbers with age, and the limited number of markers to distinguish between unique TEC subpopulations. Here, we have devised an improved isolation protocol for adult mouse TECs and combined it with six-color multiparameter flow cytometry. Using these techniques, we have identified four distinct subsets of CD45- EpCAM+ TECs in adult mice: a) UEA1(low) CDR1(low) (UC(low)); b) UEA1(high) CDR1(high)(UC(high)); c) UEA1(low) CDR1(high) MHC(high) (cTEC); and d) UEA1(high)CDR1(low) MHC(int/high) (mTEC). PCR analysis verified that these TEC subsets differentially expressed known TEC genes. TEC subsets were further analyzed using high-throughput quantitative PCR arrays to reveal novel genes that could be important for TEC subset maintenance. Intracellular staining for keratin-5 and keratin-8 can also be added, but our results suggest that keratin expression alone cannot be used to distinguish adult TEC subsets. Our enhanced isolation allows for detailed analysis of rare TEC subpopulations in the adult mouse at the cellular and molecular levels.
Collapse
Affiliation(s)
- Bryce T McLelland
- School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95340, USA
| | | | | | | | | |
Collapse
|
102
|
Weinreich MA, Jameson SC, Hogquist KA. Postselection thymocyte maturation and emigration are independent of IL-7 and ERK5. THE JOURNAL OF IMMUNOLOGY 2010; 186:1343-7. [PMID: 21187442 DOI: 10.4049/jimmunol.1002238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor Krüppel-like factor 2 (KLF2) controls the emigration of conventional T cells from the thymus through its regulation of the cell surface receptor S1P1. Prior to KLF2 expression, developing T cells require a positive selection signal through the TCR. However, following positive selection there are time, spatial, and maturational events that occur before KLF2 is finally upregulated and emigration occurs. We are interested in determining the signals that upregulate KLF2 and allow thymocytes to emigrate into circulation and whether they are linked to functional maturation. In endothelial cells KLF2 expression has been shown to be dependent on the mitogen-activated protein kinase ERK5. Furthermore, it has been reported that IL-7 signaling leads to the phosphorylation of ERK5. Thus, we hypothesized that IL-7R signaling through ERK5 could drive the expression of KLF2. In this study, we provide evidence that this hypothesis is incorrect. We also found that CD8 lineage specification occurred normally in the absence of IL-7R signaling, in contrast to a recently proposed model. We showed that both CD4 and CD8 T cells complete maturation and express KLF2 independently of ERK5 and IL-7.
Collapse
Affiliation(s)
- Michael A Weinreich
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA
| | | | | |
Collapse
|
103
|
Bunting MD, Comerford I, McColl SR. Finding their niche: chemokines directing cell migration in the thymus. Immunol Cell Biol 2010; 89:185-96. [PMID: 21135866 DOI: 10.1038/icb.2010.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.
Collapse
Affiliation(s)
- Mark D Bunting
- Chemokine Biology Laboratory, Discipline of Microbiology and Immunology, The School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
104
|
Kittipatarin C, Li W, Durum SK, Khaled AR. Cdc25A-driven proliferation regulates CD62L levels and lymphocyte movement in response to interleukin-7. Exp Hematol 2010; 38:1143-56. [PMID: 20831893 PMCID: PMC3010876 DOI: 10.1016/j.exphem.2010.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/16/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Interleukin-7 (IL-7) is a multifunctional cytokine and a promising immunotherapeutic agent. However, because transient T-cell depletion is an immediate outcome of IL-7 administration at supraphysiological doses, we investigated the mechanism by which the IL-7 proliferative signal transduced through Cdc25A, a key activator of cyclin-dependent kinases, could modulate lymphocyte movement. MATERIALS AND METHODS Employing novel methods of manipulating Cdc25A gene expression, combined with in vitro and in vivo evaluation of IL-7 application, we assessed the expression of activation and homing markers and identified the mechanism by which IL-7 could induce T-cell expansion and alter lymphocyte motility. RESULTS Constitutively active Cdc25A drove T-cell proliferation independently of IL-7 and resulted in an activated phenotype (CD69(hi), CD44(hi)). Conversely, inhibition of Cdc25A resulted in decreased proliferation, reduced expression of activation markers, and upregulation of the lymph node homing molecule, CD62L, which promoted cell adhesion when engaged by ligand. We found that IL-7 prevented the nuclear translocation of the transcription factor, Foxo1, in a manner dependent on the activity of Cdc25A, resulting in decreased levels of CD62L. In vivo administration of IL-7 decreased lymph node cellularity, while treatment with IL-7, premixed with a neutralizing IL-7 antibody (M25), increased total lymph node cells--with more nuclear Foxo1 detected in cells from mice receiving IL-7 + M25. CONCLUSIONS These results are consistent with the model that IL-7 drives Cdc25A-mediated T-cell proliferation, which prevents the nuclear translocation of Foxo1, leading to reduced expression of CD62L and the migration of T cells into circulation.
Collapse
Affiliation(s)
- Christina Kittipatarin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Wenqing Li
- National Cancer Institute at Frederick, Frederick, MD 21702
| | - Scott K. Durum
- National Cancer Institute at Frederick, Frederick, MD 21702
| | - Annette R. Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| |
Collapse
|
105
|
Shalapour S, Deiser K, Sercan O, Tuckermann J, Minnich K, Willimsky G, Blankenstein T, Hämmerling GJ, Arnold B, Schüler T. Commensal microflora and interferon-gamma promote steady-state interleukin-7 production in vivo. Eur J Immunol 2010; 40:2391-400. [PMID: 20690180 DOI: 10.1002/eji.201040441] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-7 is a major regulator of lymphocyte homeostasis; however, little is known about the mechanisms that regulate IL-7 production. To study Il7 gene regulation in vivo, we generated a novel IL-7-reporter mouse, which allows the non-invasive quantification of Il7 gene activity in live mice and, additionally, the simultaneous activation/inactivation of target genes in IL-7-producing cells. With these IL-7-reporter mice, we identify thymus, skin and intestine as major sources of IL-7 in vivo. Importantly, we show that IFN-gamma and the commensal microflora promote steady-state IL-7 production in the intestine. Furthermore, we demonstrate that the blockade of IFN-gamma signaling in intestinal epithelial cells strongly reduces their IFN-gamma-driven IL-7 production. In summary, our data suggest a feedback loop in which commensal bacteria drive IFN-gamma production by lymphocytes, which in turn promotes epithelial cell IL-7 production and the survival of IL-7-dependent lymphocytes.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Jung YW, Rutishauser RL, Joshi NS, Haberman AM, Kaech SM. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5315-25. [PMID: 20921525 PMCID: PMC4267692 DOI: 10.4049/jimmunol.1001948] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is unclear where within tissues subsets of effector and memory CD8 T cells persist during viral infection and whether their localization affects function and long-term survival. Following lymphocytic choriomeningitis virus infection, we found most killer cell lectin-like receptor G1 (KLRG1)(lo)IL-7R(hi) effector and memory cells, which are long-lived and high proliferative capacity, in the T cell zone of the spleen. In contrast, KLRG1(hi)IL-7R(lo) cells, which appear terminally differentiated and have shorter life spans, were exclusively localized to the red pulp. KLRG1(lo)IL-7R(hi) T cells homed to the T cell zone using pertussis toxin-sensitive chemokine receptors and appeared to contact gp38(+) stromal cells, which produce the chemokines CCL19 and CCL21 and the T cell survival cytokine IL-7. The transcription factors T-bet and B lymphocyte-induced maturation protein-1 controlled effector CD8 T cell splenic migration. Effector CD8 T cells overexpressing T-bet homed to the red pulp, whereas those lacking B lymphocyte-induced maturation protein-1 homed to the T cell zone. Upon memory formation, CD62L(+) memory T cells were predominantly found in the T cell zone, whereas CD62L(-) cells were found in the red pulp. Thus, effector and memory CD8 T cell subset localization within tissues is linked to their differentiation states, and this may identify anatomical niches that regulate their longevity and homeostasis.
Collapse
Affiliation(s)
- Yong Woo Jung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rachel L. Rutishauser
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ann M. Haberman
- Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
107
|
Klein Wolterink RGJ, García-Ojeda ME, Vosshenrich CAJ, Hendriks RW, Di Santo JP. The intrathymic crossroads of T and NK cell differentiation. Immunol Rev 2010; 238:126-37. [DOI: 10.1111/j.1600-065x.2010.00960.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
108
|
Janas ML, Turner M. Stromal cell-derived factor 1α and CXCR4: newly defined requirements for efficient thymic β-selection. Trends Immunol 2010; 31:370-6. [PMID: 20829112 DOI: 10.1016/j.it.2010.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 12/30/2022]
Abstract
The progressive maturation of T cells is accompanied by their migration through the thymus, with each selection stage occurring in distinct microenvironments. Many specialized receptor-ligand pairs have been defined that drive T cell differentiation, but our understanding of the complex relationship between T cells and the thymic stroma is incomplete. Recent reports have identified a role for the chemokine stromal cell-derived factor 1α and its receptor CXC chemokine receptor 4 in β-selection. This review explores these findings in detail.
Collapse
Affiliation(s)
- Michelle L Janas
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Babraham, Cambridge CB223AT, UK.
| | | |
Collapse
|
109
|
Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010; 33:153-65. [PMID: 20732639 PMCID: PMC2946796 DOI: 10.1016/j.immuni.2010.08.004] [Citation(s) in RCA: 598] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Indexed: 12/12/2022]
Abstract
Interleukin-2 receptor (IL-2R) signaling regulates tolerance and immunity. Here, we review recent work concerning the structure, signaling, and function of the IL-2R, emphasizing the contribution of IL-2 for T cell-dependent activity in vivo. IL-2R signaling influences two discrete aspects of immune responses by CD8(+) T cells, terminal differentiation of effector cells in primary responses, and aspects of memory recall responses. IL-2 also delivers essential signals for thymic development of regulatory T (Treg) cells and later to promote their homeostasis and function. Each of these outcomes on T effector and Treg cells requires distinct amounts of IL-2R signaling, with low IL-2R signaling sufficient for many key aspects of Treg cells. Thus, tolerance is readily maintained and favored with limited IL-2.
Collapse
Affiliation(s)
- Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, PO Box 01960, Miami, FL 33101, USA.
| | | |
Collapse
|
110
|
Thang PH, Ruffin N, Brodin D, Rethi B, Cam PD, Hien NT, Lopalco L, Vivar N, Chiodi F. The role of IL-1beta in reduced IL-7 production by stromal and epithelial cells: a model for impaired T-cell numbers in the gut during HIV-1 infection. J Intern Med 2010; 268:181-93. [PMID: 20497296 DOI: 10.1111/j.1365-2796.2010.02241.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Interleukin (IL)-7 is a key cytokine in T-cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL-7 production are still unclear. We assessed whether IL-1beta and interferon (IFN)-gamma, cytokines produced during inflammatory conditions, may impact on IL-7 production. DESIGN We used human intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL-7; IL-7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL-1beta and/or IFN-gamma leads to changes in the gene expression of cytokines, Toll-like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome microarray Human Gene 1.0 ST. RESULTS We found that IFN-gamma enhanced the expression of IL-7 mRNA (P < 0.001) in both cell lines. IL-1beta treatment led to a significant down-regulation (P < 0.001) of IL-7 mRNA expression in both cell lines. The IL-7 concentration in supernatants collected from treated DLD-1 and HS27 cell cultures reflected the trend of IL-7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL-7/IL-7R alpha; IL-1alpha,IL-1beta/IL-1R1; IFN-gamma/IFN-gammaR1), of IFN regulatory factors (IRF-1 and 2), of TLRs and of important chemo-attractants for T cells. The microarray results were verified by additional methods. CONCLUSIONS Our results are discussed in the setting of inflammation and T-cell survival in the gut compartment during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL-7 homeostasis and homing of T cells.
Collapse
Affiliation(s)
- P H Thang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 PMCID: PMC3123661 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
112
|
|
113
|
Alves NL, Huntington ND, Mention JJ, Richard-Le Goff O, Di Santo JP. Cutting Edge: a thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:5949-53. [PMID: 20439914 DOI: 10.4049/jimmunol.1000601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thymic epithelial cells (TECs) are the predominant intrathymic source of the essential thymopoietin IL-7. Whether thymocyte-TEC interactions have a role in the regulation of IL-7 expression is not known. By exploiting IL-7 reporter mice in which yellow fluorescent protein expression identifies TECs expressing high levels of IL-7 (Il7(+) TECs), we show that Il7(+) TECs segregate from emerging medullary TECs during thymic organogenesis. Although Il7(+) TECs normally diminish with age, we found that Il7(+) TECs are markedly retained in alymphoid Rag2(-/-)Il2rg(-/-) IL-7 reporter mice that manifest a profound thymopoietic arrest. Transfer of Tcra(-/-) or wild-type (but not Rag2(-/-)) hematopoietic progenitors to alymphoid IL-7 reporter recipients normalizes the frequency of Il7(+) TECs and re-establishes cortical TEC/medullary TEC segregation. Although thymocyte-derived signals are often considered stimulatory for TEC maturation, our findings identify a negative feedback mechanism in which signals derived from TCRbeta-selected thymocytes modulate TEC-dependent IL-7 expression.
Collapse
Affiliation(s)
- Nuno L Alves
- Cytokines and Lymphoid Development Unit, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
114
|
Reijmers RM, Vondenhoff MFR, Roozendaal R, Kuil A, Li JP, Spaargaren M, Pals ST, Mebius RE. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. THE JOURNAL OF IMMUNOLOGY 2010; 184:3656-64. [PMID: 20208005 DOI: 10.4049/jimmunol.0902200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of lymphoid organs depends on cross talk between hematopoietic cells and mesenchymal stromal cells and on vascularization of the lymphoid primordia. These processes are orchestrated by cytokines, chemokines, and angiogenic factors that require tight spatiotemporal regulation. Heparan sulfate (HS) proteoglycans are molecules designed to specifically bind and regulate the bioactivity of soluble protein ligands. Their binding capacity and specificity are controlled by modification of the HS side chain by HS-modifying enzymes. Although HS proteoglycans have been implicated in the morphogenesis of several organ systems, their role in controlling lymphoid organ development has thus far remained unexplored. In this study, we report that modification of HS by the HS-modifying enzyme glucuronyl C5-epimerase (Glce), which controls HS chain flexibility, is required for proper lymphoid organ development. Glce(-/-) mice show a strongly reduced size of the fetal spleen as well as a spectrum of defects in thymus and lymph node development, ranging from dislocation to complete absence of the organ anlage. Once established, however, the Glce(-/-) primordia recruited lymphocytes and developed normal architectural features. Furthermore, Glce(-/-) lymph node anlagen transplanted into wild-type recipient mice allowed undisturbed lymphocyte maturation. Our results indicate that modification of HS by Glce is required for controlling the activity of molecules that are instructive for early lymphoid tissue morphogenesis but may be dispensable at later developmental stages and for lymphocyte maturation and differentiation.
Collapse
Affiliation(s)
- Rogier M Reijmers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
115
|
|
116
|
Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 2010; 11:257-64. [PMID: 20118929 PMCID: PMC3555225 DOI: 10.1038/ni.1840] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/29/2009] [Indexed: 12/11/2022]
Abstract
Immature CD4(+)CD8(+) (double-positive (DP)) thymocytes are signaled via T cell antigen receptors (TCRs) to undergo positive selection and become responsive to intrathymic cytokines such as interleukin 7 (IL-7). We report here that cytokine signaling is required for positively selected thymocytes to express the transcription factor Runx3, specify CD8 lineage choice and differentiate into cytotoxic-lineage T cells. In DP thymocytes genetically engineered to be cytokine responsive, IL-7 signaling induced TCR-unsignaled DP thymocytes to express Runx3 and to differentiate into mature CD8(+) T cells, completely circumventing positive selection. We conclude that TCR-mediated positive selection converts DP cells into cytokine-responsive thymocytes, but it is subsequent signaling by intrathymic cytokines that specifies CD8 lineage choice and promotes differentiation into cytotoxic-lineage T cells.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 2009; 9:823-32. [PMID: 19935802 DOI: 10.1038/nri2657] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The peripheral naive T cell pool is fairly stable in number, diversity and functional competence in the absence of vigorous immune responses. However, this apparent tranquility is not an intrinsic property of T cells but involves continuous tuning of the T cell pool composition by homeostatic signals. In the past decade, studies have revealed that naive T cells rely on combinatorial signals from self-peptide-MHC complexes and interleukin-7 for their physical and functional maintenance. Competition for these factors dictates T cell 'space'. In addition, recent studies show that these and other homeostatic factors are offered to T cells on stromal cell networks, which also serve to guide T cell trafficking in secondary lymphoid organs. Such findings suggest the importance of 'place' in the perception and integration of homeostatic cues for the maintenance and functional tuning of the naive T cell pool.
Collapse
|
118
|
Short-term inhibition of p53 combined with keratinocyte growth factor improves thymic epithelial cell recovery and enhances T-cell reconstitution after murine bone marrow transplantation. Blood 2009; 115:1088-97. [PMID: 19965631 DOI: 10.1182/blood-2009-05-223198] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myeloablative conditioning before bone marrow transplantation (BMT) results in thymic epithelial cell (TEC) injury, T-cell immune deficiency, and susceptibility to opportunistic infections. Conditioning regimen-induced TEC damage directly contributes to slow thymopoietic recovery after BMT. Keratinocyte growth factor (KGF) is a TEC mitogen that stimulates proliferation and, when given before conditioning, reduces TEC injury. Some TEC subsets are refractory to KGF and functional T-cell responses are not fully restored in KGF-treated BM transplant recipients. Therefore, we investigated whether the addition of a pharmacologic inhibitor, PFT-beta, to transiently inhibit p53 during radiotherapy could spare TECs from radiation-induced damage in congenic and allogeneic BMTs. Combined before BMT KGF + PFT-beta administration additively restored numbers of cortical and medullary TECs and improved thymic function after BMT, resulting in higher numbers of donor-derived, naive peripheral CD4(+) and CD8(+) T cells. Radiation conditioning caused a loss of T-cell zone fibroblastic reticular cells (FRCs) and CCL21 expression in lymphoid stroma. KGF + PFT-beta treatment restored both FRC and CCL21 expression, findings that correlated with improved T-cell reconstitution and an enhanced immune response against Listeria monocytogenes infection. Thus, transient p53 inhibition combined with KGF represents a novel and potentially translatable approach to promote rapid and durable thymic and peripheral T-cell recovery after BMT.
Collapse
|
119
|
Thymic epithelial cells: the multi-tasking framework of the T cell "cradle". Trends Immunol 2009; 30:468-74. [PMID: 19781995 DOI: 10.1016/j.it.2009.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 01/06/2023]
Abstract
The thymus provides the anatomical "cradle" that fosters developing thymocytes. Thymic epithelial cells (TECs) are specialized cellular components that may be viewed as a multifunctional "frame" to nurture distinct stages of thymopoiesis. A symbiotic relationship between TECs and thymocytes exists because reciprocal interactions are required to achieve complete maturation of both cell types. Here, we propose that crucial instructive signals delivered by developing thymocytes negatively regulate functional attributes of immature TECs (including the expression of Delta-like 4 (DLL4) and interleukin-7 (IL-7)) that are required during early stages of thymopoiesis, while promoting the diversification of more mature TEC subsets. Thus, the division of labour among TECs may be coordinated directly by local cellular feedback mechanisms operating within distinct thymic niches.
Collapse
|
120
|
Boyman O, Létourneau S, Krieg C, Sprent J. Homeostatic proliferation and survival of naïve and memory T cells. Eur J Immunol 2009; 39:2088-94. [PMID: 19637200 DOI: 10.1002/eji.200939444] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The immune system relies on homeostatic mechanisms in order to adapt to the changing requirements encountered during steady-state existence and activation by antigen. For T cells, this involves maintenance of a diverse repertoire of naïve cells, rapid elimination of effector cells after pathogen clearance, and long-term survival of memory cells. The reduction of T-cell counts by either cytotoxic drugs, irradiation, or certain viruses is known to lead to lymphopenia-induced proliferation and restoration of normal T-cell levels. Such expansion is governed by the interaction of TCR with self-peptide/MHC (p/MHC) molecules plus contact with cytokines, especially IL-7. These same ligands, i.e. p/MHC molecules and IL-7, maintain naïve T lymphocytes as resting cells under steady-state T-cell-sufficient conditions. Unlike naïve cells, typical "central" memory T cells rely on a combination of IL-7 and IL-15 for their survival in interphase and for occasional cell division without requiring signals from p/MHC molecules. Other memory T-cell subsets are less quiescent and include naturally occurring activated memory-phenotype cells, memory cells generated during chronic viral infections, and effector memory cells. These subsets of activated memory cells differ from central memory T cells in their requirements for homeostatic proliferation and survival. Thus, the factors controlling T-cell homeostasis can be seen to vary considerably from one subset to another as described in detail in this review.
Collapse
Affiliation(s)
- Onur Boyman
- Division of Immunology and Allergy, University Hospital of Lausanne (CHUV), CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
121
|
Abstract
Thymic epithelial cells (TEC) are essential components of the thymus that guide and control the development and TCR repertoire selection of T cells. Previously, TEC have been considered as postmitotic cells that, once generated during ontogeny, were maintained in their mature state. Recently, it has become clear that TEC can be generated from common or committed medullary and cortical TEC progenitor cells in ontogeny, that stages of immature and mature TEC are phenotypically separable, and that TEC undergo a rapid turnover in a matter of a few weeks. All of these findings strongly suggest that in the adult thymus mature TEC are constantly regenerated from a pool of stem or progenitor cells, a view that renders the thymus structure potentially much more dynamic than previously thought. However, the identity of "thymus stem cells" is elusive, and developmental stages of TEC development are only beginning to be elucidated.
Collapse
Affiliation(s)
- Graham Anderson
- MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, UK.
| | | | | |
Collapse
|
122
|
Research Highlights. Nat Immunol 2009. [DOI: 10.1038/ni0309-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|