101
|
Termine R, Golemme A. Charge Mobility in Discotic Liquid Crystals. Int J Mol Sci 2021; 22:E877. [PMID: 33467214 PMCID: PMC7830985 DOI: 10.3390/ijms22020877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Discotic (disk-shaped) molecules or molecular aggregates may form, within a certain temperature range, partially ordered phases, known as discotic liquid crystals, which have been extensively studied in the recent past. On the one hand, this interest was prompted by the fact that they represent models for testing energy and charge transport theories in organic materials. However, their long-range self-assembling properties, potential low cost, ease of processability with a variety of solvents and the relative ease of tailoring their properties via chemical synthesis, drove the attention of researchers also towards the exploitation of their semiconducting properties in organic electronic devices. This review covers recent research on the charge transport properties of discotic mesophases, starting with an introduction to their phase structure, followed by an overview of the models used to describe charge mobility in organic substances in general and in these systems in particular, and by the description of the techniques most commonly used to measure their charge mobility. The reader already familiar or not interested in such details can easily skip these sections and refer to the core section of this work, focusing on the most recent and significant results regarding charge mobility in discotic liquid crystals.
Collapse
Affiliation(s)
- Roberto Termine
- LASCAMM CR-INSTM, CNR-NANOTEC SS di Rende, Dipartimento di Fisica, Università Della Calabria, 87036 Rende, Italy;
| | | |
Collapse
|
102
|
Matsunaga A, Ogawa Y, Kumaki D, Tokito S, Katagiri H. Control of Molecular Orientation in Organic Semiconductors Using Weak Iodine-Iodine Interactions. J Phys Chem Lett 2021; 12:111-116. [PMID: 33307707 DOI: 10.1021/acs.jpclett.0c02978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the molecular orientation of materials is a key issue for improving the performance of organic semiconductor devices. Herein, we demonstrate the structure-property relationships of iodinated and noniodinated molecules based on an asymmetric thienoacene framework. The noniodinated molecule formed an antiparallel slip-stack structure with small orbital overlap between molecules. In contrast, the iodinated molecule formed a head-to-head layered-herringbone structure, and as a result, the transfer integrals became larger and the hole mobility increased significantly compared with the noniodinated material. The iodinated molecule was made into a stable and solution-processable p-type organic semiconductor with a mobility of 2.2 cm2 V-1 s-1, which was 2 orders of magnitude higher than that of the noniodinated molecule. This study reveals that controlling molecular orientations using iodine-iodine interactions is a promising strategy for accelerating the development of organic semiconductor materials.
Collapse
Affiliation(s)
- Amane Matsunaga
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuta Ogawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Daisuke Kumaki
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
103
|
Ueberricke L, Mastalerz M. Triptycene End-Capping as Strategy in Materials Chemistry to Control Crystal Packing and Increase Solubility. CHEM REC 2021; 21:558-573. [PMID: 33411413 DOI: 10.1002/tcr.202000161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In materials chemistry of polycyclic aromatic compounds (PACs) the kind of aggregation and the spatial arrangement of the π-planes are of utmost importance, e. g. for charge transport properties. Unfortunately, controlling these during crystallization is not trivial. In the past decade, we have introduced one-fold triptycene end-capping of quinoxalinophenanthrophenazines (QPPs) and other related structures to overcome this problem. When two instead of one triptycene end-caps are introduced, packing is largely suppressed, making typical PACs or pigments soluble in common organic solvents - which is another important property for such compounds to be processable from solution. In this account an overview of our research on using triptycene end-capping as dual strategy is given.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| |
Collapse
|
104
|
Abstract
Organic semiconductors are being pursued with vigor for the development of efficient and smart electronics. As a brief tutorial account, we traverse the fundamentals and advancements in the area and provide a crystal engineering perspective.
Collapse
Affiliation(s)
- Aijaz A. Dar
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| | - Shahida Rashid
- Department of Chemistry, Inorganic Section, University of Kashmir, Hazratbal, Srinagar, J&K-190006, India
| |
Collapse
|
105
|
Mandal A, Kim Y, Kim SJ, Park J. Unravelling the fluorescence and semiconductor properties of a new coronene:TCNB charge transfer cocrystal polymorph. CrystEngComm 2021. [DOI: 10.1039/d1ce00741f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The charge transfer-based red emission and expected ambipolar semiconductor properties of a new coronene : TCNB (2 : 3) donor–acceptor cocrystal polymorph are elucidated.
Collapse
Affiliation(s)
- Arkalekha Mandal
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Youngmee Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
106
|
Qian C, Sun J, Gao Y. Transport of charge carriers and optoelectronic applications of highly ordered metal phthalocyanine heterojunction thin films. Phys Chem Chem Phys 2021; 23:9631-9642. [PMID: 33870992 DOI: 10.1039/d1cp00889g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Organic semiconductor thin films based on polycrystalline small molecules exhibit many attractive properties that have already led to their applications in optoelectronic devices, which can be produced by less expensive and stringent processes. Conduction of electric charges typically occurs in polycrystalline organic thin films. Unavoidably, the crystalline domain size, orientation, domain boundaries and energy level of the interface affect the transport of the charge carriers in organic thin films. In this comprehensive perspective, we focus on highly ordered organic heterojunction thin films fabricated by the weak epitaxy growth method. Transport of charge carriers in these highly ordered organic heterojunction thin films was systematically studied with various characterization techniques. Recent advances are presented in high-performance optoelectronic applications based on highly ordered organic heterojunction thin films, including organic photodetectors, photovoltaic cells, photomemory devices and artificial optoelectronic synapses.
Collapse
Affiliation(s)
- Chuan Qian
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yongli Gao
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
107
|
de Melo Neto CA, Pereira ML, Ribeiro LA, Roncaratti LF, da Silva Filho DA. Theoretical prediction of electron mobility in birhodanine crystals and their sulfur analogs. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
108
|
Reger D, Hampel F, Jux N. Crystal Engineering of Sterically Shielded Hexa-peri-hexabenzocoronenes. Aust J Chem 2021. [DOI: 10.1071/ch21025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structures of four pentakis-tert-butyl hexa-peri-hexabenzocoronenes (HBCs), each with an additional sixth substituent namely iodide, methoxy, formyl, and nitro, are presented. We show that the additional substituent has a significant impact on the packing in the solid state and the data obtained can be utilised for crystal engineering. By introducing an electron accepting substituent it was possible to achieve columnar arrangements that were previously unknown for such highly tert-butylated HBCs. In this way we provide insight into the aggregation behaviour of nanographenes with sterically highly shielded edges.
Collapse
|
109
|
Aggas JR, Walther BK, Abasi S, Kotanen CN, Karunwi O, Wilson AM, Guiseppi-Elie A. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosens Bioelectron 2020; 176:112889. [PMID: 33358581 DOI: 10.1016/j.bios.2020.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Brandon K Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20814, USA.
| | - Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics, Anderson University, 316 Boulevard, Anderson, SC, 29621, USA.
| | - Ann M Wilson
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| |
Collapse
|
110
|
Lu C, Wang C, Jimenez JC, Rheingold AL, Sauvé G. Large Non-planar Conjugated Molecule with Strong Intermolecular Interactions Achieved with Homoleptic Zn(II) Complex of Di(5-quinolylethynyl)-tetraphenylazadipyrromethene. ACS OMEGA 2020; 5:31467-31472. [PMID: 33324859 PMCID: PMC7726932 DOI: 10.1021/acsomega.0c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Zinc(II) complexes of tetraphenylazadipyrromethenes are potential non-planar n-type conjugated materials. To tune the properties, we installed 5-quinolylethynyl groups at the pyrrolic positions. Compared to the complex with 1-napthylethynyl, we found evidence for stronger intermolecular interactions in the new complex, including much higher overlap integrals in crystals. X-ray analysis revealed unconventional C-H···N hydrogen bonding between two quinolyls of neighboring molecules, pointing to a new strategy for the development of non-planar molecular semiconductors with stronger intermolecular interactions.
Collapse
Affiliation(s)
- Chenwei Lu
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44122, United States
| | - Chunlai Wang
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44122, United States
| | - Jayvic C. Jimenez
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44122, United States
| | - Arnold L. Rheingold
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla California, 92093, United States
| | - Genevieve Sauvé
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44122, United States
| |
Collapse
|
111
|
Turelli M, Alberga D, Lattanzi G, Ciofini I, Adamo C. Theoretical insights on acceptor-donor dyads for organic photovoltaics. Phys Chem Chem Phys 2020; 22:27413-27424. [PMID: 33231587 DOI: 10.1039/d0cp03038d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of organic photovoltaics has witnessed a steady growth in the last few decades and a recent renewal with the blossoming of single-material organic solar cells (SMOSCs). However, due to the intrinsic complexity of these devices (both in terms of their size and of the condensed phases involved), computational approaches to accurately predict their geometrical and electronic structure and to link their microscopic properties to the observed macroscopic behaviour are still lacking. In this work, we have focused on the rationalization of transport dynamics and we have set up a computational approach that makes a combined use of classical simulations and Density Functional Theory with the aim of disclosing the most relevant electronic and structural features of dyads used for SMOSC applications. As a prototype dyad, we have considered a molecule that consists in a dithiafulvalene-functionalized diketopyrrolopyrrole (DPP), acting as an electron donor, covalently linked to a fulleropyrrolidine (Ful), the electron acceptor. Our results, beside a quantitative agreement with experiments, show that the overall observed mobilities result from the competing packing mechanisms of the constituting units within the dyad both in the case of crystalline and amorphous phases. As a consequence, not all stable polymorphs have the same efficiency in transporting holes or electrons which often results in a highly directional carrier transport that is not, in general, a desirable feature for polycrystalline thin-films. The present work, linking microscopic packing to observed transport, thus opens the route for the in silico design of new dyads with enhanced and controlled structural and electronic features.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | | | | | | | | |
Collapse
|
112
|
Bhanvadia VJ, Machhi HK, Soni SS, Zade SS, Patel AL. Design and development of dithienopyrrolobenzothiadiazole (DTPBT)-based rigid conjugated polymers with improved hole mobilities. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Kumagai S, Watanabe S, Ishii H, Isahaya N, Yamamura A, Wakimoto T, Sato H, Yamano A, Okamoto T, Takeya J. Coherent Electron Transport in Air-Stable, Printed Single-Crystal Organic Semiconductor and Application to Megahertz Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003245. [PMID: 33191541 DOI: 10.1002/adma.202003245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field-effect transistors (FETs), and coherent (or band-like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p-type OSC SCs compatible with a printing technology have been used to achieve high-speed FETs; therefore, developments of n-type counterparts may be promising for realizing high-speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state-of-the-art, air-stable n-type OSC, PhC2 -BQQDI, by means of variable-temperature gated Hall effect measurements and X-ray single-crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high-speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2 -BQQDI is shown as a new candidate for practical applications of SC-based, organic complementary devices.
Collapse
Affiliation(s)
- Shohei Kumagai
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Shun Watanabe
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Nobuaki Isahaya
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Akifumi Yamamura
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takahiro Wakimoto
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Hiroyasu Sato
- Rigaku Corp, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Akihito Yamano
- Rigaku Corp, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Toshihiro Okamoto
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Takeya
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 205-0044, Japan
| |
Collapse
|
114
|
Winkler C, Zojer E. Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2372. [PMID: 33260582 PMCID: PMC7760313 DOI: 10.3390/nano10122372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the focus of scientific research. In this context, systems with efficient through-space charge transport pathways resulting from π-stacked conjugated linkers are of particular interest. In the current manuscript, we use density functional theory-based simulations to provide a detailed understanding of such MOFs, which, in the present case, are derived from the prototypical Zn2(TTFTB) system (with TTFTB4- corresponding to tetrathiafulvalene tetrabenzoate). In particular, we show that factors such as the relative arrangement of neighboring linkers and the details of the structural conformations of the individual building blocks have a profound impact on bandwidths and charge transfer. Considering the helical stacking of individual tetrathiafulvalene (TTF) molecules around a screw axis as the dominant symmetry element in Zn2(TTFTB)-derived materials, the focus, here, is primarily on the impact of the relative rotation of neighboring molecules. Not unexpectedly, changing the stacking distance in the helix also plays a distinct role, especially for structures which display large electronic couplings to start with. The presented results provide guidelines for achieving structures with improved electronic couplings. It is, however, also shown that structural defects (especially missing linkers) provide major obstacles to charge transport in the studied, essentially one-dimensional systems. This suggests that especially the sample quality is a decisive factor for ensuring efficient through-space charge transport in MOFs comprising stacked π-systems.
Collapse
Affiliation(s)
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria;
| |
Collapse
|
115
|
Lewis MM, Ahmed AA, Gerstmann L, Calvo-Castro J. Investigating structure-charge transport relationships in thiophene substituted naphthyridine crystalline materials by computational model systems. Phys Chem Chem Phys 2020; 22:25315-25324. [PMID: 33140765 DOI: 10.1039/d0cp04363j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of novel π-conjugated charge transfer mediators is at the forefront of current research efforts and interests. Among the plethora of building blocks, diketopyrrolopyrroles have been widely employed, associated to the ease of tailoring their optoelectronic properties by systematic peripheral substitutions. It is somehow of surprise to us that their six-member ring bis-lactam analogues, naphthyridines have been overlooked and reports are scarce and almost solely limited to their use in polymeric materials. Herein we report a comprehensive theoretical analysis of the charge transfer properties of 1,5-naphthyridine-based materials by means of a number of bespoke model systems, further able to quantitatively predict experimental mobility observations. Our results imply that thiophene substituted naphthyridine crystalline materials represent a promising class of organic π-conjugated systems with an experimentally observed ability to self-assemble in the solid state conforming to one dimensional stacking motifs. These highly sought-after charge propagation channels are characterised by large wavefunction overlap and thermal integrity and have as a result the potential to outperform currently exploited alternatives. We anticipate this work to be of interest to materials scientists and hope it will pave the way towards the realisation of novel charge transfer mediators exploiting naphthyridine chemistries.
Collapse
Affiliation(s)
- Madeline M Lewis
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | | | | | | |
Collapse
|
116
|
Kee S, Kim N, Park H, Kim BS, Teo MY, Lee S, Kim J, Lee K. Tuning the Mechanical and Electrical Properties of Stretchable PEDOT:PSS/Ionic Liquid Conductors. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seyoung Kee
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Nara Kim
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Hyunmin Park
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Bong Seong Kim
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Mei Ying Teo
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Seongyu Lee
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang 790‐784 Republic of Korea
| | - Kwanghee Lee
- Heeger Center for Advanced Materials (HCAM) School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| |
Collapse
|
117
|
Abstract
ConspectusExcitons and polarons play a central role in the electronic and optical properties of organic semiconducting polymers and molecular aggregates and are of fundamental importance in understanding the operation of organic optoelectronic devices such as solar cells and light-emitting diodes. For many conjugated organic molecules and polymers, the creation of neutral electronic excitations or ionic radicals is associated with significant nuclear relaxation, the bulk of which occurs along the vinyl-stretching mode or the aromatic-quinoidal stretching mode when conjugated rings are present. Within a polymer chain or molecular aggregate, nuclear relaxation competes with energy- and charge-transfer, mediated by electronic interactions between the constituent units (repeat units for polymers and individual chromophores for a molecular aggregate); for neutral electronic excitations, such inter-unit interactions lead to extended excited states or excitons, while for positive (or negative) charges, interactions lead to delocalized hole (or electron) polarons. The electronic coupling as well as the local coupling between electronic and nuclear degrees of freedom in both excitons and polarons can be described with a Holstein Hamiltonian. However, although excitons and polarons derive from similarly structured Hamiltonians, their optical signatures are quite distinct, largely due to differing ground states and optical selection rules.In this Account, we explore the similarities and differences in the spectral response of excitons and polarons in organic polymers and molecular aggregates. We limit our analysis to the subspace of excitons and hole polarons containing at most one excitation; hence we omit the influence of bipolarons, biexcitons, and higher multiparticle excitations. Using a generic linear array of coupled units as a model host for both excitons and polarons, we compare and contrast the optical responses of both quasiparticles, with a particular emphasis on the spatial coherence length, the length over which an exciton or polaron possesses wave-like properties important for more efficient transport. For excitons, the UV-vis absorption spectrum is generally represented by a distorted vibronic progression with H-like or J-like signatures depending on the sign of the electronic coupling, Jex. The spectrum broadens with increasing site disorder, with the spectral area preserved due to an oscillator strength sum rule. For (hole) polarons, the generally stronger electronic coupling results in a mid-IR spectrum consisting of a narrow, low-energy peak (A) with energy near a vibrational quantum of the vinyl stretching mode, and a broader, higher-energy feature (B). In contrast to the UV-vis spectrum, the mid-IR spectrum is invariant to the sign of the electronic coupling, th, and completely resistant to long-range disorder, where it remains entirely homogeneously broadened. Even in the presence of short-range disorder, the width of peak A remains surprisingly narrow as long as |th| remains sufficiently large, a property that can be understood in terms of Herzberg-Teller coupling. Unlike for excitons, for polarons, the absorption spectral area decreases with increasing short-range disorder σ (i.e., there is no oscillator sum rule) reflective of a decreasing polaron coherence length. The intensity of the low-energy peak A in relation to B is an important signature of polaron coherence. By contrast, for excitons, the absorption spectrum contains no unambiguous signs of exciton coherence. One must instead resort to the shape of the steady-state photoluminescence spectrum. The Holstein-based model has been highly successful in accounting for the spectral properties of molecular aggregates as well as conjugated polymers like poly(3-hexylthiophene) (P3HT) in the mid-IR and UV-vis spectral regions.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frank C. Spano
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
118
|
Irfan A, Imran M, Thomas R, Basra MAR, Ullah S, Al-Sehemi AG, Assiri MA. Exploring the effect of oligothiophene and acene cores on the optoelectronic properties and enhancing p- and n-type ability of semiconductor materials. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1830401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Kerala, India
| | | | - Sami Ullah
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
119
|
Ueberricke L, Schwarz J, Ghalami F, Matthiesen M, Rominger F, Elbert SM, Zaumseil J, Elstner M, Mastalerz M. Triptycene End-Capped Benzothienobenzothiophene and Naphthothienobenzothiophene. Chemistry 2020; 26:12596-12605. [PMID: 32368815 PMCID: PMC7589444 DOI: 10.1002/chem.202001125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Previously it was demonstrated that triptycene end-capping can be used as a crystal engineering strategy to direct the packing of quinoxalinophenanthrophenazines (QPPs) towards cofacially stacked π dimers with large molecular overlap resulting in high charge transfer integrals. Remarkably, this packing motif was formed under different crystallization conditions and with a variety of derivatives bearing additional functional groups or aromatic substituents. Benzothienobenzothiophene (BTBT) and its derivatives are known as some of the best performing compounds for organic field-effect transistors. Here, the triptycene end-capping concept is introduced to this class of compounds and polymorphic crystal structures are investigated to evaluate the potential of triptycene end-caps as synthons for crystal engineering.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Julia Schwarz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Farhad Ghalami
- Institut für Physikalische ChemieKarlsruher Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Maik Matthiesen
- Institut für Physikalische ChemieUniversität HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jana Zaumseil
- Institut für Physikalische ChemieUniversität HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Marcus Elstner
- Institut für Physikalische ChemieKarlsruher Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
120
|
Sánchez-Vergara ME, Díaz-Ortega N, Maldonado-Ramírez HJ, Ballinas-Indili R, Rios C, Salcedo R, Álvarez-Toledano C. Comparison of interaction mechanisms of lead phthalocyanine and disodium phthalocyanine with functionalized 1,4 dihydropyridine for optoelectronic applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
121
|
Windischbacher A, Steiner L, Haldar R, Wöll C, Zojer E, Kelterer AM. Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules 2020; 25:E4230. [PMID: 32942666 PMCID: PMC7570727 DOI: 10.3390/molecules25184230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.
Collapse
Affiliation(s)
- Andreas Windischbacher
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Luca Steiner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
| | - Ritesh Haldar
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344 Eggenstein-Leopoldshafen, Germany; (R.H.); (C.W.)
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344 Eggenstein-Leopoldshafen, Germany; (R.H.); (C.W.)
| | - Egbert Zojer
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Anne-Marie Kelterer
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria; (A.W.); (L.S.)
| |
Collapse
|
122
|
Pérez‐Jiménez ÁJ, Sancho‐García JC. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
123
|
Lijina MP, Benny A, Ramakrishnan R, Nair NG, Hariharan M. Exciton Isolation in Cross-Pentacene Architecture. J Am Chem Soc 2020; 142:17393-17402. [DOI: 10.1021/jacs.0c06016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M. P. Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Nanditha G. Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
124
|
Shuai Z, Li W, Ren J, Jiang Y, Geng H. Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond. J Chem Phys 2020; 153:080902. [PMID: 32872875 DOI: 10.1063/5.0018312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Marcus theory has been successfully applied to molecular design for organic semiconductors with the aid of quantum chemistry calculations for the molecular parameters: the intermolecular electronic coupling V and the intramolecular charge reorganization energy λ. The assumption behind this is the localized nature of the electronic state for representing the charge carriers, being holes or electrons. As far as the quantitative description of carrier mobility is concerned, the direct application of Marcus semiclassical theory usually led to underestimation of the experimental data. A number of effects going beyond such a semiclassical description will be introduced here, including the quantum nuclear effect, dynamic disorder, and delocalization effects. The recently developed quantum dynamics simulation at the time-dependent density matrix renormalization group theory is briefly discussed. The latter was shown to be a quickly emerging efficient quantum dynamics method for the complex system.
Collapse
Affiliation(s)
- Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100084 Beijing, People's Republic of China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, 100048 Beijing, People's Republic of China
| |
Collapse
|
125
|
Jhulki S, Kim J, Hwang IC, Haider G, Park J, Park JY, Lee Y, Hwang W, Dar AA, Dhara B, Lee SH, Kim J, Koo JY, Jo MH, Hwang CC, Jung YH, Park Y, Kataria M, Chen YF, Jhi SH, Baik MH, Baek K, Kim K. Solution-Processable, Crystalline π-Conjugated Two-Dimensional Polymers with High Charge Carrier Mobility. Chem 2020. [DOI: 10.1016/j.chempr.2020.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
126
|
Tariq A, Ramzan H, Ahmad SW, Bhatti IA, Ajmal M, Khalid M, Iqbal J. The theoretical investigation of the opto-electronic properties of designed molecules having 2-(2-Methylene-3-oxo-indane-1-ylidene)malononitrile as end-capped acceptors. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Five acceptor-donor-acceptor molecules having different core units with 2-(2-Methylene-3-oxo-indane-1-ylidene)malononitrile as end capped terminal acceptor unit were designed. The ground state geometries and electronic properties were calculated by using density functional theory (DFT) at MPW1PW91/6-31G(d,p) level of theory. The absorption spectra were computed by using time dependent DFT at MPW1PW91/6-31G(d,p) level of theory. The designed molecules have broad absorption range in visible region. M3 shows relatively lower band gap so that having high light harvesting efficiency (LHE). The molecules consider as better hole blocking materials in term of high ionization potentials. The reorganization energies calculation of M1, M2 and M4 manifests that these molecules are the optimal candidate for electron transportation. High value of Voc has been observed for molecules which would favorably contribute in power conversion efficiency. M1, M2, M4 and M5 are more stable in terms of absolute hardness and electrostatic potential surfaces. All molecules show good opto-electronic properties in the aspect of their use in photovoltaic application.
Collapse
Affiliation(s)
- Amina Tariq
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Hina Ramzan
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Syed Waqas Ahmad
- Department of Chemical and Polymer Engineering , University of Engineering and Technology, Faisalabad Campus , Faisalabad , Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Maryam Ajmal
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Muhammad Khalid
- Department of Chemistry , Khwaja Fareed University of Engineering & Information Technology , Rahim Yar Khan, 64200 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
- Department of Chemistry , Khwaja Fareed University of Engineering & Information Technology , Rahim Yar Khan, 64200 , Pakistan
- Punjab Bioenergy Institute , University of Agriculture Faisalabad , Faisalabad, 38000 , Pakistan
| |
Collapse
|
127
|
Tariq A, Ramzan H, Ahmad SW, Bhatti IA, Ajmal M, Khalid M, Iqbal J. The theoretical investigation of the opto-electronic properties of designed molecules having 2-(2-Methylene-3-oxo-indane-1-ylidene)malononitrile as end-capped acceptors. Z PHYS CHEM 2020. [DOI: 10.1515/zpc-2019-1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Five acceptor-donor-acceptor molecules having different core units with 2-(2-Methylene-3-oxo-indane-1-ylidene)malononitrile as end capped terminal acceptor unit were designed. The ground state geometries and electronic properties were calculated by using density functional theory (DFT) at MPW1PW91/6-31G(d,p) level of theory. The absorption spectra were computed by using time dependent DFT at MPW1PW91/6-31G(d,p) level of theory. The designed molecules have broad absorption range in visible region. M3 shows relatively lower band gap so that having high light harvesting efficiency (LHE). The molecules consider as better hole blocking materials in term of high ionization potentials. The reorganization energies calculation of M1, M2 and M4 manifests that these molecules are the optimal candidate for electron transportation. High value of Voc has been observed for molecules which would favorably contribute in power conversion efficiency. M1, M2, M4 and M5 are more stable in terms of absolute hardness and electrostatic potential surfaces. All molecules show good opto-electronic properties in the aspect of their use in photovoltaic application.
Collapse
Affiliation(s)
- Amina Tariq
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Hina Ramzan
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Syed Waqas Ahmad
- Department of Chemical and Polymer Engineering , University of Engineering and Technology, Faisalabad Campus , Faisalabad , Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Maryam Ajmal
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
| | - Muhammad Khalid
- Department of Chemistry , Khwaja Fareed University of Engineering & Information Technology , Rahim Yar Khan, 64200 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture Faisalabad, 38000 , Faisalabad , Pakistan
- Department of Chemistry , Khwaja Fareed University of Engineering & Information Technology , Rahim Yar Khan, 64200 , Pakistan
- Punjab Bioenergy Institute , University of Agriculture Faisalabad , Faisalabad, 38000 , Pakistan
| |
Collapse
|
128
|
Nematiaram T, Troisi A. Modeling charge transport in high-mobility molecular semiconductors: Balancing electronic structure and quantum dynamics methods with the help of experiments. J Chem Phys 2020; 152:190902. [DOI: 10.1063/5.0008357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
129
|
Liu J, Hättig C, Höfener S. Analytical nuclear gradients for electron-attached and electron-detached states for the second-order algebraic diagrammatic construction scheme combined with frozen-density embedding. J Chem Phys 2020; 152:174109. [DOI: 10.1063/5.0002851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Liu
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, D-76049 Karlsruhe, Germany
| |
Collapse
|
130
|
Sousa KRDA, Benatto L, Wouk L, Roman LS, Koehler M. Effects of non-halogenated solvent on the main properties of a solution-processed polymeric thin film for photovoltaic applications: a computational study. Phys Chem Chem Phys 2020; 22:9693-9702. [PMID: 32329493 DOI: 10.1039/d0cp01303j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic photovoltaic (OPV) devices have reached high power conversion efficiencies, but they are usually processed using halogenated toxic solvents. Hence, before OPV devices can be mass-produced by industrial processing, it would be desirable to replace those solvents with eco-friendly ones. Theoretical tools may be then a powerful ally in the search for those new solvents. In order to better understand the mechanisms behind the interaction between solvent and polymer, classical molecular dynamics (MD) calculations were used to produce a thin film of poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) (PTB7-Th), processed using two different solvents. PTB7-Th is widely applied as a donor material in OPVs. The first solvent is ortho-dichlorobenzene (o-DCB), which is a highly toxic solvent widely used in lab-scale studies. The second solvent is ortho-methylanisole (o-MA), which is an eco-friendly solvent for organic photovoltaic (OPV) manufacturing. Here we use a solvent evaporation protocol to simulate the formation of the PTB7-Th film. We demonstrate that our theoretical MD calculations were able to capture some differences in the macroscopic properties of thin films formed by o-DCB or o-MA evaporation. We found that the interaction of the halogenated solvent with the polymer tends to break the bonds between the lateral thiophenediyl groups and the main chain. We show that those defects may create traps that can affect the charge transport and also can be responsible for a blue shift in the absorption spectrum. Using the Monte Carlo method, we also verified the influence of the resulting MD morphology on the mobility of holes. Our theoretical results showed good agreement with the experimental measurements and both demonstrate that o-MA can be used to make polymer thin films without any loss of key properties for the device performance. The findings here highlight the importance of theoretical results as a guide to the morphological optimization of green processed polymeric films.
Collapse
|
131
|
Moral M, Navarro A, Pérez-Jiménez AJ, Sancho-García JC. Nature (Hole or Electron) of Charge-Transfer Ability of Substituted Cyclopyrenylene Hoop-Shaped Compounds. J Phys Chem A 2020; 124:3555-3563. [PMID: 32279496 DOI: 10.1021/acs.jpca.9b09869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We theoretically investigate here by means of DFT methods how the selective substitution in cyclic organic nanorings composed of pyrene units may promote semiconducting properties, analyzing the energy needed for a hole- or electron-transfer accommodation as a function of the substitution pattern and the system size (i.e., number of pyrene units). We choose to study both [3]Cyclo-2,7-pyrenylene ([3]CPY) and [4]Cyclo-2,7-pyrenylene ([4]CPY) compounds, the latter already synthesized, with substituents other than hydrogen acting in ipso and ortho positions, as well as the effect of the per-substitution. As substituents, we selected a set of electroactive halogen atoms (F, Cl, and Br) and groups (CN) to disclose structure-property relationships allowing thus to anticipate the use of these systems as organic molecular semiconductors.
Collapse
Affiliation(s)
- M Moral
- Renewable Energy Research Institute, University of Castilla-La Mancha, E-02071 Albacete, Spain
| | - A Navarro
- Department of Physical and Analytical Chemistry, University of Jaén, E-23071 Jaén, Spain
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
132
|
Okamoto T, Kumagai S, Fukuzaki E, Ishii H, Watanabe G, Niitsu N, Annaka T, Yamagishi M, Tani Y, Sugiura H, Watanabe T, Watanabe S, Takeya J. Robust, high-performance n-type organic semiconductors. SCIENCE ADVANCES 2020; 6:eaaz0632. [PMID: 32494668 PMCID: PMC7195148 DOI: 10.1126/sciadv.aaz0632] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Organic semiconductors (OSCs) are important active materials for the fabrication of next-generation organic-based electronics. However, the development of n-type OSCs lags behind that of p-type OSCs in terms of charge-carrier mobility and environmental stability. This is due to the absence of molecular designs that satisfy the requirements. The present study describes the design and synthesis of n-type OSCs based on challenging molecular features involving a π-electron core containing electronegative N atoms and substituents. The unique π-electron system simultaneously reinforces both electronic and structural interactions. The current n-type OSCs exhibit high electron mobilities with high reliability, atmospheric stability, and robustness against environmental and heat stresses and are superior to other existing n-type OSCs. This molecular design represents a rational strategy for the development of high-end organic-based electronics.
Collapse
Affiliation(s)
- Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shohei Kumagai
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Eiji Fukuzaki
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Naoyuki Niitsu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tatsuro Annaka
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masakazu Yamagishi
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama City, Toyama 939-8630, Japan
| | - Yukio Tani
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hiroki Sugiura
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Tetsuya Watanabe
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 205-0044, Japan
| |
Collapse
|
133
|
Zheng D, Guo Y, Zhang M, Feng X, Zhu L, Qiu L, Jin X, Zhao G. Anisotropic charge carrier transport of optoelectronic functional selenium-containing organic semiconductor materials. J Comput Chem 2020; 41:976-985. [PMID: 31925957 DOI: 10.1002/jcc.26145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/07/2022]
Abstract
Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing SeSe bond, the SeSe bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.
Collapse
Affiliation(s)
- Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, People's Republic of China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Mingxing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Lina Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Lijuan Qiu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Xiaoning Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry and Chemical Engineering Education, Institute of Chemistry, Tianjin University, Tianjin, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
134
|
Han B, Li Z, Li Y. Highly efficient perovskite solar cells by tuning electronic structures of thienothiophene-based as hole transport materials. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1644383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bingjie Han
- College of Science, Northeast Forestry University, Heilongjiang, People’s Republic of China
| | - Zhuo Li
- College of Science, Northeast Forestry University, Heilongjiang, People’s Republic of China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Heilongjiang, People’s Republic of China
| |
Collapse
|
135
|
Li X, Wu Q, Bai J, Hou S, Jiang W, Tang C, Song H, Huang X, Zheng J, Yang Y, Liu J, Hu Y, Shi J, Liu Z, Lambert CJ, Zhang D, Hong W. Structure‐Independent Conductance of Thiophene‐Based Single‐Stacking Junctions. Angew Chem Int Ed Engl 2020; 59:3280-3286. [DOI: 10.1002/anie.201913344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Qingqing Wu
- Department of PhysicsLancaster University Lancaster LA1 4YB UK
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Songjun Hou
- Department of PhysicsLancaster University Lancaster LA1 4YB UK
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Hang Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Xiaojuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Yong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| | - Zitong Liu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | | | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Siming South Road Xiamen China
| |
Collapse
|
136
|
Yang K, Zhang X, Harbuzaru A, Wang L, Wang Y, Koh C, Guo H, Shi Y, Chen J, Sun H, Feng K, Ruiz Delgado MC, Woo HY, Ortiz RP, Guo X. Stable Organic Diradicals Based on Fused Quinoidal Oligothiophene Imides with High Electrical Conductivity. J Am Chem Soc 2020; 142:4329-4340. [DOI: 10.1021/jacs.9b12683] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Lei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Changwoo Koh
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jianhua Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - M. Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
137
|
Üngör Ö, Shatruk M. Transition metal complexes with fractionally charged TCNQ radical anions as structural templates for multifunctional molecular conductors. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
138
|
Hao M, Chi W, Li Z. Positional Effect of the Triphenylamine Group on the Optical and Charge-Transfer Properties of Thiophene-Based Hole-Transporting Materials. Chem Asian J 2020; 15:287-293. [PMID: 31823524 DOI: 10.1002/asia.201901552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Indexed: 11/10/2022]
Abstract
Hybrid organic-inorganic perovskite solar cells (PSCs) have shown significant potential for use in the energy field. Typically, hole-transporting materials (HTMs) play an important role in affecting the power conversion efficiency (PCE) of PSCs. A deep understanding of the structure-property relationship plays a vital role in developing efficient HTMs. Herein, the relationship between the structure and properties of two small organic HTMs H2,5 and H3,4 were systematically investigated in terms of the electronic and optical properties, the hole-transporting behavior by using density functional theory (DFT) and Marcus electron transfer theory. The results demonstrated that the high power conversion efficiency of the H2,5-based PSC was caused by strong interactions with the perovskite material on the interface and an enhanced hole mobility in H2,5 compared with H3,4. The strong interaction derives from the short bond length of O atom of HTM and Pb atom of perovskite material, and the highly hole mobility derives from the quasi-planar conjugated conformation and tight packing model of neighboring molecules in H2,5. In addition, we found that the planar structure enhances the intermolecular interaction between HTM and perovskite materials compared with the 'V'-shaped molecule. Importantly, we also note that the HOMO level of the isolated molecule is not always proportional to the open-circuit voltages of PSCs since the HOMO level might move toward a higher level when the interaction between HTM and interface of perovskite was included. The work gives essential information for rational designing efficient HTMs.
Collapse
Affiliation(s)
- Mengyao Hao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.,Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Weijie Chi
- Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| |
Collapse
|
139
|
Li X, Wu Q, Bai J, Hou S, Jiang W, Tang C, Song H, Huang X, Zheng J, Yang Y, Liu J, Hu Y, Shi J, Liu Z, Lambert CJ, Zhang D, Hong W. Structure‐Independent Conductance of Thiophene‐Based Single‐Stacking Junctions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Qingqing Wu
- Department of Physics Lancaster University Lancaster LA1 4YB UK
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Songjun Hou
- Department of Physics Lancaster University Lancaster LA1 4YB UK
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Hang Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Xiaojuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Yong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | | | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering Xiamen University Siming South Road Xiamen China
| |
Collapse
|
140
|
Cui B, Zheng X, Wang J, Liu D, Xie S, Huang B. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat Commun 2020; 11:66. [PMID: 31898693 PMCID: PMC6940388 DOI: 10.1038/s41467-019-13794-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/20/2019] [Indexed: 12/03/2022] Open
Abstract
Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly determine the electronic and topological properties of a Lieb lattice. Importantly, based on first-principles calculations, we predict that the two existing covalent organic frameworks (COFs), i.e., sp2C-COF and sp2N-COF, are actually the first two material realizations of organic-ligand-based Lieb lattice. Interestingly, the sp2C-COF can experience the phase transitions from a paramagnetic state to a ferromagnetic one and then to a Néel antiferromagnetic one, as the carrier doping concentration increases. Our findings not only confirm the first material realization of Lieb lattice in COFs, but also offer a possible way to achieve tunable topology and magnetism in organic lattices.
Collapse
Affiliation(s)
- Bin Cui
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China.
| | - Xingwen Zheng
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Jianfeng Wang
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Desheng Liu
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Shijie Xie
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Bing Huang
- Beijing Computational Science Research Center, Beijing, 100193, China.
| |
Collapse
|
141
|
Yin F, Wang L, Yang X, Liu M, Geng H, Liao Y, Liao Q, Fu H. High performance single-crystalline organic field-effect transistors based on molecular-modified dibenzo[ a, e]pentalenes derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj03297b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the charge transport properties realized by a controllable molecular structure resulted in different packing arrangements.
Collapse
Affiliation(s)
- Fan Yin
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Chemical Engineering and Technology
- Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| | - Long Wang
- Key Laboratory for Interface Sciences and Engineer in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Xiankai Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| | - Meihui Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| | - Yi Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| | - Hongbing Fu
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- School of Chemical Engineering and Technology
- Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
| |
Collapse
|
142
|
Hsu CP. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys Chem Chem Phys 2020; 22:21630-21641. [DOI: 10.1039/d0cp02994g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various contributions to the outer reorganization energy of an electron transfer system and their theoretical and computational aspects have been discussed.
Collapse
Affiliation(s)
- Chao-Ping Hsu
- 128 Academia Road Section 2
- Institute of Chemistry
- Academia Sinica
- Taipei
- Taiwan
| |
Collapse
|
143
|
Aitchison CM, Sachs M, Little MA, Wilbraham L, Brownbill NJ, Kane CM, Blanc F, Zwijnenburg MA, Durrant JR, Sprick RS, Cooper AI. Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chem Sci 2020. [DOI: 10.1039/d0sc02675a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligomer chain length and backbone twisting were found to have a strong effect on optoelectronic properties but a trimer of dibenzo[b,d]thiophene sulfone was found to have high photocatalytic activity approaching that of its polymer analogue.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Michael Sachs
- Department of Chemistry and Centre for Processable Electronics
- Imperial College London
- London W12 0BZ
- UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Liam Wilbraham
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Nick J. Brownbill
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Stephenson Institute for Renewable Energy
| | - Christopher M. Kane
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Frédéric Blanc
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Stephenson Institute for Renewable Energy
| | | | - James R. Durrant
- Department of Chemistry and Centre for Processable Electronics
- Imperial College London
- London W12 0BZ
- UK
| | - Reiner Sebastian Sprick
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Department of Pure and Applied Chemistry
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| |
Collapse
|
144
|
Jackson NE, Bowen AS, de Pablo JJ. Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nicholas E. Jackson
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Alec S. Bowen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
145
|
Navamani K, Pati SK, Senthilkumar K. Effect of site energy fluctuation on charge transport in disordered organic molecules. J Chem Phys 2019; 151:224301. [PMID: 31837669 DOI: 10.1063/1.5122695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effect of dynamics of site energy disorder on charge transport in organic molecular semiconductors is not yet well-established. In order to study the relationship between the dynamics of site energy disorder and charge transport, we have performed a multiscale study on dialkyl substituted thienothiophene capped benzobisthiazole (BDHTT-BBT) and methyl-substituted dicyanovinyl-capped quinquethiophene (DCV5T-Me) molecular solids. In this study, we explore the structural dynamics and correlated charge transport by electronic structure calculations, molecular dynamics, and kinetic Monte-Carlo simulations. We have also proposed the differential entropy dependent diffusion and charge density equations to study the electric field drifted diffusion property and carrier density. In this investigation, we have addressed the transformation mechanism from dynamic to static disorder in the extended stacked molecular units. Here, the decrease in the charge transfer rate due to site energy fluctuations reveals the dispersion transport along the extended π-stacked molecules. Furthermore, the calculated current density for a different set of site energy difference values shows the validity and the limitations of the Einstein relation. Based on the calculated ideality factor, we have classified the charge transport in these molecules as either the Langevin or the Shockley-Read-Hall type mechanism. Through the calculated mobility, current density, and ideality factor analysis, we categorize the applicability of molecules of interest for photovoltaic or light emitting diode applications.
Collapse
Affiliation(s)
- K Navamani
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - K Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| |
Collapse
|
146
|
Petty AJ, Ai Q, Sorli JC, Haneef HF, Purdum GE, Boehm A, Granger DB, Gu K, Rubinger CPL, Parkin SR, Graham KR, Jurchescu OD, Loo YL, Risko C, Anthony JE. Computationally aided design of a high-performance organic semiconductor: the development of a universal crystal engineering core. Chem Sci 2019; 10:10543-10549. [PMID: 32055377 PMCID: PMC6988752 DOI: 10.1039/c9sc02930c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene "universal crystal engineering core". After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Anthony J Petty
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Qianxiang Ai
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Jeni C Sorli
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
| | - Hamna F Haneef
- Department of Physics and Center for Functional Materials , Wake Forest University , USA
| | - Geoffrey E Purdum
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
| | - Alex Boehm
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Devin B Granger
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Kaichen Gu
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
| | | | - Sean R Parkin
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Kenneth R Graham
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials , Wake Forest University , USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
- Andlinger Center for Energy and the Environment , Princeton University , Princeton , New Jersey 08544 , USA
| | - Chad Risko
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
- Center for Applied Energy Research , University of Kentucky , Lexington , Kentucky 40511 , USA
| | - John E Anthony
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA .
- Center for Applied Energy Research , University of Kentucky , Lexington , Kentucky 40511 , USA
| |
Collapse
|
147
|
Thurston BA, Shapera EP, Tovar JD, Schleife A, Ferguson AL. Revealing the Sequence-Structure-Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15221-15231. [PMID: 31657579 DOI: 10.1021/acs.langmuir.9b02593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled nanoaggregates of π-conjugated synthetic peptides present a biocompatible and highly tunable alternative to silicon-based optical and electronic materials. Understanding the relationship between structural morphology and electronic properties of these assemblies is critical for understanding and controlling their mechanical, optical, and electronic responses. In this work, we combine all-atom classical molecular simulations with quantum mechanical electronic structure calculations to ascertain the sequence-structure-electronic property relationship within a family of Asp-X-X-quaterthiophene-X-X-Asp (DXX-OT4-XXD) oligopeptides in which X is one of the five amino acids {Ala, Phe, Gly, Ile, Val} ({A, F, G, I, V}). Molecular dynamics simulations reveal that smaller amino acid substituents (A, G) favor linear stacking within a peptide dimer, whereas larger groups (F, I, V) induce larger twist angles between the peptides. Density functional theory calculations on the dimer show the absorption spectrum to be dominated by transitions between carbon and sulfur p orbitals. Although the absorption spectrum is largely insensitive to the relative twist angle, the highest occupied molecular orbital strongly localizes onto one molecule within the dimer at large twist angles, impeding the efficiency of transport between molecules. Our results provide a fundamental understanding of the relation between peptide orientation and electronic structure and offer design precepts for rational engineering of these systems.
Collapse
Affiliation(s)
- Bryce A Thurston
- Center for Integrated Nanotechnologies , Sandia National Laboratories , P.O. Box 5800, Albuquerque , New Mexico 87185 , United States
| | - Ethan P Shapera
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - John D Tovar
- Department of Chemistry, Krieger School of Arts and Sciences , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Materials Science and Engineering, Whiting School of Engineering , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - André Schleife
- Department of Materials Science and Engineering , 1304 West Green Street , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Materials Research Laboratory , University of Illinois at Urbana-Champaign , 104 South Goodwin Avenue , Urbana , Illinois 61801 , United States
- National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , 1205 West Clark Street , Urbana , Illinois 61801 , United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
148
|
Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nat Commun 2019; 10:5226. [PMID: 31745091 PMCID: PMC6863910 DOI: 10.1038/s41467-019-13155-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 11/08/2022] Open
Abstract
It is still a matter of controversy whether the relative difference in hole and electron transport in solution-processed organic semiconductors is either due to intrinsic properties linked to chemical and solid-state structure or to extrinsic factors, as device architecture. We here isolate the intrinsic factors affecting either electron or hole transport within the same film microstructure of a model copolymer semiconductor. Relatively, holes predominantly bleach inter-chain interactions with H-type electronic coupling character, while electrons' relaxation more strongly involves intra-chain interactions with J-type character. Holes and electrons mobility correlates with the presence of a charge transfer state, while their ratio is a function of the relative content of intra- and inter-molecular interactions. Such fundamental observation, revealing the specific role of the ground-state intra- and inter-molecular coupling in selectively assisting charge transport, allows predicting a more favorable hole or electron transport already from screening the polymer film ground state optical properties.
Collapse
|
149
|
Ramakrishnan R, Niyas MA, Lijina MP, Hariharan M. Distinct Crystalline Aromatic Structural Motifs: Identification, Classification, and Implications. Acc Chem Res 2019; 52:3075-3086. [PMID: 31449389 DOI: 10.1021/acs.accounts.9b00320] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spatial noncovalent helical organization of nucleobases in DNA and radial organization of chromophores in natural light-harvesting systems are fascinating yet enigmatic. Understanding the numerous weak interactions that drive the formation of elegant supramolecular architectures in native natural systems and developing bioinspired design strategies have seen a surge of interest in recent decades. Self-assembly of functional chromophores in the crystalline phase is a definitive strategy to identify novel molecule-molecule interactions, in particular, atom-atom interactions, and to understand the synergistic nature of noncovalent interactions that stabilizes the supramolecular organization. This Account narrates our recent efforts in developing desirable supramolecular motifs employing weak interaction-based strategies and our observation of deviations from the common motifs chartered in aromatic systems. Modulation of long-range aromatic interactions through chemical modifications (acylation, benzoylation, haloacylation, and alkylation of chromophores) to attain a preferred stacking (herringbone, lamellar, or columnar) is presented. Particular attention has been given to attaining lamellar or columnar packing possessing potential interchromophoric electronic coupling mediated high charge mobility. Supramolecular arrangements of noncovalently or covalently associated donor-acceptor systems that open up additional possibilities of packing modes (segregated, mixed etc.) are explored. Our persistent efforts yielded distinct twisted-segregated and alternate distichous stacks for the nonparallel covalently linked donor-acceptor systems that favor a long-lived photoinduced charge-separated state. We further move on to discuss the unconventional packing motifs that were identified recently. The highly sought-after Greek cross (+) stacking of chromophores in crystalline phase and an elegant crystalline radial arrangement of chromophores are examined. The Greek cross (+) stacked architecture exhibits monomer-like emission characteristics owing to the absence of exciton coupling across the orthogonally stacked chromophores. Crystalline helical chromophore assembly is yet another emerging motif with far-reaching applications in domains ranging from asymmetric catalysis to chiral smart materials and has been accounted here by citing certain phenomenal examples from literature. Thus, this Account demonstrates that identifying and classifying new structural motifs based on topological aspects, such as interchromophoric orientation (cross) and extended chromophore arrangement in the crystal lattice (radial, helical, etc.), are crucial since such fundamental characteristics dictate the properties emerging out of the corresponding motifs. Encouraged from ours and others' works, we propose the addition of new aromatic supramolecular structural motifs, namely, cross-stacked, helical, and radial arrangements, in order to expand the classification. We believe that identifying new emergent property-based supramolecular motifs and investigating the methods to achieve the desired motif will eventually have implications in fundamental crystal engineering, supramolecular chemistry, and biomimetic design of functional materials.
Collapse
Affiliation(s)
- Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - M. A. Niyas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - M. P. Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
150
|
Chaudhry AR, Muhammad S, Ul Haq B, Laref A, Shaari A, Gilani MA. Exploring the opto-electronic and charge transfer nature of F-BODIPY derivatives at molecular level: A theoretical perspective. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|