101
|
Structure of the RecQ C-terminal domain of human Bloom syndrome protein. Sci Rep 2013; 3:3294. [PMID: 24257077 PMCID: PMC6505963 DOI: 10.1038/srep03294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/23/2023] Open
Abstract
Bloom syndrome is a rare genetic disorder characterized by genomic instability and cancer predisposition. The disease is caused by mutations of the Bloom syndrome protein (BLM). Here we report the crystal structure of a RecQ C-terminal (RQC) domain from human BLM. The structure reveals three novel features of BLM RQC which distinguish it from the previous structures of the Werner syndrome protein (WRN) and RECQ1. First, BLM RQC lacks an aromatic residue at the tip of the β-wing, a key element of the RecQ-family helicases used for DNA-strand separation. Second, a BLM-specific insertion between the N-terminal helices exhibits a looping-out structure that extends at right angles to the β-wing. Deletion mutagenesis of this insertion interfered with binding to Holliday junction. Third, the C-terminal region of BLM RQC adopts an extended structure running along the domain surface, which may facilitate the spatial positioning of an HRDC domain in the full-length protein.
Collapse
|
102
|
Wang W, Hou H, Du Q, Zhang W, Liu G, Shtykova EV, Xu J, Liu P, Dong Y. Solution small angle X-ray scattering (SAXS) studies of RecQ from Deinococcus radiodurans and its complexes with junction DNA substrates. J Biol Chem 2013; 288:32414-32423. [PMID: 24068706 PMCID: PMC3820876 DOI: 10.1074/jbc.m113.502112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/14/2013] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases, essential enzymes for maintaining genome integrity, possess the capability to participate in a wide variety of DNA metabolisms. They can initiate the homologous recombination repair pathway by unwinding damaged dsDNA and suppress hyper-recombination by promoting Holliday junction (HJ) migration. To learn how DrRecQ participates in the homologous recombination repair pathway, solution structures of Deinococcus radiodurans RecQ (DrRecQ) and its complexes with DNA substrates were investigated by small angle x-ray scattering. We found that the catalytic core and the most N-terminal HRDC (helicase and RNase D C-terminal) domain (HRDC1) undergo a conformational change to a compact state upon binding to a junction DNA. Furthermore, models of DrRecQ in complexes with two kinds of junction DNA (fork junction and HJ) were built based on the small angle x-ray scattering data, and together with the EMSA results, possible binding sites were proposed. It is demonstrated that two DrRecQ molecules bind to the opposite arms of HJ. This architecture is similar to the RuvAB complex and is hypothesized to be highly conserved in the other HJ migration proteins. This work provides us new clues to understand the roles DrRecQ plays in the RecFOR pathway.
Collapse
Affiliation(s)
- Wenjia Wang
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Hou
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Du
- the Department of Plant Sciences, College of Agriculture and Nature Resources, University of Connecticut, Storrs, Connecticut 06269
| | - Wen Zhang
- the Department of Physiology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guangfeng Liu
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Eleonora V Shtykova
- the Institute of Crystallography, Russian Academy of Sciences, Moscow 117333, Russia
| | - Jianhua Xu
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China,.
| | - Yuhui Dong
- From the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China,.
| |
Collapse
|
103
|
Salah GB, Salem IH, Masmoudi A, Rhouma BB, Turki H, Fakhfakh F, Ayadi H, Kamoun H. Chromosomal instability associated with a novel BLM frameshift mutation (c.1980-1982delAA) in two unrelated Tunisian families with Bloom syndrome. J Eur Acad Dermatol Venereol 2013; 28:1318-23. [DOI: 10.1111/jdv.12279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/30/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- G. Ben Salah
- Laboratory of Human Molecular Genetics; Faculty of Medicine; University of Sfax; Sfax Tunisia
| | - I. Hadj Salem
- Laboratory of Human Molecular Genetics; Faculty of Medicine; University of Sfax; Sfax Tunisia
| | - A. Masmoudi
- Department of Dermatology; Hedi Chaker Hospital of Sfax; Sfax Tunisia
| | - B. Ben Rhouma
- Laboratory of Human Molecular Genetics; Faculty of Medicine; University of Sfax; Sfax Tunisia
| | - H. Turki
- Center of Biotechnology; University of Sfax; Sfax Tunisia
| | - F. Fakhfakh
- Laboratory of Human Molecular Genetics; Faculty of Medicine; University of Sfax; Sfax Tunisia
| | - H. Ayadi
- Center of Biotechnology; University of Sfax; Sfax Tunisia
| | - H. Kamoun
- Laboratory of Human Molecular Genetics; Faculty of Medicine; University of Sfax; Sfax Tunisia
- Medical genetics Unit; Hedi Chaker Hospital of Sfax; Sfax Tunisia
| |
Collapse
|
104
|
Wu X, Xu Y, Feng K, Tompkins JD, Her C. MutS homologue hMSH5: recombinational DSB repair and non-synonymous polymorphic variants. PLoS One 2013; 8:e73284. [PMID: 24023853 PMCID: PMC3762724 DOI: 10.1371/journal.pone.0073284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/18/2013] [Indexed: 01/25/2023] Open
Abstract
Double-strand breaks (DSBs) constitute the most deleterious form of DNA lesions that can lead to genome alterations and cell death, and the vast majority of DSBs arise pathologically in response to DNA damaging agents such as ionizing radiation (IR) and chemotherapeutic agents. Recent studies have implicated a role for the human MutS homologue hMSH5 in homologous recombination (HR)-mediated DSB repair and the DNA damage response. In the present study, we show that hMSH5 promotes HR-based DSB repair, and this property resides in the carboxyl-terminal portion of the protein. Our results demonstrate that DSB-triggered hMSH5 chromatin association peaks at the proximal regions of the DSB and decreases gradually with increased distance from the break. Furthermore, the DSB-triggered hMSH5 chromatin association is preceded by and relies on the assembly of hMRE11 and hRad51 at the proximal regions of the DSB. Lastly, the potential effects of hMSH5 non-synonymous variants (L85F, Y202C, V206F, R351G, L377F, and P786S) on HR and cell survival in response to DSB-inducing anticancer agents have been analyzed. These experiments show that the expression of hMSH5 variants elicits different survival responses to anticancer drugs cisplatin, bleomycin, doxorubicin and camptothecin. However, the effects of hMSH5 variants on survival responses to DSB-inducing agents are not directly correlated to their effects exerted on HR-mediated DSB repair, suggesting that the roles of hMSH5 variants in the processes of DNA damage response and repair are multifaceted.
Collapse
Affiliation(s)
- Xiling Wu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Yang Xu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Katey Feng
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Joshua D. Tompkins
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Chengtao Her
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
105
|
Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J 2013; 280:3180-93. [PMID: 23647631 DOI: 10.1111/febs.12326] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/12/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023]
Abstract
The discovery of telomeres dates back to the early 20th century. In humans, telomeres are heterochromatic structures with tandem DNA repeats of 5'-TTAGGG-3' at the chromosomal ends. Telomere length varies greatly among species and ranges from 10 to 15 kb in humans. With each cell division, telomeres shorten progressively because of the 'end-replication problem'. Short or dysfunctional telomeres are often recognized as DNA DSBs, triggering cell-cycle arrest and result in cellular senescence or apoptotic cell death. Therefore, telomere shortening serves as an important tumor-suppressive mechanism by limiting cellular proliferative capacity by regulating senescence checkpoint activation. Although telomeres serve as a mitotic clock to cells, they also confer capping on chromosomes, with help from telomere-associated proteins. Over the past decades, many studies of telomere biology have demonstrated that telomeres and telomere-associated proteins are implicated in human genetic diseases. In addition, it has become more apparent that accelerated telomere erosion is associated with a myriad of metabolic and inflammatory diseases. Moreover, critically short or unprotected telomeres are likely to form telomeric fusions, leading to genomic instability, the cornerstone for carcinogenesis. In light of these, this minireview summarizes studies on telomeres and telomere-associated proteins in human diseases. Elucidating the roles of telomeres involved in the mechanisms underlying pathogenesis of these diseases may open up new possibilities for novel molecular targets as well as provide important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Chiou Mee Kong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
106
|
Jensen MB, Dunn CA, Keijzers G, Kulikowicz T, Rasmussen LJ, Croteau DL, Bohr VA. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging (Albany NY) 2013; 4:790-802. [PMID: 23238538 PMCID: PMC3560432 DOI: 10.18632/aging.100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations. These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase-dead, had marginal ATPase activity and may be structurally compromised, while the other two showed greatly reduced helicase and ATPase activities. The remaining biochemical activities and ability to recruit to damage sites were not significantly impaired for any of the mutants. Our findings demonstrate a consistent pattern of functional deficiency and provide further support for a helicase-dependent cellular function of RECQL4 in addition to its Nterminus-dependent role in initiation of replication, a function that may underlie the phenotype of RECQL4-linked disease.
Collapse
Affiliation(s)
- Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
108
|
Lu X, Parvathaneni S, Hara T, Lal A, Sharma S. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D. Mol Cancer 2013; 12:29. [PMID: 23601052 PMCID: PMC3663727 DOI: 10.1186/1476-4598-12-29] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/10/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Stalled replication forks at common fragile sites are a major cause of genomic instability. RecQ helicases, a highly conserved family of DNA-unwinding enzymes, are believed to ease 'roadblocks' that pose challenge to replication fork progression. Among the five known RecQ homologs in humans, functions of RECQ1, the most abundant of all, are poorly understood. We previously determined that RECQ1 helicase preferentially binds and unwinds substrates that mimic DNA replication/repair intermediates, and interacts with proteins involved in DNA replication restart mechanisms. METHOD We have utilized chromatin immunoprecipitation followed by quantitative real-time PCR to investigate chromatin interactions of RECQ1 at defined genetic loci in the presence or absence of replication stress. We have also tested the sensitivity of RECQ1-depleted cells to aphidicolin induced replication stress. RESULTS RECQ1 binds to the origins of replication in unperturbed cells. We now show that conditions of replication stress induce increased accumulation of RECQ1 at the lamin B2 origin in HeLa cells. Consistent with a role in promoting fork recovery or repair, RECQ1 is specifically enriched at two major fragile sites FRA3B and FRA16D where replication forks have stalled following aphidicolin treatment. RECQ1-depletion results in attenuated checkpoint activation in response to replication stress, increased sensitivity to aphidicolin and chromosomal instability. CONCLUSIONS Given a recent biochemical observation that RECQ1 catalyzes strand exchange on stalled replication fork structures in vitro, our results indicate that RECQ1 facilitates repair of stalled or collapsed replication forks and preserves genome integrity. Our findings provide the first evidence of a crucial role for RECQ1 at naturally occurring fork stalling sites and implicate RECQ1 in mechanisms underlying common fragile site instability in cancer.
Collapse
Affiliation(s)
- Xing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA. 2Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA. 2Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toshifumi Hara
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish Lal
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA. 2Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
109
|
Kwon YI, Abe K, Endo M, Osakabe K, Ohtsuki N, Nishizawa-Yokoi A, Tagiri A, Saika H, Toki S. DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC PLANT BIOLOGY 2013; 13:62. [PMID: 23586618 PMCID: PMC3648487 DOI: 10.1186/1471-2229-13-62] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mammalian BLM helicase is involved in DNA replication, DNA repair and homologous recombination (HR). These DNA transactions are associated tightly with cell division and are important for maintaining genome stability. However, unlike in mammals, cell division in higher plants is restricted mainly to the meristem, thus genome maintenance at the meristem is critical. The counterpart of BLM in Arabidopsis (AtRecQ4A) has been identified and its role in HR and in the response to DNA damage has been confirmed. However, the function of AtRecQ4A in the meristem during replication stress has not yet been well elucidated. RESULTS We isolated the BLM counterpart gene OsRecQl4 from rice and analyzed its function using a reverse genetics approach. Osrecql4 mutant plants showed hypersensitivity to DNA damaging agents and enhanced frequency of HR compared to wild-type (WT) plants. We further analyzed the effect of aphidicolin--an inhibitor of S-phase progression via its inhibitory effect on DNA polymerases--on genome stability in the root meristem in osrecql4 mutant plants and corresponding WT plants. The following effects were observed upon aphidicolin treatment: a) comet assay showed induction of DNA double-strand breaks (DSBs) in mutant plants, b) TUNEL assay showed enhanced DNA breaks at the root meristem in mutant plants, c) a recombination reporter showed enhanced HR frequency in mutant calli, d) propidium iodide (PI) staining of root tips revealed an increased incidence of cell death in the meristem of mutant plants. CONCLUSIONS These results demonstrate that the aphidicolin-sensitive phenotype of osrecql4 mutants was in part due to induced DSBs and cell death, and that OsRecQl4 plays an important role as a caretaker, maintaining genome stability during DNA replication stress in the rice meristem.
Collapse
Affiliation(s)
- Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan
| | - Kiyomi Abe
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Keishi Osakabe
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura, Saitama, 338-8570, Japan
| | - Namie Ohtsuki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Akemi Tagiri
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa, Yokohama, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan
| |
Collapse
|
110
|
Manthei KA, Keck JL. The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci 2013; 70:4067-84. [PMID: 23543275 DOI: 10.1007/s00018-013-1325-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | | |
Collapse
|
111
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
112
|
Abstract
DNA repair by homologous recombination is one of the main processes of DNA double strand breaks repair. In the present work we performed a case-control study (304 cases and 319 controls) to check an association between the genotypes of the c.-61 G>T and the g.38922 C>G polymorphisms of the RAD51 gene and the g.96267 A>C and the g.85394 A>G polymorphisms of the BLM gene and breast cancer occurrence. Genotypes were determined in DNA from peripheral blood by PCR-RLFP and by PCR-CTPP. We observed an association between breast cancer occurrence and the T/G genotype (OR 4.41) of the c.-61 G>T-RAD51 polymorphism, the A/A genotype (OR 1.69) of the g.85394 A>G-BLM polymorphism and the A/A genotype (OR 2.49) of the g.96267 A>C-BLM polymorphism. Moreover, we demonstrated a correlation between intra- and intergenes genotypes combinations and breast cancer occurrence. We found a correlation between progesterone receptor expression and the T/G genotype (OR 0.57) of the c.-61 G>T- RAD51 polymorphism. We also found a correlation between the T/G genotype (OR 1.86) and the T/T genotype (OR 0.56) of the c.-61 G>T- RAD51 polymorphism and the lymph node metastasis. We showed an association between the A/A genotype (OR 2.45) and the A/C genotype (OR 0.41) of the g.96267 A>C-BLM polymorphism and G3 grade of tumor. Our results suggest that the variability of the RAD51 and BLM genes may play a role in breast cancer occurrence. This role may be underlined by a common interaction between these genes.
Collapse
|
113
|
Zhang J. The role of BRCA1 in homologous recombination repair in response to replication stress: significance in tumorigenesis and cancer therapy. Cell Biosci 2013; 3:11. [PMID: 23388117 PMCID: PMC3599463 DOI: 10.1186/2045-3701-3-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/20/2012] [Indexed: 12/16/2022] Open
Abstract
Germ line mutations in breast cancer gene 1 (BRCA1) predispose women to breast and ovarian cancers. Although BRCA1 is involved in many important biological processes, the function of BRCA1 in homologous recombination (HR) mediated repair is considered one of the major mechanisms contributing to its tumor suppression activity, and the cause of hypersensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors when BRCA1 is defective. Mounting evidence suggests that the mechanism of repairing DNA double strand breaks (DSBs) by HR is different than the mechanism operating when DNA replication is blocked. Although BRCA1 has been recognized as a central component in HR, the precise role of BRCA1 in HR, particularly under replication stress, has remained largely unknown. Given the fact that DNA lesions caused by replication blockages are the primary substrates for HR in mitotic cells, functional analysis of BRCA1 in HR repair in the context of replication stress should benefit our understanding of the molecular mechanisms underlying tumorigenesis associated with BRCA1 deficiencies, as well as the development of therapeutic approaches for cancer patients carrying BRCA1 mutations or reduced BRCA1 expression. This review focuses on the current advances in this setting and also discusses the significance in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH, 44106, USA.
| |
Collapse
|
114
|
Larsen NB, Hickson ID. RecQ Helicases: Conserved Guardians of Genomic Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:161-84. [PMID: 23161011 DOI: 10.1007/978-1-4614-5037-5_8] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The RecQ family of DNA helicases is highly conserved throughout -evolution, and is important for the maintenance of genome stability. In humans, five RecQ family members have been identified: BLM, WRN, RECQ4, RECQ1 and RECQ5. Defects in three of these give rise to Bloom's syndrome (BLM), Werner's syndrome (WRN) and Rothmund-Thomson/RAPADILINO/Baller-Gerold (RECQ4) syndromes. These syndromes are characterised by cancer predisposition and/or premature ageing. In this review, we focus on the roles of BLM and its S. cerevisiae homologue, Sgs1, in genome maintenance. BLM/Sgs1 has been shown to play a critical role in homologous recombination at multiple steps, including end-resection, displacement loop formation, branch migration and double Holliday junction dissolution. In addition, recent evidence has revealed a role for BLM/Sgs1 in the stabilisation and repair of replication forks damaged during a perturbed S-phase. Finally BLM also plays a role in the suppression and/or resolution of ultra-fine anaphase DNA bridges that form between sister-chromatids during mitosis.
Collapse
Affiliation(s)
- Nicolai Balle Larsen
- Nordea Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark
| | | |
Collapse
|
115
|
Roles of DNA helicases in the mediation and regulation of homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:185-202. [PMID: 23161012 DOI: 10.1007/978-1-4614-5037-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.
Collapse
|
116
|
Rezazadeh S. On BLM helicase in recombination-mediated telomere maintenance. Mol Biol Rep 2012; 40:3049-64. [DOI: 10.1007/s11033-012-2379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
117
|
Killen MW, Stults DM, Wilson WA, Pierce AJ. Escherichia coli RecG functionally suppresses human Bloom syndrome phenotypes. BMC Mol Biol 2012; 13:33. [PMID: 23110454 PMCID: PMC3517418 DOI: 10.1186/1471-2199-13-33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
Defects in the human BLM gene cause Bloom syndrome, notable for early development of tumors in a broad variety of tissues. On the basis of sequence similarity, BLM has been identified as one of the five human homologs of RecQ from Escherichia coli. Nevertheless, biochemical characterization of the BLM protein indicates far greater functional similarity to the E. coli RecG protein and there is no known RecG homolog in human cells. To explore the possibility that the shared biochemistries of BLM and RecG may represent an example of convergent evolution of cellular function where in humans BLM has evolved to fulfill the genomic stabilization role of RecG, we determined whether expression of RecG in human BLM-deficient cells could suppress established functional cellular Bloom syndrome phenotypes. We found that RecG can indeed largely suppress both the definitive elevated sister chromatid exchange phenotype and the more recently demonstrated gene cluster instability phenotype of BLM-deficient cells. In contrast, expression of RecG has no impact on either of these phenotypes in human cells with functional BLM protein. These results suggest that the combination of biochemical activities shared by RecG and BLM fill the same evolutionary niche in preserving genomic integrity without requiring exactly identical molecular mechanisms.
Collapse
Affiliation(s)
- Michael W Killen
- Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
118
|
Singh DK, Ghosh AK, Croteau DL, Bohr VA. RecQ helicases in DNA double strand break repair and telomere maintenance. Mutat Res 2012; 736:15-24. [PMID: 21689668 PMCID: PMC3368089 DOI: 10.1016/j.mrfmmm.2011.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/19/2011] [Accepted: 06/02/2011] [Indexed: 10/24/2022]
Abstract
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.
Collapse
Affiliation(s)
| | | | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
119
|
Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012; 2012:140601. [PMID: 22888405 PMCID: PMC3409536 DOI: 10.1155/2012/140601] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022] Open
Abstract
Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity—in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases—HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.
Collapse
|
120
|
Zakharyevich K, Tang S, Ma Y, Hunter N. Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 2012; 149:334-47. [PMID: 22500800 DOI: 10.1016/j.cell.2012.03.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022]
Abstract
At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.
Collapse
Affiliation(s)
- Kseniya Zakharyevich
- Department of Microbiology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
121
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
122
|
Barefield C, Karlseder J. The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 2012; 40:7358-67. [PMID: 22576367 PMCID: PMC3424559 DOI: 10.1093/nar/gks407] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Werner’s syndrome (WS) and Bloom’s syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.
Collapse
Affiliation(s)
- Colleen Barefield
- Molecular and Cellular Biology Department, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
123
|
Singh DK, Popuri V, Kulikowicz T, Shevelev I, Ghosh AK, Ramamoorthy M, Rossi ML, Janscak P, Croteau DL, Bohr VA. The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res 2012; 40:6632-48. [PMID: 22544709 PMCID: PMC3413146 DOI: 10.1093/nar/gks349] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria and yeast possess one RecQ helicase homolog whereas humans contain five RecQ helicases, all of which are important in preserving genome stability. Three of these, BLM, WRN and RECQL4, are mutated in human diseases manifesting in premature aging and cancer. We are interested in determining to which extent these RecQ helicases function cooperatively. Here, we report a novel physical and functional interaction between BLM and RECQL4. Both BLM and RECQL4 interact in vivo and in vitro. We have mapped the BLM interacting site to the N-terminus of RECQL4, comprising amino acids 361–478, and the region of BLM encompassing amino acids 1–902 interacts with RECQL4. RECQL4 specifically stimulates BLM helicase activity on DNA fork substrates in vitro. The in vivo interaction between RECQL4 and BLM is enhanced during the S-phase of the cell cycle, and after treatment with ionizing radiation. The retention of RECQL4 at DNA double-strand breaks is shortened in BLM-deficient cells. Further, depletion of RECQL4 in BLM-deficient cells leads to reduced proliferative capacity and an increased frequency of sister chromatid exchanges. Together, our results suggest that BLM and RECQL4 have coordinated activities that promote genome stability.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV. Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 2012; 287:11820-32. [PMID: 22356911 DOI: 10.1074/jbc.m112.341347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | | | | | |
Collapse
|
125
|
Kang YH, Munashingha PR, Lee CH, Nguyen TA, Seo YS. Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Res 2011; 40:2089-106. [PMID: 22090425 PMCID: PMC3300029 DOI: 10.1093/nar/gkr983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae Mph1 is a 3–5′ DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3′ to 5′ directionality, Mph1 displaced 3′-flap substrates in double-fixed or equilibrating flap substrates. Surprisingly, Mph1 displaced the 5′-flap strand more efficiently than the 3′ flap strand from double-flap substrates, which is not expected for a 3–5′ DNA helicase. For this to occur, Mph1 required a threshold size (>5 nt) of 5′ single-stranded DNA flap. Based on the unique substrate requirements of Mph1 defined in this study, we propose that the helicase/ATPase activity of Mph1 play roles in converting multiple-stranded DNA structures into structures cleavable by processing enzymes such as Fen1. We also found that the helicase activity of Mph1 was used to cause structural alterations required for restoration of replication forks stalled due to damaged template. The helicase properties of Mph1 reported here could explain how it resolves D-loop structure, and are in keeping with a model proposed for the error-free damage avoidance pathway.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | | | | | | | | |
Collapse
|
126
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
127
|
RecQ helicases; at the crossroad of genome replication, repair, and recombination. Mol Biol Rep 2011; 39:4527-43. [PMID: 21947842 DOI: 10.1007/s11033-011-1243-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/14/2011] [Indexed: 01/07/2023]
Abstract
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA in an ATP-dependent and directionally specific manner. Such an action is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Here, I focus on a subgroup of DNA helicases, the RecQ family, which is highly conserved in evolution. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. In this review, protein structural motifs and the roles of different domains will be discussed first. The Review moves on to speculate about the different models to explain why RecQ helicases are required to protect against genome instability.
Collapse
|
128
|
Machwe A, Karale R, Xu X, Liu Y, Orren DK. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks. Biochemistry 2011; 50:6774-88. [PMID: 21736299 DOI: 10.1021/bi2001054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.
Collapse
Affiliation(s)
- Amrita Machwe
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, United States
| | | | | | | | | |
Collapse
|
129
|
Wang Y, Smith K, Waldman BC, Waldman AS. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes. DNA Repair (Amst) 2011; 10:416-26. [PMID: 21300576 DOI: 10.1016/j.dnarep.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
130
|
A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes. Mol Cell Biol 2011; 31:3593-602. [PMID: 21709021 DOI: 10.1128/mcb.00848-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability to detect and repair DNA damage is crucial to the prevention of various diseases. Loss of function of genes involved in these processes is known to result in significant developmental defects and/or predisposition to cancer. One such DNA repair mechanism, homologous recombination, has the capacity to repair a wide variety of lesions. Knockout mouse models of genes thought to be involved in DNA repair processes are frequently lethal, making in vivo studies very difficult, if not impossible. Therefore, we set out to develop an in vivo conditional mouse model system to facilitate investigations into the involvement of essential genes in homologous recombination. To test our model, we measured the frequency of spontaneous homologous recombination using the pink-eyed unstable mouse model, in which we conditionally excised either Blm or full-length Brca1 (breast cancer 1, early onset). These two genes are hypothesized to have opposing roles in homologous recombination. In summary, our in vivo data supports in vitro studies suggesting that BLM suppresses homologous recombination, while full-length BRCA1 promotes this process.
Collapse
|
131
|
Grach AA. Alternative telomere-lengthening mechanisms. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Lee MT, Bakir AA, Nguyen KN, Bachant J. The SUMO isopeptidase Ulp2p is required to prevent recombination-induced chromosome segregation lethality following DNA replication stress. PLoS Genet 2011; 7:e1001355. [PMID: 21483811 PMCID: PMC3069114 DOI: 10.1371/journal.pgen.1001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/25/2011] [Indexed: 11/25/2022] Open
Abstract
SUMO conjugation is a key regulator of the cellular response to DNA replication stress, acting in part to control recombination at stalled DNA replication forks. Here we examine recombination-related phenotypes in yeast mutants defective for the SUMO de-conjugating/chain-editing enzyme Ulp2p. We find that spontaneous recombination is elevated in ulp2 strains and that recombination DNA repair is essential for ulp2 survival. In contrast to other SUMO pathway mutants, however, the frequency of spontaneous chromosome rearrangements is markedly reduced in ulp2 strains, and some types of rearrangements arising through recombination can apparently not be tolerated. In investigating the basis for this, we find DNA repair foci do not disassemble in ulp2 cells during recovery from the replication fork-blocking drug methyl methanesulfonate (MMS), corresponding with an accumulation of X-shaped recombination intermediates. ulp2 cells satisfy the DNA damage checkpoint during MMS recovery and commit to chromosome segregation with similar kinetics to wild-type cells. However, sister chromatids fail to disjoin, resulting in abortive chromosome segregation and cell lethality. This chromosome segregation defect can be rescued by overproducing the anti-recombinase Srs2p, indicating that recombination plays an underlying causal role in blocking chromatid separation. Overall, our results are consistent with a role for Ulp2p in preventing the formation of DNA lesions that must be repaired through recombination. At the same time, Ulp2p is also required to either suppress or resolve recombination-induced attachments between sister chromatids. These opposing defects may synergize to greatly increase the toxicity of DNA replication stress. DNA damage, arising from environmental stress or errors in DNA metabolism, can interfere with DNA replication. Cells respond by using homologous recombination to bypass the damage, resulting in DNA strand linkages between the replicated chromosomes. It is crucial to undo these linkages so chromosomes can segregate properly. Previously, a regulatory mechanism known as SUMO modification was shown to be important in controlling recombination following replication interference by the DNA damaging agent MMS. We show that mutations in a yeast enzyme called Ulp2p, which reverses SUMO modification, increase recombination and impose a requirement for recombination to maintain survival. MMS–treated ulp2 mutants also accumulate recombination intermediates and fail to separate their chromosomes, leading to a permanent block to cell division. Further analysis suggests this block may not simply be due to a failure to resolve recombination intermediates, but may reflect a role for Ulp2p in undoing additional chromosome attachments that accompany recombination. In sum, our data indicate that cells defective for Ulp2p develop a love/hate relationship with recombination, requiring recombination for viability while failing to resolve chromosome attachments induced by recombination repair. Identification of Ulp2p substrates that ensure chromosome separation following recombination will shed light on how SUMO modification maintains genome stability.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Abla A. Bakir
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Kristen N. Nguyen
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Jeff Bachant
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
133
|
Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proc Natl Acad Sci U S A 2011; 108:4944-9. [PMID: 21383164 DOI: 10.1073/pnas.1014240108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
Collapse
|
134
|
Abstract
Glycolysis, a central metabolic pathway, harbors evolutionary conserved enzymes that modulate and potentially shift the cellular metabolism on requirement. Pyruvate kinase, which catalyzes the last but rate-limiting step of glycolysis, is expressed in four isozymic forms, depending on the tissue requirement. M2 isoform (PKM2) is exclusively expressed in embryonic and adult dividing/tumor cells. This tetrameric allosterically regulated isoform is intrinsically designed to downregulate its activity by subunit dissociation (into dimer), which results in partial inhibition of glycolysis at the last step. This accumulates all upstream glycolytic intermediates as an anabolic feed for synthesis of lipids and nucleic acids, whereas reassociation of PKM2 into active tetramer replenishes the normal catabolism as a feedback after cell division. In addition, involvement of this enzyme in a variety of pathways, protein-protein interactions, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored. This review aims to provide an overview of the involvement of PKM2 in various physiological pathways with possible functional implications.
Collapse
Affiliation(s)
- Vibhor Gupta
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | |
Collapse
|
135
|
Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G, North PS, Cantor SB, Hickson ID, Brosh RM. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J 2011; 30:692-705. [PMID: 21240188 DOI: 10.1038/emboj.2010.362] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/22/2010] [Indexed: 11/09/2022] Open
Abstract
Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome-mediated pathway when FANCJ is depleted. FANCJ-deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C-terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ-BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an 'undamaged' duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress.
Collapse
Affiliation(s)
- Avvaru N Suhasini
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.
Collapse
Affiliation(s)
- Kara A Bernstein
- Columbia University Medical Center, Department of Genetics & Development, New York, New York 10032, USA.
| | | | | |
Collapse
|
137
|
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol 2010; 18:56-60. [PMID: 21151113 PMCID: PMC3058924 DOI: 10.1038/nsmb.1946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
The ubiquitously expressed Rad51 and the meiosis-specific Dmc1 recombinases promote the formation of strand invasion products (D-loops) between homologous molecules. Strand invasion products are processed by either the double strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to being processed by SDSA need to dissociate producing noncrossovers (NCOs) and those destined for DSBR should resist dissociation to generate crossovers (COs). The mechanism that channels recombination intermediates into different HR pathways is unknown. Here we demonstrate that D-loops in a DMC1 driven reaction are substantially more resistant to dissociation by branch migration proteins such as RAD54, than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
138
|
Chen H, You MJ, Jiang Y, Wang W, Li L. RMI1 attenuates tumor development and is essential for early embryonic survival. Mol Carcinog 2010; 50:80-8. [PMID: 21229605 DOI: 10.1002/mc.20694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 01/13/2023]
Abstract
RMI1/BLAP75 (RecQ-mediated genome instability 1/Bloom-associated protein 75) is an OB-fold protein highly conserved from yeast to human. Previous studies showed that RMI1 is required for the stability of the BLM/RMI1/Top3α complex and for the suppression of elevated sister chromatids exchange (SCE). The presence of RMI1 strongly stimulates Holliday dissolution activity of the Bloom helicase in vitro. The in vivo function of RMI1, however, remains largely undefined. To address this question, we generated RMI1 knockout mice through homologous replacement targeting. We found that, while RMI1 +/⁻ mice showed no obvious developmental phenotype, deletion of both mRMI1 alleles resulted in early embryonic lethality before implantation. To determine whether RMI1 plays a role in tumorigenesis, we generated RMI1/p53 double heterozygous mice and analyzed their onset of ionizing radiation-induced tumor development. RMI1 +/⁻/p53 +/⁻ mice succumbed to tumor with a higher frequency and exhibited a substantially shortened survival when compared to the wild type, RMI1 +/⁻ and p53 +/⁻ cohorts. These results demonstrated a dual-role of RMI1 in embryonic development and tumor suppression.
Collapse
Affiliation(s)
- H Chen
- Department of Experimental Radiation Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
139
|
Amin AD, Chaix ABH, Mason RP, Badge RM, Borts RH. The roles of the Saccharomyces cerevisiae RecQ helicase SGS1 in meiotic genome surveillance. PLoS One 2010; 5:e15380. [PMID: 21085703 PMCID: PMC2976770 DOI: 10.1371/journal.pone.0015380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids. Methodology/Principal Findings In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination) and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of ‘second strand capture’ when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent) are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures. Conclusions This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout meiosis.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Robert P. Mason
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Richard M. Badge
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Rhona H. Borts
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
140
|
Kim YM, Choi BS. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. Nucleic Acids Res 2010; 38:7764-77. [PMID: 20639533 PMCID: PMC2995041 DOI: 10.1093/nar/gkq586] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/08/2023] Open
Abstract
The helicase and RNaseD C-terminal (HRDC) domain, conserved among members of the RecQ helicase family, regulates helicase activity by virtue of variations in its surface residues. The HRDC domain of Bloom syndrome protein (BLM) is known as a critical determinant of the dissolution function of double Holliday junctions by the BLM-Topoisomerase IIIα complex. In this study, we determined the solution structure of the human BLM HRDC domain and characterized its DNA-binding activity. The BLM HRDC domain consists of five α-helices with a hydrophobic 3(10)-helical loop between helices 1 and 2 and an extended acidic surface comprising residues in helices 3-5. The BLM HRDC domain preferentially binds to ssDNA, though with a markedly low binding affinity (K(d) ∼100 μM). NMR chemical shift perturbation studies suggested that the critical DNA-binding residues of the BLM HRDC domain are located in the hydrophobic loop and the N-terminus of helix 2. Interestingly, the isolated BLM HRDC domain had quite different DNA-binding modes between ssDNA and Holliday junctions in electrophoretic mobility shift assay experiments. Based on its surface charge separation and DNA-binding properties, we suggest that the HRDC domain of BLM may be adapted for a unique function among RecQ helicases--that of bridging protein and DNA interactions.
Collapse
|
141
|
Abstract
Single-molecule analyses of DNA replication have greatly advanced our understanding of mammalian replication restart. Several proteins that are not part of the core replication machinery promote the efficient restart of replication forks that have been stalled by replication inhibitors, suggesting that bona fide fork restart pathways exist in mammalian cells. Different models of replication fork restart can be envisaged, based on the involvement of DNA helicases, nucleases, homologous recombination factors and the importance of DNA double-strand break formation.
Collapse
|
142
|
Xu D, Muniandy P, Leo E, Yin J, Thangavel S, Shen X, Ii M, Agama K, Guo R, Fox D, Meetei AR, Wilson L, Nguyen H, Weng NP, Brill SJ, Li L, Vindigni A, Pommier Y, Seidman M, Wang W. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 2010; 29:3140-55. [PMID: 20711169 PMCID: PMC2944062 DOI: 10.1038/emboj.2010.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/13/2010] [Indexed: 11/08/2022] Open
Abstract
BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.
Collapse
Affiliation(s)
- Dongyi Xu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Parameswary Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elisabetta Leo
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Xi Shen
- Departments of Experimental Radiation Oncology and Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rong Guo
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Fox
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Amom Ruhikanta Meetei
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lauren Wilson
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Huy Nguyen
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nan-ping Weng
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Lei Li
- Departments of Experimental Radiation Oncology and Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandro Vindigni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
143
|
Lahkim Bennani-Belhaj K, Buhagiar-Labarchède G, Jmari N, Onclercq-Delic R, Amor-Guéret M. BLM Deficiency Is Not Associated with Sensitivity to Hydroxyurea-Induced Replication Stress. J Nucleic Acids 2010; 2010. [PMID: 20936166 PMCID: PMC2945640 DOI: 10.4061/2010/319754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/19/2010] [Indexed: 11/20/2022] Open
Abstract
Bloom's syndrome (BS) displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU), which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.
Collapse
|
144
|
Hoadley KA, Xu D, Xue Y, Satyshur KA, Wang W, Keck JL. Structure and cellular roles of the RMI core complex from the bloom syndrome dissolvasome. Structure 2010; 18:1149-58. [PMID: 20826341 PMCID: PMC2937010 DOI: 10.1016/j.str.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023]
Abstract
BLM, the protein product of the gene mutated in Bloom syndrome, is one of five human RecQ helicases. It functions to separate double Holliday junction DNA without genetic exchange as a component of the "dissolvasome," which also includes topoisomerase IIIα and the RMI (RecQ-mediated genome instability) subcomplex (RMI1 and RMI2). We describe the crystal structure of the RMI core complex, comprising RMI2 and the C-terminal OB domain of RMI1. The overall RMI core structure strongly resembles two-thirds of the trimerization core of the eukaryotic single-stranded DNA-binding protein, Replication Protein A. Immunoprecipitation experiments with RMI2 variants confirm key interactions that stabilize the RMI core interface. Disruption of this interface leads to a dramatic increase in cellular sister chromatid exchange events similar to that seen in BLM-deficient cells. The RMI core interface is therefore crucial for BLM dissolvasome assembly and may have additional cellular roles as a docking hub for other proteins.
Collapse
Affiliation(s)
- Kelly A. Hoadley
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
| | - Dongyi Xu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
| | - Kenneth A. Satyshur
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard 10B113, Baltimore, MD 21224-6825
| | - James L. Keck
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532
| |
Collapse
|
145
|
Rossi MJ, Mazina OM, Bugreev DV, Mazin AV. Analyzing the branch migration activities of eukaryotic proteins. Methods 2010; 51:336-46. [PMID: 20167275 PMCID: PMC2900513 DOI: 10.1016/j.ymeth.2010.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/06/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022] Open
Abstract
The Holliday junction is a key intermediate of DNA repair, recombination, and replication. Branch migration of Holliday junctions is a process in which one DNA strand is progressively exchanged for another. Branch migration of Holliday junctions may serve several important functions such as affecting the length of genetic information transferred between homologous chromosomes during meiosis, restarting stalled replication forks, and ensuring the faithful repair of double strand DNA breaks by homologous recombination. Several proteins that promote branch migration of Holliday junctions have been recently identified. These proteins, which function during DNA replication and repair, possess the ability to bind Holliday junctions and other branched DNA structures and drive their branch migration by translocating along DNA in an ATPase-dependent manner. Here, we describe methods employing a wide range of DNA substrates for studying proteins that catalyze branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Matthew J. Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192
| | - Olga M. Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192
| | - Dmitry V. Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192
| |
Collapse
|
146
|
Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair (Amst) 2010; 9:796-804. [PMID: 20451470 PMCID: PMC2893255 DOI: 10.1016/j.dnarep.2010.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 12/16/2022]
Abstract
Humans have five members of the well conserved RecQ helicase family: RecQ1, Bloom syndrome protein (BLM), Werner syndrome protein (WRN), RecQ4, and RecQ5, which are all known for their roles in maintaining genome stability. BLM, WRN, and RecQ4 are associated with premature aging and cancer predisposition. Of the three, RecQ4's biological and cellular roles have been least thoroughly characterized. Here we tested the helicase activity of purified human RecQ4 on various substrates. Consistent with recent results, we detected ATP-dependent RecQ4 unwinding of forked duplexes. However, our results provide the first evidence that human RecQ4's unwinding is independent of strand annealing, and that it does not require the presence of excess ssDNA. Moreover, we demonstrate that a point mutation of the conserved lysine in the Walker A motif abolished helicase activity, implying that not the N-terminal portion, but the helicase domain is solely responsible for the enzyme's unwinding activity. In addition, we demonstrate a novel stimulation of RecQ4's helicase activity by replication protein A, similar to that of RecQ1, BLM, WRN, and RecQ5. Together, these data indicate that specific biochemical activities and protein partners of RecQ4 are conserved with those of the other RecQ helicases.
Collapse
Affiliation(s)
- Marie L. Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224
| | - Avik K. Ghosh
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224
| | - Tomasz Kulikowicz
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224
| |
Collapse
|
147
|
Chen CF, Brill SJ. An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs. EMBO J 2010; 29:1713-25. [PMID: 20389284 PMCID: PMC2876966 DOI: 10.1038/emboj.2010.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/15/2010] [Indexed: 11/08/2022] Open
Abstract
The gene mutated in Bloom's syndrome, BLM, encodes a member of the RecQ family of DNA helicases that is needed to suppress genome instability and cancer predisposition. BLM is highly conserved and all BLM orthologs, including budding yeast Sgs1, have a large N-terminus that binds Top3-Rmi1 but has no known catalytic activity. In this study, we describe a sub-domain of the Sgs1 N-terminus that shows in vitro single-strand DNA (ssDNA) binding, ssDNA annealing and strand-exchange (SE) activities. These activities are conserved in the human and Drosophila orthologs. SE between duplex DNA and homologous ssDNA requires no cofactors and is inhibited by a single mismatched base pair. The SE domain of Sgs1 is required in vivo for the suppression of hyper-recombination, suppression of synthetic lethality and heteroduplex rejection. The top3Delta slow-growth phenotype is also SE dependent. Surprisingly, the highly divergent human SE domain functions in yeast. This work identifies SE as a new molecular function of BLM/Sgs1, and we propose that at least one role of SE is to mediate the strand-passage events catalysed by Top3-Rmi1.
Collapse
Affiliation(s)
- Chi-Fu Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
148
|
Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 2010; 18:177-87. [PMID: 20159463 DOI: 10.1016/j.str.2009.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
Abstract
The RecQ family of DNA helicases including WRN (Werner syndrome protein) and BLM (Bloom syndrome protein) protects the genome against deleterious changes. Here we report the cocrystal structure of the RecQ C-terminal (RQC) domain of human WRN bound to a DNA duplex. In the complex, the RQC domain specifically interacted with a blunt end of the duplex and, surprisingly, unpaired a Watson-Crick base pair in the absence of an ATPase domain. The beta wing, an extended hairpin motif that is characteristic of winged-helix motifs, was used as a "separating knife" to wedge between the first and second base pairs, whereas the recognition helix, a principal component of helix-turn-helix motifs that are usually embedded within DNA grooves, was unprecedentedly excluded from the interaction. Our results demonstrate a function of the winged-helix motif central to the helicase reaction, establishing the first structural paradigm concerning the DNA structure-specific activities of the RecQ helicases.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
149
|
Putnam CD, Hayes TK, Kolodner RD. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 2010; 6:e1000933. [PMID: 20463880 PMCID: PMC2865514 DOI: 10.1371/journal.pgen.1000933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/31/2010] [Indexed: 11/18/2022] Open
Abstract
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs. Genome instability is a hallmark of many cancers and underlies many inherited disorders that cause a predisposition to cancer. The human genome has many different types of duplicated sequences that can lead to genome instability by recombination-mediated pathways. We previously discovered that duplication-mediated chromosomal rearrangements are suppressed by a number of pathways. Some of these pathways were specific to rearrangements between genomic duplications. Here, we have performed a detailed analysis of pathways dependent upon RAD6, and have discovered that the error-free branch of post-replication repair (PRR) either is as an alternative to homologous recombination or prevents the generation of homologous recombination intermediates. Both of these functions could lead to genomic instability in the context of genomes containing substantial amounts of duplications. The extreme sensitivity of our assay to post-replication repair defects reveals substantial complexity in the interaction of PRR defects, suggesting the presence of many alternative PRR pathways. Together, the results emphasize the importance for appropriately balancing different repair pathways to maintain global genomic stability and highlight a number of defects that could underlie genome instabilities in some cancers.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Tikvah K. Hayes
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
150
|
Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 2010; 141:255-67. [PMID: 20403322 DOI: 10.1016/j.cell.2010.02.028] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/26/2009] [Accepted: 02/03/2010] [Indexed: 12/26/2022]
Abstract
Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both branches of this pathway are believed to occur in S phase in order to ensure replication completion. However, we found that limiting TLS or the error-free pathway to the G2/M phase of the cell-cycle efficiently promote lesion tolerance. Thus, our findings indicate that both branches of the DNA damage tolerance pathway operate effectively after chromosomal replication, outside S phase. We therefore propose that the RAD6 pathway acts on single-stranded gaps left behind newly restarted replication forks.
Collapse
Affiliation(s)
- Georgios I Karras
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|