101
|
Sarkisyan G, Gay LJ, Nguyen N, Felding BH, Rosen H. Host endothelial S1PR1 regulation of vascular permeability modulates tumor growth. Am J Physiol Cell Physiol 2014; 307:C14-24. [PMID: 24740542 DOI: 10.1152/ajpcell.00043.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding vascular growth and maturation in developing tumors has important implications for tumor progression, spread, and ultimately host survival. Modulating the signaling of endothelial G protein-coupled receptors (GPCRs) in blood and lymphatic vessels can enhance or limit tumor progression. Sphingosine 1-phosphate receptor 1 (S1PR1) is a GPCR for circulating lysophospholipid S1P that is highly expressed in blood and lymphatic vessels. Using the S1PR1- enhanced green fluorescent protein (eGFP) mouse model in combination with intravital imaging and pharmacologic modulation of S1PR1 signaling, we show that boundary conditions of high and low S1PR1 signaling retard tumor progression by enhancing or destabilizing neovasculature integrity, respectively. In contrast, midrange S1PR1 signaling, achieved by receptor antagonist titration, promotes abundant growth of small, organized vessels and thereby enhances tumor progression. Furthermore, in vivo S1PR1 antagonism supports lung colonization by circulating tumor cells. Regulation of endothelial S1PR1 dynamically controls vascular integrity and maturation and thus modulates angiogenesis, tumor growth, and hematogenous metastasis.
Collapse
Affiliation(s)
- Gor Sarkisyan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California; and
| | - Laurie J Gay
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California; and
| | - Nhan Nguyen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California; and
| | - Brunhilde H Felding
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California; and
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California; and Department of Immunology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
102
|
Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. NATURE MATERIALS 2014; 13:125-38. [PMID: 24452356 DOI: 10.1038/nmat3780] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 09/17/2013] [Indexed: 05/02/2023]
Abstract
Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.
Collapse
Affiliation(s)
- Ralph Weissleder
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA [3] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Matthias Nahrendorf
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Mikael J Pittet
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
103
|
Tang L, van de Ven AL, Guo D, Andasari V, Cristini V, Li KC, Zhou X. Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS One 2014; 9:e83962. [PMID: 24404145 PMCID: PMC3880288 DOI: 10.1371/journal.pone.0083962] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure.
Collapse
Affiliation(s)
- Lei Tang
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Anne L. van de Ven
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Dongmin Guo
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Vivi Andasari
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Vittorio Cristini
- Department of Pathology, Cancer Research and Treatment Center, Department of Chemical and Nuclear Engineering, and Center for Biomedical Engineering, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - King C. Li
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
104
|
Golberg A. ANALYTICAL MODEL OF LOCAL DISTRIBUTION OF CHEMICALS IN TISSUES WITH FIRST-ORDER-RATE METABOLISM KINETICS. CHEM ENG COMMUN 2014. [DOI: 10.1080/00986445.2012.762628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
105
|
Vander Broek R, Mohan S, Eytan DF, Chen Z, Van Waes C. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies. Oral Dis 2013; 21:815-25. [DOI: 10.1111/odi.12206] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- R Vander Broek
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
- School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - S Mohan
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
| | - DF Eytan
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
| | - Z Chen
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
| | - C Van Waes
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
106
|
Stamatelos SK, Kim E, Pathak AP, Popel AS. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res 2013; 91:8-21. [PMID: 24342178 DOI: 10.1016/j.mvr.2013.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022]
Abstract
Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion.
Collapse
Affiliation(s)
- Spyros K Stamatelos
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA.
| | - Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, USA
| |
Collapse
|
107
|
Kim M, Gillies RJ, Rejniak KA. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 2013; 3:278. [PMID: 24303366 PMCID: PMC3831268 DOI: 10.3389/fonc.2013.00278] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/29/2013] [Indexed: 11/26/2022] Open
Abstract
Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.
Collapse
Affiliation(s)
- Munju Kim
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL , USA
| | | | | |
Collapse
|
108
|
Angelikopoulos P, Papadimitriou C, Koumoutsakos P. Data Driven, Predictive Molecular Dynamics for Nanoscale Flow Simulations under Uncertainty. J Phys Chem B 2013; 117:14808-16. [DOI: 10.1021/jp4084713] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Costas Papadimitriou
- Department
of Mechanical Engineering, University of Thessaly, GR-38334 Volos, Greece
| | - Petros Koumoutsakos
- Chair
of Computational Science, ETH Zürich, Clausiusstrasse 33, CH-8092, Zürich, Switzerland
| |
Collapse
|
109
|
Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. NATURE MATERIALS 2013; 12:958-62. [PMID: 24150413 PMCID: PMC4120281 DOI: 10.1038/nmat3792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cancer nanomedicines approved so far minimize toxicity, but their efficacy is often limited by physiological barriers posed by the tumour microenvironment. Here, we discuss how these barriers can be overcome through innovative nanomedicine design and through creative manipulation of the tumour microenvironment.
Collapse
Affiliation(s)
- Vikash P. Chauhan
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rakesh K. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
110
|
Hubbell JA, Langer R. Translating materials design to the clinic. NATURE MATERIALS 2013; 12:963-6. [PMID: 24150414 DOI: 10.1038/nmat3788] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Sciences and School of Engineering, and Institute for Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
111
|
Goel S, Wong AHK, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2013; 2:a006486. [PMID: 22393532 DOI: 10.1101/cshperspect.a006486] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pathological angiogenesis-driven by an imbalance of pro- and antiangiogenic signaling-is a hallmark of many diseases, both malignant and benign. Unlike in the healthy adult in which angiogenesis is tightly regulated, such diseases are characterized by uncontrolled new vessel formation, resulting in a microvascular network characterized by vessel immaturity, with profound structural and functional abnormalities. The consequence of these abnormalities is further modification of the microenvironment, often serving to fuel disease progression and attenuate response to conventional therapies. In this article, we present the "vascular normalization" hypothesis, which states that antiangiogenic therapy, by restoring the balance between pro- and antiangiogenic signaling, can induce a more structurally and functionally normal vasculature in a variety of diseases. We present the preclinical and clinical evidence supporting this concept and discuss how it has contributed to successful treatment of both solid tumors and several benign conditions.
Collapse
Affiliation(s)
- Shom Goel
- Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
112
|
Sun Y, Zou W, Bian S, Huang Y, Tan Y, Liang J, Fan Y, Zhang X. Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma. Biomaterials 2013; 34:6818-28. [PMID: 23764117 DOI: 10.1016/j.biomaterials.2013.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/18/2013] [Indexed: 12/22/2022]
Abstract
Nanomaterials have demonstrated to be promising to deliver a chemotherapeutic drug deeply into the tumor for improving the anticancer efficacy. In this study, eight kinds of bioreducible PAA-g-PEG graft copolymeric micelles were prepared, and the anticancer drug DOX was stably encapsulated in the micelles. Benefited by the hydrophobic interaction and π-π stacking between aromatic structure of DOX and phenyl of PAA in the micelle core, high drug loading content more than 50 wt/wt % could be achieved. Drugs released from micelles in a reduction-sensitive manner, and effectively inhibit the growth of 4T1 mouse breast cancer cells in vitro. In the 4T1 tumor-bearing nude mice breast carcinoma subcutaneous model, the DOX-incorporated micelles showed much stronger accumulation in tumor than DOX·HCl, and reduced distribution in other main organs. The antitumor effect of the micelles was significantly better than DOX·HCl, as confirmed by tumor volume and body weight changes of the tumor-bearing Balb/c mice, as well as survive study. Encapsulation of DOX in the micelles improved the bioavailability of the drugs through the accumulation in tumor by passive targeting, greatly decreased organ damage due to cancer cell wild growth and metastasis, and depressed the toxicity of DOX on the heart and other organs.
Collapse
Affiliation(s)
- Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|
114
|
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science 2013. [PMID: 23539594 DOI: 10.1126/science.123512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of "mountains" (genes altered in a high percentage of tumors) and a much larger number of "hills" (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or "drive" tumorigenesis. A typical tumor contains two to eight of these "driver gene" mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.
Collapse
Affiliation(s)
- Bert Vogelstein
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of "mountains" (genes altered in a high percentage of tumors) and a much larger number of "hills" (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or "drive" tumorigenesis. A typical tumor contains two to eight of these "driver gene" mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.
Collapse
Affiliation(s)
- Bert Vogelstein
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Shibin Zhou
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Luis A. Diaz
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Kenneth W. Kinzler
- The Ludwig Center and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
116
|
Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, Stylianopoulos T, Mousa AS, Han X, Adstamongkonkul P, Popović Z, Huang P, Bawendi MG, Boucher Y, Jain RK. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 2013; 4:2516. [PMID: 24084631 PMCID: PMC3806395 DOI: 10.1038/ncomms3516] [Citation(s) in RCA: 781] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors -inexpensive drugs with decades of safe use - could be rapidly repurposed as cancer therapeutics.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensins/antagonists & inhibitors
- Angiotensins/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Hypoxia
- Collagen/metabolism
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Drug Repositioning
- Drug Synergism
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Hyaluronic Acid/metabolism
- Losartan/pharmacology
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mechanotransduction, Cellular
- Mice
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Stress, Mechanical
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Vikash P. Chauhan
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- These authors contributed equally to this work
| | - John D. Martin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- These authors contributed equally to this work
| | - Hao Liu
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Delphine A. Lacorre
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Saloni R. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sergey V. Kozin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Triantafyllos Stylianopoulos
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Mechanical and Manufacturing Engineering, University of Cyprus CY-1678, Nicosia, Cyprus
| | - Ahmed S. Mousa
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Xiaoxing Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Pichet Adstamongkonkul
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zoran Popović
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peigen Huang
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yves Boucher
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Rakesh K. Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
117
|
Savage VM, Herman AB, West GB, Leu K. Using Fractal Geometry and Universal Growth Curves as Diagnostics for Comparing Tumor Vasculature and Metabolic Rate With Healthy Tissue and for Predicting Responses to Drug Therapies. ACTA ACUST UNITED AC 2013; 18. [PMID: 24204201 DOI: 10.3934/dcdsb.2013.18.1077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Healthy vasculature exhibits a hierarchical branching structure in which, on average, vessel radius and length change systematically with branching order. In contrast, tumor vasculature exhibits less hierarchy and more variability in its branching patterns. Although differences in vasculature have been highlighted in the literature, there has been very little quantification of these differences. Fractal analysis is a natural tool for comparing tumor and healthy vasculature, especially because it has already been used extensively to model healthy tissue. In this paper, we provide a fractal analysis of existing vascular data, and we present a new mathematical framework for predicting tumor growth trajectories by coupling: (1) the fractal geometric properties of tumor vascular networks, (2) metabolic properties of tumor cells and host vascular systems, and (3) spatial gradients in resources and metabolic states within the tumor. First, we provide a new analysis for how the mean and variation of scaling exponents for ratios of vessel radii and lengths in tumors differ from healthy tissue. Next, we use these characteristic exponents to predict metabolic rates for tumors. Finally, by combining this analysis with general growth equations based on energetics, we derive universal growth curves that enable us to compare tumor and ontogenetic growth. We also extend these growth equations to include necrotic, quiescent, and proliferative cell states and to predict novel growth dynamics that arise when tumors are treated with drugs. Taken together, this mathematical framework will help to anticipate and understand growth trajectories across tumor types and drug treatments.
Collapse
Affiliation(s)
- Van M Savage
- David Geffen School of Medicine at UCLA, Department of Biomathematics Los Angeles, CA 90095-1766, USA
| | | | | | | |
Collapse
|
118
|
Wu J, Chen Q, Liu W, Zhang Y, Lin JM. Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. LAB ON A CHIP 2012; 12:3474-3480. [PMID: 22836595 DOI: 10.1039/c2lc40502d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, a novel quantum dot (QD) cytotoxicity assay platform on a microfluidic three-dimensional (3D) culture device via imitating the diffusion process between blood vessels and tissues was developed. The device is composed of a main channel and two sets of cell culture chambers. The cell culture chambers were located at different distances from the main channel and were divided into "close chambers" and "far chambers". HepG2 cells were cultured in an agarose matrix under 3D conditions and kept at high viability for at least three days. Fluorescein sodium and fluorescein isothiocyanate conjugated to bovine serum albumin (FITC-BSA) were used as models to demonstrate the diffusion process between main channel and cell culture chambers. QD cytotoxicity was evaluated by determining cell apoptosis, intracellular reactive oxygen species (ROS) and glutathione (GSH) with specific fluorescence probes. Cell autophagy inhibitor 3-methyladenine (3-MA) could reduce cell apoptosis at low concentrations of QDs, which proves that cell autophagy plays a key role in QD cytotoxicity. The effect of a series of 3-MA solutions on cell apoptosis at QD concentration of 40 μg mL(-1) was investigated, which showed that the percentage of cell apoptosis decreased ∼15% from 0 to 12 mM 3-MA. The device shows potential as a high-throughput, low-cost and time-saving platform and constructs a more vivid biomimetic microenvironment for the QD cytotoxicity study.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
119
|
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 2012; 314:57-68. [PMID: 22974563 DOI: 10.1016/j.jtbi.2012.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization.
Collapse
Affiliation(s)
- Greg M Thurber
- Dept. Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
120
|
Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci U S A 2012; 109:15101-8. [PMID: 22932871 DOI: 10.1073/pnas.1213353109] [Citation(s) in RCA: 616] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.
Collapse
|
121
|
X-ray microscopy and tomography detect the accumulation of bare and PEG-coated gold nanoparticles in normal and tumor mouse tissues. Anal Bioanal Chem 2012; 404:1287-96. [PMID: 22918568 DOI: 10.1007/s00216-012-6217-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/23/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
We demonstrate that, with appropriate staining, high-resolution X-ray microscopy can image complicated tissue structures--cerebellum and liver--and resolve large or small amounts of Au nanoparticles in these tissues. Specifically, images of tumor tissue reveal high concentrations of accumulated Au nanoparticles. PEG (poly(ethylene glycol)) coating is quite effective in enhancing this accumulation and significantly modifies the mechanism of uptake by reticuloendothelial system (RES) organs.
Collapse
|
122
|
|
123
|
Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging 2012; 2012:509783. [PMID: 22792084 PMCID: PMC3389716 DOI: 10.1155/2012/509783] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/13/2012] [Indexed: 02/07/2023] Open
Abstract
The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG) is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density) is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.
Collapse
|
124
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
125
|
Kim E, Stamatelos S, Cebulla J, Bhujwalla ZM, Popel AS, Pathak AP. Multiscale imaging and computational modeling of blood flow in the tumor vasculature. Ann Biomed Eng 2012; 40:2425-41. [PMID: 22565817 DOI: 10.1007/s10439-012-0585-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022]
Abstract
The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of "image-based models" of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
126
|
Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2012; 2:281-98. [PMID: 22432620 DOI: 10.1146/annurev-chembioeng-061010-114300] [Citation(s) in RCA: 431] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors are similar to organs, with unique physiology giving rise to an unusual set of transport barriers to drug delivery. Cancer therapy is limited by nonuniform drug delivery via blood vessels, inhomogeneous drug transport into tumor interstitium from the vascular compartment, and hindered transport through tumor interstitium to the target cells. Four major abnormal physical and physiological properties contribute to these transport barriers. Accumulated solid stress compresses blood vessels to diminish the drug supply to many tumor regions. Immature vasculature with high viscous and geometric resistances and reduced pressure gradients leads to sluggish and heterogeneous blood flow in tumors to further limit drug supply. Nonfunctional lymphatics coupled with highly permeable blood vessels result in elevated hydrostatic pressure in tumors to abrogate convective drug transport from blood vessels into and throughout most of the tumor tissue. Finally, a dense structure of interstitial matrix and cells serves as a tortuous, viscous, and steric barrier to diffusion of therapeutic agents. In this review, we discuss the origins and implications of these barriers. We then highlight strategies for overcoming these barriers by modulating either drug properties or the tumor microenvironment itself to enhance the delivery and effectiveness of drugs in tumors.
Collapse
Affiliation(s)
- Vikash P Chauhan
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
127
|
Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. NATURE NANOTECHNOLOGY 2012; 7:383-8. [PMID: 22484912 PMCID: PMC3370066 DOI: 10.1038/nnano.2012.45] [Citation(s) in RCA: 836] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/12/2012] [Indexed: 05/15/2023]
Abstract
The blood vessels of cancerous tumours are leaky and poorly organized. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery. Anti-angiogenic therapies--which 'normalize' the abnormal blood vessels in tumours by making them less leaky--have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular weights, but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here, we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor receptor-2, improves the delivery of smaller nanoparticles (diameter, 12 nm) while hindering the delivery of larger nanoparticles (diameter, 125 nm). Using a mathematical model, we show that reducing the sizes of pores in the walls of vessels through normalization decreases the interstitial fluid pressure in tumours, thus allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (∼12 nm) nanomedicines are ideal for cancer therapy due to their superior tumour penetration.
Collapse
Affiliation(s)
- Vikash P Chauhan
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The enhanced permeability and retention (EPR) effect has been a key rationale for the development of nanoscale carriers to solid tumors. As a consequence of EPR, nanotherapeutics are expected to improve drug and detection probe delivery, have less adverse effects than conventional chemotherapy, and thus result in improved detection and treatment of tumors. Physiological barriers posed by the abnormal tumor microenvironment, however, can hinder the homogeneous delivery of nanomedicine in amounts sufficient to eradicate cancer. To effectively enhance the therapeutic outcome of cancer patients by nanotherapeutics, we have to find ways to overcome these barriers. One possibility is to exploit the abnormal tumor microenvironment for selective and improved delivery of therapeutic agents to tumors. Recently, we proposed a multistage nanoparticle delivery system as a potential means to enable uniform delivery throughout the tumor and improve the efficacy of anticancer therapy. Here, we describe the synthesis of a novel multistage nanoparticle formulation that shrinks in size once it enters the tumor interstitial space to optimize the delivery to tumors as well as within tumors. Finally, we provide detailed experimental methods for the characterization of such nanoparticles.
Collapse
|
129
|
Lund T, Callaghan MF, Williams P, Turmaine M, Bachmann C, Rademacher T, Roitt IM, Bayford R. The influence of ligand organization on the rate of uptake of gold nanoparticles by colorectal cancer cells. Biomaterials 2011; 32:9776-84. [DOI: 10.1016/j.biomaterials.2011.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 01/09/2023]
|
130
|
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91:1071-121. [PMID: 21742796 PMCID: PMC3258432 DOI: 10.1152/physrev.00038.2010] [Citation(s) in RCA: 1193] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a "normalization" of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more "mature" or "normal" phenotype. This "vascular normalization" is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases.
Collapse
Affiliation(s)
- Shom Goel
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|