101
|
Song G, Guo Z, Liu Z, Qu X, Jiang D, Wang W, Zhu Y, Yang D. The phenotypic predisposition of the parent in F1 hybrid is correlated with transcriptome preference of the positive general combining ability parent. BMC Genomics 2014; 15:297. [PMID: 24755044 PMCID: PMC4023606 DOI: 10.1186/1471-2164-15-297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sprague and Tatum (1942) introduced the concepts of general combining ability (GCA) and specific combining ability (SCA) to evaluate the breeding parents and F1 hybrid performance, respectively. Since then, the GCA was widely used in cross breeding for elite parent selection. However, the molecular basis of GCA remains to unknown. RESULTS We studied the transcriptomes of three varieties and three F1 hybrids using RNA-Sequencing. Transcriptome sequence analysis revealed that the transcriptome profiles of the F1s were similar to the positive GCA-effect parent. Moreover, the expression levels of most differentially expressed genes (DEGs) were equal to the parent with a positive GCA effect. Analysis of the gene expression patterns of gibberellic acid (GA) and flowering time pathways that determine plant height and flowering time in rice validated the preferential transcriptome expression of the parents with positive GCA effect. Furthermore, H3K36me3 modification bias in the Pseudo-Response Regulators (PRR) gene family was observed in the positive GCA effect parents and demonstrated that the phenotype and transcriptome bias in the positive GCA effect parents have been epigenetically regulated by either global modification or specific signaling pathways in rice. CONCLUSIONS The results revealed that the transcriptome profiles and DEGs in the F1s were highly related to phenotype bias to the positive GCA-effect parent. The transcriptome bias toward high GCA parents in F1 hybrids attributed to H3K36me3 modification both on global modification level and specific signaling pathways. Our results indicated the transcriptome profile and epigenetic modification level bias to high GCA parents could be the molecular basis of GCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
102
|
Hu W, Wang T, Xu J, Li H. MicroRNA mediates DNA methylation of target genes. Biochem Biophys Res Commun 2014; 444:676-81. [PMID: 24508262 DOI: 10.1016/j.bbrc.2014.01.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
Small RNAs represented by microRNA (miRNA) plays important roles in plant development and responds to biotic and abiotic stresses. Previous studies have placed special emphasis on gene-repression mediated by miRNA. In this work, the DNA methylation pattern of microRNA genes (MIRs) was interrogated. Full-length cDNA and EST were used to confirm the entity of pri-miRNA. In parallel, miRNA in 24 nucleotides (nt) was pooled to detect chromatin modification effect by using bisulfite sequencing data. 97 MIRs were supported by full-length cDNA and 30 more were hit by EST. Notably, methylation levels of conserved MIRs were significantly lower than the non-conserved at all contexts (CG, CHG, and CHH). Additionally, a substantial part of 24-nt miRNA was able to induce target site methylation, providing a broader perspective for researchers.
Collapse
Affiliation(s)
- Wangxiong Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Tingzhang Wang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
103
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
104
|
McKeown PC, Fort A, Spillane C. Analysis of genomic imprinting by quantitative allele-specific expression by Pyrosequencing(®). Methods Mol Biol 2014; 1112:85-104. [PMID: 24478009 DOI: 10.1007/978-1-62703-773-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genomic imprinting is a parent-of-origin phenomenon whereby gene expression is restricted to the allele inherited from either the maternal or paternal parent. It has been described from flowering plants and eutherian mammals and may have evolved due to parental conflicts over resource allocation. In mammals, imprinted genes are responsible for ensuring correct rates of embryo development and for preventing parthenogenesis. The molecular basis of imprinting depends upon the presence of differential epigenetic marks on the alleles inherited from each parent, although in plants the exact mechanisms that control imprinting are still unclear in many cases. Recent studies have identified large numbers of candidate imprinted genes from Arabidopsis thaliana and other plants (see Chap. 7 by Köhler and colleagues elsewhere in this volume) providing the tools for more thorough investigation into how imprinted gene networks (IGNs) are regulated. Analysis of genomic imprinting in animals has revealed important information on how IGNs are regulated during development, which often involves intermediate levels of imprinting. In some instances, small but significant changes in the degree of parental bias in gene expression have been linked to developmental traits, livestock phenotypes, and human disease. As some of the imprinted genes recently reported from plants show differential rather than complete (binary) imprinting, there is a clear need for tools that can quantify the degree of allelic expression bias occurring at a transcribed locus. In this chapter, we describe the use of Quantification of Allele-Specific Expression by Pyrosequencing(®) (QUASEP) as a tool suitable for this challenge. We describe in detail the factors which ensure that a Pyrosequencing(®) assay will be suitable for giving robust QUASEP and the problems which may be encountered during the study of imprinted genes by Pyrosequencing(®), with particular reference to our work in A. thaliana and in cattle. We also discuss some considerations with respect to the statistical analysis of the resulting data. Finally, we provide a brief overview of the future possibility of adapting Pyrosequencing(®) for analyzing other aspects of imprinting including the analysis of methylated regions.
Collapse
Affiliation(s)
- Peter C McKeown
- Genetics & Biotechnology Lab, Plant & Agribiosciences Centre (PABC), School of Natural Sciences, National University of Ireland, Galway (NUI Galway), Ireland
| | | | | |
Collapse
|
105
|
Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2014; 5:780. [PMID: 25674092 PMCID: PMC4307191 DOI: 10.3389/fpls.2014.00780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds.
Collapse
Affiliation(s)
| | - A. M. Settles
- *Correspondence: A. M. Settles, Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, P. O. Box 110690, Gainesville, FL 32611-0690, USA e-mail:
| |
Collapse
|
106
|
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. FRONTIERS IN PLANT SCIENCE 2014; 5:412. [PMID: 25202316 PMCID: PMC4142864 DOI: 10.3389/fpls.2014.00412] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/03/2014] [Indexed: 05/18/2023]
Abstract
The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.
Collapse
Affiliation(s)
- Antonella Locascio
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
- IBMCP-CSIC, Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Antonella Locascio, IBMCP-CSIC, Universidad Politécnica de Valencia, Avda de los Naranjos s/n, ed.8E, 46020 Valencia, Spain e-mail:
| | | | - Jamila Bernardi
- Istituto di Agronomia Genetica e Coltivazioni Erbacee, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
| |
Collapse
|
107
|
Ohnishi T, Sekine D, Kinoshita T. Genomic Imprinting in Plants. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:1-25. [DOI: 10.1016/b978-0-12-800222-3.00001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
108
|
Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D. Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC PLANT BIOLOGY 2013; 13:221. [PMID: 24358981 PMCID: PMC3878109 DOI: 10.1186/1471-2229-13-221] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/09/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Extensive studies on heterosis in plants using transcriptome analysis have identified differentially expressed genes (DEGs) in F1 hybrids. However, it is not clear why yield in heterozygotes is superior to that of the homozygous parents or how DEGs are produced. Global allele-specific expression analysis in hybrid rice has the potential to answer these questions. RESULTS We report a genome-wide allele-specific expression analysis using RNA-sequencing technology of 3,637-3,824 genes from three rice F1 hybrids. Of the expressed genes, 3.7% exhibited an unexpected type of monoallelic expression and 23.8% showed preferential allelic expression that was genotype-dependent in reciprocal crosses. Those genes exhibiting allele-specific expression comprised 42.4% of the genes differentially expressed between F1 hybrids and their parents. Allele-specific expression accounted for 79.8% of the genes displaying more than a 10-fold expression level difference between an F1 and its parents, and almost all (97.3%) of the genes expressed in F1, but non-expressed in one parent. Significant allelic complementary effects were detected in the F1 hybrids of rice. CONCLUSIONS Analysis of the allelic expression profiles of genes at the critical stage for highest biomass production from the leaves of three different rice F1 hybrids identified genotype-dependent allele-specific expression genes. A cis-regulatory mechanism was identified that contributes to allele-specific expression, leading to differential gene expression and allelic complementary effects in F1 hybrids.
Collapse
Affiliation(s)
- Gaoyuan Song
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhibin Guo
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Zhenwei Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Qin Cheng
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Xuefeng Qu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Rong Chen
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daiming Jiang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Chuan Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yunfang Sun
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Liping Zhang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei Province 430072, China
| |
Collapse
|
109
|
Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet 2013; 9:e1003862. [PMID: 24339783 PMCID: PMC3854695 DOI: 10.1371/journal.pgen.1003862] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/22/2013] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner and is regulated by the differential epigenetic marking of the parental alleles. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a tissue nourishing the developing embryo that does not contribute to the next generation. In Arabidopsis, the genes MEDEA (MEA) and PHERES1 (PHE1), which are imprinted in the endosperm, are also expressed in the embryo; whether their embryonic expression is regulated by imprinting or not, however, remains controversial. In contrast, the maternally expressed in embryo 1 (mee1) gene of maize is clearly imprinted in the embryo. We identified several imprinted candidate genes in an allele-specific transcriptome of hybrid Arabidopsis embryos and confirmed parent-of-origin-dependent, monoallelic expression for eleven maternally expressed genes (MEGs) and one paternally expressed gene (PEG) in the embryo, using allele-specific expression analyses and reporter gene assays. Genetic studies indicate that the Polycomb Repressive Complex 2 (PRC2) but not the DNA METHYLTRANSFERASE1 (MET1) is involved in regulating imprinted expression in the embryo. In the seedling, all embryonic MEGs and the PEG are expressed from both parents, suggesting that the imprint is erased during late embryogenesis or early vegetative development. Our finding that several genes are regulated by genomic imprinting in the Arabidopsis embryo clearly demonstrates that this epigenetic phenomenon is not a unique feature of the endosperm in both monocots and dicots. In most cells nuclear genes are present in two copies, with one maternal and one paternal allele. Usually, the two alleles share the same fate regarding their activity, with both copies being active or both being silent. An exception to this rule are genes that are regulated by genomic imprinting, where only one allele is expressed and the other one remains silent depending on the parent it was inherited from. The two alleles are equal in terms of their DNA sequence but carry different epigenetic marks distinguishing them. Genomic imprinting evolved independently in mammals and flowering plants. In mammals, genes regulated by genomic imprinting are expressed in a wide range of tissues including the embryo and the placenta. In plants, genomic imprinting has been primarily described for genes expressed in the endosperm, a nutritive tissue in the seed with a function similar to that of the mammalian placenta. Here, we describe that some genes are also regulated by genomic imprinting in the embryo of the model plant Arabidopsis thaliana. An epigenetic silencing complex, the Polycomb Repressive Complex 2 (PRC2), partly regulates genomic imprinting in the embryo. Interestingly, embryonic imprints seem to be erased during late embryo or early seedling development.
Collapse
|
110
|
Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci U S A 2013; 110:19639-44. [PMID: 24218619 PMCID: PMC3845156 DOI: 10.1073/pnas.1309182110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize.
Collapse
Affiliation(s)
- Amanda J. Waters
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| | | | - Steven R. Eichten
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas–Austin, Austin TX 78758
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and
- The Genome Center and Center for Population Biology, University of California, Davis, CA 95616
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142; and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
111
|
Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 2013; 38:971-87. [DOI: 10.1007/s12038-013-9388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
112
|
Zhang M, Xie S, Dong X, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res 2013; 24:167-76. [PMID: 24131563 PMCID: PMC3875858 DOI: 10.1101/gr.155879.113] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parent-of-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression in maize remains elusive. Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. For DNA methylation, thousands of parent-of-origin dependent differentially methylated regions (pDMRs) were identified. All pDMRs were uniformly paternally hypermethylated and maternally hypomethylated. We also identified 1131 allele-specific H3K27me3 peaks that are preferentially present in the maternal alleles. Maternally expressed imprinted genes (MEGs) and paternally expressed imprinted genes (PEGs) had different patterns of allele-specific DNA methylation and H3K27me3. Allele-specific expression of MEGs was not directly related to allele-specific H3K27me3, and only a subset of MEGs was associated with maternal-specific DNA demethylation, which was primarily located in the upstream and 5' portion of gene body regions. In contrast, allele-specific expression of a majority of PEGs was related to maternal-specific H3K27me3, with a subgroup of PEGs also associated with maternal-specific DNA demethylation. Both pDMRs and maternal H3K27me3 peaks associated with PEGs are enriched in gene body regions. Our results indicate highly complex patterns of regulation on genetic imprinting in maize endosperm.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Yoshida T, Kawabe A. Importance of gene duplication in the evolution of genomic imprinting revealed by molecular evolutionary analysis of the type I MADS-box gene family in Arabidopsis species. PLoS One 2013; 8:e73588. [PMID: 24039992 PMCID: PMC3764040 DOI: 10.1371/journal.pone.0073588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/25/2013] [Indexed: 01/11/2023] Open
Abstract
The pattern of molecular evolution of imprinted genes is controversial and the entire picture is still to be unveiled. Recently, a relationship between the formation of imprinted genes and gene duplication was reported in genome-wide survey of imprinted genes in Arabidopsis thaliana. Because gene duplications influence the molecular evolution of the duplicated gene family, it is necessary to investigate both the pattern of molecular evolution and the possible relationship between gene duplication and genomic imprinting for a better understanding of evolutionary aspects of imprinted genes. In this study, we investigated the evolutionary changes of type I MADS-box genes that include imprinted genes by using relative species of Arabidopsis thaliana (two subspecies of A. lyrata and three subspecies of A. halleri). A duplicated gene family enables us to compare DNA sequences between imprinted genes and its homologs. We found an increased number of gene duplications within species in clades containing the imprinted genes, further supporting the hypothesis that local gene duplication is one of the driving forces for the formation of imprinted genes. Moreover, data obtained by phylogenetic analysis suggested “rapid evolution” of not only imprinted genes but also its closely related orthologous genes, which implies the effect of gene duplication on molecular evolution of imprinted genes.
Collapse
Affiliation(s)
- Takanori Yoshida
- Faculty of Life Science, Kyoto Sangyo University, Kyoto, Kyoto, Japan
| | - Akira Kawabe
- Faculty of Life Science, Kyoto Sangyo University, Kyoto, Kyoto, Japan
- * E-mail:
| |
Collapse
|
114
|
Xin M, Yang R, Li G, Chen H, Laurie J, Ma C, Wang D, Yao Y, Larkins BA, Sun Q, Yadegari R, Wang X, Ni Z. Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. THE PLANT CELL 2013; 25:3212-27. [PMID: 24058158 PMCID: PMC3809528 DOI: 10.1105/tpc.113.115592] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 05/19/2023]
Abstract
In angiosperms, the endosperm provides nutrients for embryogenesis and seed germination and is the primary tissue where gene imprinting occurs. To identify the imprintome of early developing maize (Zea mays) endosperm, we performed high-throughput transcriptome sequencing of whole kernels at 0, 3, and 5 d after pollination (DAP) and endosperms at 7, 10, and 15 DAP, using B73 by Mo17 reciprocal crosses. We observed gradually increased expression of paternal transcripts in 3- and 5-DAP kernels. In 7-DAP endosperm, the majority of the genes tested reached a 2:1 maternal versus paternal ratio, suggesting that paternal genes are nearly fully activated by 7 DAP. A total of 116, 234, and 63 genes exhibiting parent-specific expression were identified at 7, 10, and 15 DAP, respectively. The largest proportion of paternally expressed genes was at 7 DAP, mainly due to the significantly deviated parental allele expression ratio of these genes at this stage, while nearly 80% of the maternally expressed genes (MEGs) were specific to 10 DAP and were primarily attributed to sharply increased expression levels compared with the other stages. Gene ontology enrichment analysis of the imprinted genes suggested that 10-DAP endosperm-specific MEGs are involved in nutrient uptake and allocation and the auxin signaling pathway, coincident with the onset of starch and storage protein accumulation.
Collapse
Affiliation(s)
- Mingming Xin
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Ruolin Yang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Guosheng Li
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Hao Chen
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - John Laurie
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Chuang Ma
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Dongfang Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Brian A. Larkins
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
- Address correspondence to
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
115
|
Abstract
Imprinted gene expression--the biased expression of alleles dependent on their parent of origin--is an important type of epigenetic gene regulation in flowering plants and mammals. In plants, genes are imprinted primarily in the endosperm, the triploid placenta-like tissue that surrounds and nourishes the embryo during its development. Differential allelic expression is correlated with active DNA demethylation by DNA glycosylases and repressive targeting by the Polycomb group proteins. Imprinted gene expression is one consequence of a large-scale remodeling to the epigenome, primarily directed at transposable elements, that occurs in gametes and seeds. This remodeling could be important for maintaining the epigenome in the embryo as well as for establishing gene imprinting.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|
116
|
Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ, Kinoshita T, Higashiyama T, Martienssen RA, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 2013; 140:2953-60. [PMID: 23760956 DOI: 10.1242/dev.092981] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression. However, genome-wide studies suggested other DNA methylation-dependent imprinting mechanisms. Here, we show that de novo RNA-directed DNA methylation (RdDM) regulates imprinting at specific loci expressed in endosperm. RdDM in somatic tissues is required to silence expression of the paternal allele. By contrast, the repression of RdDM in female gametes participates with or without DME requirement in the activation of the maternal allele. The contrasted activity of DNA methylation between male and female gametes appears sufficient to prime imprinted maternal expression. After fertilization, MET1 maintains differential expression between the parental alleles. RdDM depends on small interfering RNAs (siRNAs). The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.
Collapse
Affiliation(s)
- Thiet Minh Vu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu HJ, Gao Z, Wang XJ, Han F. Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. THE PLANT CELL 2013; 25:1979-89. [PMID: 23771890 PMCID: PMC3723607 DOI: 10.1105/tpc.113.110015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The maize (Zea mays) B centromere is composed of B centromere-specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenling Lv
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junling Pang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulan Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jun Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Gao
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
118
|
Long noncoding RNAs: new regulators in plant development. Biochem Biophys Res Commun 2013; 436:111-4. [PMID: 23726911 DOI: 10.1016/j.bbrc.2013.05.086] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/14/2022]
Abstract
Plant long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, especially in plant reproductive development and response to stresses. They are transcribed by RNA polymerase II (Pol II), Pol III and Pol V, and exert their functions by a variety of regulation pathways. In this review, we summarized the current knowledge of lncRNAs discoveries in plant, including their identification, functions and regulation pathways as well as production and mediators, with an emphasizing on the novel regulation mechanisms in plant development.
Collapse
|
119
|
Lu X, Chen D, Shu D, Zhang Z, Wang W, Klukas C, Chen LL, Fan Y, Chen M, Zhang C. The differential transcription network between embryo and endosperm in the early developing maize seed. PLANT PHYSIOLOGY 2013; 162:440-55. [PMID: 23478895 PMCID: PMC3641222 DOI: 10.1104/pp.113.214874] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Transcriptome analysis of early-developing maize (Zea mays) seed was conducted using Illumina sequencing. We mapped 11,074,508 and 11,495,788 paired-end reads from endosperm and embryo, respectively, at 9 d after pollination to define gene structure and alternative splicing events as well as transcriptional regulators of gene expression to quantify transcript abundance in both embryo and endosperm. We identified a large number of novel transcribed regions that did not fall within maize annotated regions, and many of the novel transcribed regions were tissue-specifically expressed. We found that 50.7% (8,556 of 16,878) of multiexonic genes were alternatively spliced, and some transcript isoforms were specifically expressed either in endosperm or in embryo. In addition, a total of 46 trans-splicing events, with nine intrachromosomal events and 37 interchromosomal events, were found in our data set. Many metabolic activities were specifically assigned to endosperm and embryo, such as starch biosynthesis in endosperm and lipid biosynthesis in embryo. Finally, a number of transcription factors and imprinting genes were found to be specifically expressed in embryo or endosperm. This data set will aid in understanding how embryo/endosperm development in maize is differentially regulated.
Collapse
|
120
|
Abstract
Seeds are complex structures that unite diploid maternal tissues with filial tissues that may be haploid (gametophyte), diploid (embryo), or triploid (endosperm). Maternal tissues are predicted to favor smaller seeds than are favored by filial tissues, and filial genes of maternal origin are predicted to favor smaller seeds than are favored by filial genes of paternal origin. Consistent with these predictions, seed size is determined by an interplay between growth of maternal integuments, which limits seed size, and of filial endosperm, which promotes larger seeds. Within endosperm, genes of paternal origin favor delayed cellularization of endosperm and larger seeds, whereas genes of maternal origin favor early cellularization and smaller seeds. The ratio of maternal and paternal gene products in endosperm contributes to the failure of crosses between different ploidy levels of the same species and crosses between species. Maternally expressed small-interfering RNAs (siRNAs) are predicted to associate with growth-enhancing genes.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
121
|
Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc Natl Acad Sci U S A 2013; 110:7934-9. [PMID: 23613580 DOI: 10.1073/pnas.1306164110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arabidopsis thaliana endosperm, a transient tissue that nourishes the embryo, exhibits extensive localized DNA demethylation on maternally inherited chromosomes. Demethylation mediates parent-of-origin-specific (imprinted) gene expression but is apparently unnecessary for the extensive accumulation of maternally biased small RNA (sRNA) molecules detected in seeds. Endosperm DNA in the distantly related monocots rice and maize is likewise locally hypomethylated, but whether this hypomethylation is generally parent-of-origin specific is unknown. Imprinted expression of sRNA also remains uninvestigated in monocot seeds. Here, we report high-coverage sequencing of the Kitaake rice cultivar that enabled us to show that localized hypomethylation in rice endosperm occurs solely on the maternal genome, preferring regions of high DNA accessibility. Maternally expressed imprinted genes are enriched for hypomethylation at putative promoter regions and transcriptional termini and paternally expressed genes at promoters and gene bodies, mirroring our recent results in A. thaliana. However, unlike in A. thaliana, rice endosperm sRNA populations are dominated by specific strong sRNA-producing loci, and imprinted 24-nt sRNAs are expressed from both parental genomes and correlate with hypomethylation. Overlaps between imprinted sRNA loci and imprinted genes expressed from opposite alleles suggest that sRNAs may regulate genomic imprinting. Whereas sRNAs in seedling tissues primarily originate from small class II (cut-and-paste) transposable elements, those in endosperm are more uniformly derived, including sequences from other transposon classes, as well as genic and intergenic regions. Our data indicate that the endosperm exhibits a unique pattern of sRNA expression and suggest that localized hypomethylation of maternal endosperm DNA is conserved in flowering plants.
Collapse
|
122
|
Imprinting in plants and its underlying mechanisms. J Genet Genomics 2013; 40:239-47. [PMID: 23706299 DOI: 10.1016/j.jgg.2013.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 11/22/2022]
Abstract
Genomic imprinting (or imprinting) refers to an epigenetic phenomenon by which the allelic expression of a gene depends on the parent of origin. It has evolved independently in placental mammals and flowering plants. In plants, imprinting is mainly found in endosperm. Recent genome-wide surveys in Arabidopsis, rice, and maize identified hundreds of imprinted genes in endosperm. Since these genes are of diverse functions, endosperm development is regulated at different regulatory levels. The imprinted expression of only a few genes is conserved between Arabidopsis and monocots, suggesting that imprinting evolved quickly during speciation. In Arabidopsis, DEMETER (DME) mediates hypomethylation in the maternal genome at numerous loci (mainly transposons and repeats) in the central cell and results in many differentially methylated regions between parental genomes in the endosperm, and subsequent imprinted expression of some genes. In addition, histone modification mediated by Polycomb group (PcG) proteins is also involved in regulating imprinting. DME-induced hypomethylated alleles in the central cell are considered to produce small interfering RNAs (siRNAs) which are imported to the egg to reinforce DNA methylation. In parallel, the activity of DME in the vegetative cell of the male gametophyte demethylates many regions which overlap with the demethylated regions in the central cell. siRNAs from the demethylated regions are hypothesized to be also transferred into sperm to reinforce DNA methylation. Imprinting is partly the result of genome-wide epigenetic reprogramming in the central cell and vegetative cell and evolved under different selective pressures.
Collapse
|
123
|
Martin LBB, Fei Z, Giovannoni JJ, Rose JKC. Catalyzing plant science research with RNA-seq. FRONTIERS IN PLANT SCIENCE 2013; 4:66. [PMID: 23554602 PMCID: PMC3612697 DOI: 10.3389/fpls.2013.00066] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/10/2013] [Indexed: 05/18/2023]
Abstract
Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of their associated cDNA (complementary DNA) populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since entering the arena of whole genome profiling technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with a remarkably diverse range of applications, from detailed studies of biological processes at the cell type-specific level, to providing insights into fundamental questions in plant biology on an evolutionary time scale. Applications include generating genomic data for heretofore unsequenced species, thus expanding the boundaries of what had been considered "model organisms," elucidating structural and regulatory gene networks, revealing how plants respond to developmental cues and their environment, allowing a better understanding of the relationships between genes and their products, and uniting the "omics" fields of transcriptomics, proteomics, and metabolomics into a now common systems biology paradigm. We provide an overview of the breadth of such studies and summarize the range of RNA-seq protocols that have been developed to address questions spanning cell type-specific-based transcriptomics, transcript secondary structure and gene mapping.
Collapse
Affiliation(s)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | | |
Collapse
|
124
|
Evolution of genomic imprinting as a coordinator of coadapted gene expression. Proc Natl Acad Sci U S A 2013; 110:5085-90. [PMID: 23479614 DOI: 10.1073/pnas.1205686110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in which the expression of a gene copy inherited from the mother differs from that of the copy inherited from the father. Many imprinted genes appear to be highly interconnected through interactions mediated by proteins, RNA, and DNA. These kinds of interactions often favor the evolution of genetic coadaptation, where beneficially interacting alleles evolve to become coinherited. Here I demonstrate theoretically that the presence of gene interactions that favor coadaptation can also favor the evolution of genomic imprinting. Selection favors genomic imprinting because it coordinates the coexpression of positively interacting alleles at different loci. Evolution is expected to proceed through a scenario where selection builds associations between beneficial combinations of alleles and, if one locus evolves to become imprinted, it leads to selection for its interacting partners to match its pattern of imprinting. This process should favor the evolution of physical linkage between interacting genes and therefore may help explain why imprinted genes tend to be found in clusters. The model suggests that, whereas some genes are expected to evolve their imprinting status because selection directly favors a specific pattern of parent-of-origin-dependent expression, other genes may evolve imprinting as a coevolutionary response to match the expression pattern of their interacting partners. As a result, some genes will show phenotypic effects consistent with the predictions of models for the evolution of genomic imprinting (e.g., conflict models), but other genes may not, having simply evolved imprinting to follow the lead of their interacting partners.
Collapse
|
125
|
Sreenivasulu N, Wobus U. Seed-development programs: a systems biology-based comparison between dicots and monocots. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:189-217. [PMID: 23451786 DOI: 10.1146/annurev-arplant-050312-120215] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seeds develop differently in dicots and monocots, especially with respect to the major storage organs. High-resolution transcriptome data have provided the first insights into the molecular networks and pathway interactions that function during the development of individual seed compartments. Here, we review mainly recent data obtained by systems biology-based approaches, which have allowed researchers to construct and model complex metabolic networks and fluxes and identify key limiting steps in seed development. Comparative coexpression network analyses define evolutionarily conservative (FUS3/ABI3/LEC1) and divergent (LEC2) networks in dicots and monocots. Finally, we discuss the determination of seed size--an important yield-related characteristic--as mediated by a number of processes (maternal and epigenetic factors, fine-tuned regulation of cell death in distinct seed compartments, and endosperm growth) and underlying genes defined through mutant analyses. Altogether, systems approaches can make important contributions toward a more complete and holistic knowledge of seed biology and thus support strategies for knowledge-based molecular breeding.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | |
Collapse
|
126
|
Pignatta D, Gehring M. Imprinting meets genomics: new insights and new challenges. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:530-5. [PMID: 23000433 DOI: 10.1016/j.pbi.2012.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/10/2012] [Accepted: 09/05/2012] [Indexed: 05/08/2023]
Abstract
Until recently, only a handful of imprinted genes, or genes with parent-of-origin dependent expression patterns, were known in plants. Study of these genes yielded key insights into mechanisms of monoallelic expression and imprinted gene function. The recent application of high throughput sequencing to the study of imprinting has confirmed that many previous findings are relevant on a genome-wide scale. The catalogue of imprinted genes in monocots and dicots now includes a large number of transcription factors, chromatin related genes, and metabolic or hormone biosynthesis enzymes. Interpretation of allele specific expression data remains a challenge, with careful validation of candidate imprinted genes necessary.
Collapse
Affiliation(s)
- Daniela Pignatta
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, United States
| | | |
Collapse
|
127
|
Gutierrez-Marcos JF, Constância M, Burton GJ. Maternal to offspring resource allocation in plants and mammals. Placenta 2012; 33 Suppl 2:e3-10. [PMID: 22995735 DOI: 10.1016/j.placenta.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/26/2022]
Abstract
Appropriate allocation of resources to the offspring is critical for successful reproduction, particularly in species that reproduce on more than one occasion. The offspring must be provisioned adequately to ensure its vigour, whereas the parent must not become so depleted such that its survival is endangered. In both flowering plants and mammals specialised structures have evolved to support the offspring during its development. In this review we consider common themes that may indicate conservation of nutrient transfer function and regulation by genomic imprinting across the two kingdoms.
Collapse
Affiliation(s)
- J F Gutierrez-Marcos
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
128
|
Jiang Y, Zeng B, Zhao H, Zhang M, Xie S, Lai J. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:616-30. [PMID: 22862992 DOI: 10.1111/j.1744-7909.2012.01149.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
129
|
Jiang H, Köhler C. Evolution, function, and regulation of genomic imprinting in plant seed development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4713-22. [PMID: 22922638 DOI: 10.1093/jxb/ers145] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | | |
Collapse
|
130
|
Wöhrmann HJP, Gagliardini V, Raissig MT, Wehrle W, Arand J, Schmidt A, Tierling S, Page DR, Schöb H, Walter J, Grossniklaus U. Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev 2012; 26:1837-50. [PMID: 22855791 DOI: 10.1101/gad.195123.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.
Collapse
Affiliation(s)
- Heike J P Wöhrmann
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Li J, Berger F. Endosperm: food for humankind and fodder for scientific discoveries. THE NEW PHYTOLOGIST 2012; 195:290-305. [PMID: 22642307 DOI: 10.1111/j.1469-8137.2012.04182.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The endosperm is an essential constituent of seeds in flowering plants. It originates from a fertilization event parallel to the fertilization that gives rise to the embryo. The endosperm nurtures embryo development and, in some species including cereals, stores the seed reserves and represents a major source of food for humankind. Endosperm biology is characterized by specific features, including idiosyncratic cellular controls of cell division and epigenetic controls associated with parental genomic imprinting. This review attempts a comprehensive summary of our current knowledge of endosperm development and highlights recent advances in this field.
Collapse
Affiliation(s)
- Jing Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Frédéric Berger
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
132
|
Ikeda Y. Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. PLANT & CELL PHYSIOLOGY 2012; 53:809-816. [PMID: 22492232 DOI: 10.1093/pcp/pcs049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon found in mammals and flowering plants that leads to differential allelic gene expression depending on their parent of origin. In plants, genomic imprinting primarily occurs in the endosperm, and it is associated with seed development. The imprinted expression is driven by the epigenetic memory programmed in each lineage of female and male germlines. Several imprinted genes have been identified based on genetic studies in maize and Arabidopsis. Recent advances in genome-wide analyses made it possible to identify multiple imprinted genes including many nuclear proteins, such as transcription factors and chromatin-related proteins in different plant species. Some of these genes are conserved in Arabidopsis, rice and maize, but many are species specific. Genome-wide analyses also clarified the regulation mechanism of imprinted genes orchestrated by DNA methylation and histone methylation marks. Additionally, genetic analyses using Arabidopsis revealed new regulatory factors of DNA demethylation and imprinting and shed light on the more precise mechanisms.
Collapse
Affiliation(s)
- Yoko Ikeda
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, Japan.
| |
Collapse
|
133
|
Abstract
Endosperm gene imprinting has long been speculated to control nutrient allocation to seeds. For the first time, an imprinted gene directly involved in this process has been identified.
Collapse
Affiliation(s)
- Philip W Becraft
- Zoology and Genetics and Agronomy Departments, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|