101
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
102
|
Bar-Hai N, Ishay-Ronen D. Engaging plasticity: Differentiation therapy in solid tumors. Front Pharmacol 2022; 13:944773. [PMID: 36034865 PMCID: PMC9410762 DOI: 10.3389/fphar.2022.944773] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Tumor progression evolves by increasing diversity, adaptation to signals from the microenvironment and escape mechanisms from therapy. These dynamic processes indicate necessity for cell plasticity. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in solid tumors by inducing dedifferentiation and cell type transitions. These two practices, plasticity and dedifferentiation enhance tumor heterogeneity creating a key challenge in cancer treatment. In this review we will explore cancer cell plasticity and elaborate treatment modalities that aspire to overcome such dynamic processes in solid tumors. We will further discuss the therapeutic potential of utilizing enhanced cell plasticity for differentiation therapy.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Dana Ishay-Ronen,
| |
Collapse
|
103
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
104
|
Chen C, Luo L, Xu C, Yang X, Liu T, Luo J, Shi W, Yang L, Zheng Y, Yang J. Tumor specificity of WNT ligands and receptors reveals universal squamous cell carcinoma oncogenes. BMC Cancer 2022; 22:790. [PMID: 35850748 PMCID: PMC9295300 DOI: 10.1186/s12885-022-09898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background The WNT signal pathway has myriad family members, which are broadly involved in embryonic development and human cancer. Over-activation of WNT-β-Catenin signaling promotes cancer cell proliferation and survival. However, how diverse components of WNT signaling specifically engaged in distinct tumor types remains incompletely understood. Methods We analyzed the transcriptomic profiling of WNT ligands and receptors/co-receptors among 26 different tumor types to identify their expression pattern, and further verified these results using clinical oral squamous cell carcinoma (OSCC) and lung squamous cell carcinoma (LUSC) samples. At the same time, we also detected WNT7B expression in oral inflammation and carcinoma, and constructed stable WNT7B knockdown OSCC cell lines to study the effects of WNT7B on the cell migration and invasion ability. Results We found a group of tumor-specific WNT members, including a panel of squamous cell carcinomas (SCCs) specific upregulated WNT ligands and receptors, WNT5A, WNT7B, FZD7 and GPC1. We further revealed a significant correlation between these protein expression characteristics and clinical outcomes of OSCC and LUSC patients. Moreover, WNT7B was demonstrated to contribute to the development of oral chronic inflammation and OSCC, partly due to promoting the invasion ability of tumor cells. Conclusions These results demonstrate that the function of WNT ligands and receptors in specific tumors depends on the origination of tumor tissue type. Collectively, they support the use of WNT components as a highly specific target for pan-tissue-type originated tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09898-2.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lunan Luo
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Changling Xu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xia Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ting Liu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyue Luo
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wen Shi
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100191, China
| | - Lu Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Zheng
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Jing Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
105
|
Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Med 2022; 28:82. [PMID: 35854234 PMCID: PMC9295360 DOI: 10.1186/s10020-022-00509-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Metastasis of malignant tumors accelerates systemic failure and hastens the deaths of pancreatic cancer patients. During the metastatic process, the physical translocation of cancer cells from the primary lesion to distant organs and is crucial. CSCs properties, such as self-renewal and multiple-direction differentiation capacity are essential for colonization in the microenvironment of distant organs and metastatic lesion formation. It is widely believed that EMT can cause cancer cells to penetrate blood vessels by undergoing phenotypic and cytoskeletal changes, so that they can infiltrate surrounding tissue and disseminate from the primary tumor to the blood circulation, where they are termed circulating tumor cells (CTCs), while CTCs often exhibit stemness properties. Accumulating evidence demonstrates that some EMT-related transcription factors are essential for CSCs self-renewal, so cancer cells that have undergone EMT typically acquire increased stemness properties. Abnormal activation of the WNT signaling pathway can drive a series of gene transcripts to promote EMT in multiple types of cancer, and among different Frizzled receptors of WNT signaling pathway, FZD7 expression is associated with distant organ metastasis, advanced clinical stages, and poor clinical prognosis. Objective of this study is to demonstrate that high FZD7 expression in pancreatic cancer can accelerate hepatic metastases and elucidate the related molecular mechanisms. Methods The expression of Frrizled receptor 7 (FZD7) in pancreatic ductal adenocarcinoma (PDAC) and relating survival rate were analyzed by bioinformatics, histochemistry assay and follow-up study. In vitro, FZD7 expression was silenced by lentiviral vectors carrying short hair RNA (shRNA) or upregulated by overexpression plasmid. Then, Wound-healing and Transwell experiment was used to analyze the abilities of migration and invasion; the levels of epithelial-to-mesenchymal transition (EMT) relating phenotype proteins, stemness relating phenotype proteins, and signaling molecular proteins were measured by Western-blot; cell stemness was evaluated by sphere forming ability of cells in suspension culture and detecting the proportion of CD24+CD44+ cells with flow cytometry. TGF-β1 was used to induce EMT, and observe the effect of shRNA silencing FZD7 on which. Results High level of FZD7 expression in pancreatic cancer samples was associated with earlier hepatic metastasis. In vitro upregulation FZD7 can enable pancreatic cancer cells to obtain stronger migration and invasion ability and higher mesenchymal phenotype, and vice versa; the proportion of cancer stem cell (CSC) was also positively correlated with the level of FZD7; cells forming spheres in suspension culture showed stronger migration and invasion ability and higher level of mesenchymal phenotype than normal adherent cultured cells; the level of FZD7 was positively correlated with the level of activated β-catenin. Silencing FZD7 expression can attenuate EMT induced by TGF-β1 stimulating, and TGF-β1 stimulating can also upregulate stemness phenotype expression, such as ABCG2, CD24, and CD44 by mediating of FZD7. Conclusions High FZD7 expression in pancreatic cancer can accelerates hepatic metastases by promoting EMT and strengthening cell stemness, and FZD7 can work through the canonical Wingless-type (WNT) signaling pathway and participate in TGF-β/SMAD3 signaling pathway also.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
106
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
107
|
Zhong Z, Harmston N, Wood KC, Madan B, Virshup DM. A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. J Clin Invest 2022; 132:e156305. [PMID: 35536676 PMCID: PMC9197518 DOI: 10.1172/jci156305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor-sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.
Collapse
Affiliation(s)
- Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Physiology, National University of Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Science Division, Yale–NUS College, Singapore
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology and
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
108
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
109
|
Sun C, Liu Q, Shah M, Che Q, Zhang G, Zhu T, Zhou J, Rong X, Li D. Talaverrucin A, Heterodimeric Oxaphenalenone from Antarctica Sponge-Derived Fungus Talaromyces sp. HDN151403, Inhibits Wnt/β-Catenin Signaling Pathway. Org Lett 2022; 24:3993-3997. [PMID: 35616425 DOI: 10.1021/acs.orglett.2c01394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wnt/β-catenin signaling pathway is an evolutionarily conserved signaling cascade involved in a broad range of biological roles. Dysregulation of the Wnt/β-catenin pathway is implicated in congenital malformations and various kinds of cancers. We discovered a novel Wnt/β-catenin inhibitor, talaverrucin A (1), featuring an unprecedented 6/6/6/5/5/5/6 fused ring system, from an Antarctica sponge-derived fungus Talaromyces sp. HDN151403. Talaverrucin A exhibits inhibitory activity on the Wnt/β-catenin pathway in both zebrafish embryos in vivo and cultured mammalian cells in vitro, providing a naturally inspired small molecule therapeutic lead to target the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qianwen Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.,Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jianfeng Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaozhi Rong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
110
|
Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev 2022; 67:11-24. [DOI: 10.1016/j.cytogfr.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022]
|
111
|
Tanton H, Sewastianik T, Seo HS, Remillard D, Pierre RS, Bala P, Aitymbayev D, Dennis P, Adler K, Geffken E, Yeoh Z, Vangos N, Garbicz F, Scott D, Sethi N, Bradner J, Dhe-Paganon S, Carrasco RD. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. SCIENCE ADVANCES 2022; 8:eabm3108. [PMID: 35486727 PMCID: PMC9054024 DOI: 10.1126/sciadv.abm3108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Dysregulated Wnt/β-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between β-catenin and its coactivator BCL9. We identified a compound that consistently bound to β-catenin and specifically inhibited in vivo native β-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/β-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.
Collapse
Affiliation(s)
- Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David Remillard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roodolph St. Pierre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keith Adler
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ezekiel Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zoe Yeoh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nicholas Vangos
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Filip Garbicz
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - David Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
112
|
Ruiu R, Di Lorenzo A, Cavallo F, Conti L. Are Cancer Stem Cells a Suitable Target for Breast Cancer Immunotherapy? Front Oncol 2022; 12:877384. [PMID: 35530300 PMCID: PMC9069673 DOI: 10.3389/fonc.2022.877384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
There is substantial evidence to suggest that complete tumor eradication relies on the effective elimination of cancer stem cells (CSCs). CSCs have been widely described as mediators of resistance to conventional therapies, including chemo- and radiotherapy, as well as of tumor metastasization and relapse in different tumor types, including breast cancer. However, the resistant phenotype of CSCs makes their targeting a tough task, and immunotherapy may therefore be an interesting option. Nevertheless, although immunotherapeutic approaches to cancer treatment have generated great enthusiasm due to recent success in clinics, breast cancer treatment mostly relies on standard approaches. In this context, we review the existing literature on the immunological properties of breast CSC and immunotherapeutic approaches to them. We will thus attempt to clarify whether there is room for the immunotargeting of breast CSCs in the current landscape of breast cancer therapies. Finally, we will provide our opinion on the CSC-targeting immunotherapeutic strategies that could prospectively be attempted.
Collapse
Affiliation(s)
| | | | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
113
|
Huber R, Koval A, Marcourt L, Héritier M, Schnee S, Michellod E, Scapozza L, Katanaev VL, Wolfender JL, Gindro K, Ferreira Queiroz E. Chemoenzymatic Synthesis of Original Stilbene Dimers Possessing Wnt Inhibition Activity in Triple-Negative Breast Cancer Cells Using the Enzymatic Secretome of Botrytis cinerea Pers. Front Chem 2022; 10:881298. [PMID: 35518712 PMCID: PMC9062038 DOI: 10.3389/fchem.2022.881298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.
Collapse
Affiliation(s)
- Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sylvain Schnee
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emilie Michellod
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
114
|
Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. BIOLOGY 2022; 11:biology11040585. [PMID: 35453784 PMCID: PMC9027240 DOI: 10.3390/biology11040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and its incidence is steadily increasing. The development of HCC is a complex, multi-step process that is accompanied by alterations in multiple signaling cascades. Recent years have seen advancement in understanding molecular signaling pathways that play central roles in hepatocarcinogenesis. Aberrant activation of YAP/TAZ, Hedgehog, or Wnt/β-catenin signaling is frequently found in a subset of HCC patients. Targeting the signaling pathway via small molecule inhibitors could be a promising therapeutic option for the subset of patients. In this review, we will introduce the signaling pathways, discuss their roles in the development of HCC, and propose a therapeutic approach targeting the signaling pathways in the context of HCC. Abstract Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. To date, receptor tyrosine kinases (RTKs) are the most favored molecular targets for the treatment of HCC, followed by immune checkpoint regulators such as PD-1, PD-L1, and CTLA-4. With less than desirable clinical outcomes from RTK inhibitors as well as immune checkpoint inhibitors (ICI) so far, novel molecular target therapies have been proposed for HCC. In this review, we will introduce diverse molecular signaling pathways that are aberrantly activated in HCC, focusing on YAP/TAZ, Hedgehog, and Wnt/β-catenin signaling pathways, and discuss potential therapeutic strategies targeting the signaling pathways in HCC.
Collapse
|
115
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|
116
|
GIPC2 interacts with Fzd7 to promote prostate cancer metastasis by activating WNT signaling. Oncogene 2022; 41:2609-2623. [PMID: 35347223 PMCID: PMC9054671 DOI: 10.1038/s41388-022-02255-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) causes significant mortality and morbidity, with advanced metastasis. WNT signaling is a promising therapeutic target for metastatic PCa. GIPC2 is a GIPC1 paralog involved in WNT signaling pathways associated with tumor progression, but its role in PCa metastasis remains unclear. Herein, we demonstrated that high GIPC2 expression in PCa tissues was significantly associated with distant metastasis and poor prognosis. Functional studies demonstrated that high GIPC2 expression due to CpG-island demethylation promoted increased metastatic capabilities of PCa cells. Conversely, silencing GIPC2 expression significantly inhibited PCa metastasis in vitro and in vivo. Furthermore, GIPC2 directly bound the WNT co-receptor Fzd7 through its PDZ domain, which enabled activation of WNT-β-catenin cascades, thereby stimulating PCa metastasis. Interestingly, GIPC2 protein was also identified as a component of exosomes and that it robustly stimulated PCa adhesion, invasion, and migration. The presence of GIPC2 in tumor-derived exosomes and ability to impact the behavior of tumor cells suggest that GIPC2 is a novel epigenetic oncogene involved in PCa metastasis. Our findings identified GIPC2 as a novel exosomal molecule associated with WNT signaling and may represent a potential therapeutic target and biomarker for metastatic PCa.
Collapse
|
117
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
118
|
Mafakher L, Rismani E, Rahimi H, Enayatkhani M, Azadmanesh K, Teimoori-Toolabi L. Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. J Biomol Struct Dyn 2022; 40:2169-2188. [DOI: 10.1080/07391102.2020.1835718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Enayatkhani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
119
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
120
|
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
121
|
HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract 2022; 233:153794. [DOI: 10.1016/j.prp.2022.153794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
|
122
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
123
|
Nuriding H, Wang X, Shen Y, Liu Y, Yan M. Fos-Related Antigen 1 May Cause Wnt-Fzd Signaling Pathway-Related Nephroblastoma in Children. J Biomed Nanotechnol 2022; 18:527-534. [PMID: 35484756 DOI: 10.1166/jbn.2022.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the role of the primary Fos-related antigen 1 (Fosl-1) oncogene in nephroblastoma by studying 60 childhood nephroblastoma and 58 paraneoplastic carcinoma cases. The Fosl-1 expression was detected using immunohistochemistry. In vitro culture of nephroblastoma cells was performed by viral transfection to establish Fosl-1 overexpression and gene knockout models. Flow cytometry and nano-PCR were used to detect apoptosis and mRNA expression in related pathway genes. Immunohistochemical results showed that the positive expression of Fosl-1 in the nuclei of nephroblastoma tissue was 78%, among which metastasis rate was 61.7%; correspondingly, it was 8%, and 100% in adjacent tissues. The qPCR results indicated that MMP9, Wnt1, and Fzd1 were significantly upregulated after Fosl-1 overexpression compared with the normal embryonic tissue cells, control, and gene knockout groups (P <0.05). Fosl-1 could cause the occurrence, development, and metastasis of childhood nephroblastoma through wingless/int1/Frizzled-related signaling pathways.
Collapse
Affiliation(s)
- Hailiqiguli Nuriding
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Xuemei Wang
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Yiping Shen
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, 02115, Massachusetts, United States
| | - Yu Liu
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Mei Yan
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| |
Collapse
|
124
|
Philpott D, Gomis S, Wang H, Atwal R, Kelil A, Sack T, Morningstar B, Burnie C, Sargent EH, Angers S, Sidhu S, Kelley SO. Rapid On-Cell Selection of High-Performance Human Antibodies. ACS CENTRAL SCIENCE 2022; 8:102-109. [PMID: 35106377 PMCID: PMC8796304 DOI: 10.1021/acscentsci.1c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Phage display is a critical tool for developing antibodies. However, existing approaches require many time-consuming rounds of biopanning and screening of potential candidates due to a high rate of failure during validation. Herein, we present a rapid on-cell phage display platform which recapitulates the complex in vivo binding environment to produce high-performance human antibodies in a short amount of time. Selection is performed in a highly stringent heterogeneous mixture of cells to quickly remove nonspecific binders. A microfluidic platform then separates antigen-presenting cells with high throughput and specificity. An unsupervised machine learning algorithm analyzes sequences of phage from all pools to identify the structural trends that contribute to affinity and proposes ideal candidates for validation. In a proof-of-concept screen against human Frizzled-7, a key ligand in the Wnt signaling pathway, antibodies with picomolar affinity were discovered in two rounds of selection that outperformed current gold-standard reagents. This approach, termed μCellect, is low cost, high throughput, and compatible with a wide variety of cell types, enabling widespread adoption for antibody development.
Collapse
Affiliation(s)
- David
N. Philpott
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Surath Gomis
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Hansen Wang
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Abdellali Kelil
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Tanja Sack
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Brandon Morningstar
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Chris Burnie
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Edward H. Sargent
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sachdev Sidhu
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
125
|
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front Mol Biosci 2022; 9:836417. [PMID: 35145999 PMCID: PMC8824427 DOI: 10.3389/fmolb.2022.836417] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer that lacks estrogen, progesterone, and human epidermal growth factor receptor 2. This cancer is responsible for more than 15-20% of all breast cancers and is of particular research interest as it is therapeutically challenging mainly because of its low response to therapeutics and highly invasive nature. The non-availability of specific treatment options for TNBC is usually managed by conventional therapy, which often leads to relapse. The focus of this review is to provide up-to-date information related to TNBC epidemiology, risk factors, metastasis, different signaling pathways, and the pathways that can be blocked, immune suppressive cells of the TNBC microenvironment, current and investigation therapies, prognosis, and the role of artificial intelligence in TNBC diagnosis. The data presented in this paper may be helpful for researchers working in the field to obtain general and particular information to advance the understanding of TNBC and provide suitable disease management in the future.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
126
|
Bae SJ, Jo Y, Cho MK, Jin JS, Kim JY, Shim J, Kim YH, Park JK, Ryu D, Lee HJ, Joo J, Ha KT. Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics. Front Endocrinol (Lausanne) 2022; 13:942368. [PMID: 36339397 PMCID: PMC9630743 DOI: 10.3389/fendo.2022.942368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a gynecological disease prevalent in women of reproductive age, and it is characterized by the ectopic presence and growth of the eutopic endometrium. The pathophysiology and diagnostic biomarkers of endometriosis have not yet been comprehensively determined. To discover molecular markers and pathways underlying the pathogenesis of endometriosis, we identified differentially expressed genes (DEGs) in three Gene Expression Omnibus microarray datasets (GSE11691, GSE23339, and GSE7305) and performed gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) network analyses. We also validated the identified genes via immunohistochemical analysis of tissues obtained from patients with endometriosis or healthy volunteers. A total of 118 DEGs (79 upregulated and 39 downregulated) were detected in each dataset with a lower (fold change) FC cutoff (log2|FC| > 1), and 17 DEGs (11 upregulated and six downregulated) with a higher FC cutoff (log2|FC| > 2). KEGG and GO functional analyses revealed enrichment of signaling pathways associated with inflammation, complement activation, cell adhesion, and extracellular matrix in endometriotic tissues. Upregulation of seven genes (C7, CFH, FZD7, LY96, PDLIM3, PTGIS, and WISP2) out of 17 was validated via comparison with external gene sets, and protein expression of four genes (LY96, PDLIM3, PTGIS, and WISP2) was further analyzed by immunohistochemistry and western blot analysis. Based on these results, we suggest that TLR4/NF-κB and Wnt/frizzled signaling pathways, as well as estrogen receptors, regulate the progression of endometriosis. These pathways may be therapeutic and diagnostic targets for endometriosis.
Collapse
Affiliation(s)
- Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, South Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Jin-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of Medicine, Busan, South Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jang-Kyung Park
- Department of Korean Medicine Obstetrics and Gynecology, Pusan National University Korean Medicine Hospital, Yangsan, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Jongkil Joo, ; Ki-Tae Ha,
| |
Collapse
|
127
|
Do M, Wu CCN, Sonavane PR, Juarez EF, Adams SR, Ross J, Rodriguez Y Baena A, Patel C, Mesirov JP, Carson DA, Advani SJ, Willert K. A FZD7-specific Antibody-Drug Conjugate Induces Ovarian Tumor Regression in Preclinical Models. Mol Cancer Ther 2022; 21:113-124. [PMID: 34667113 PMCID: PMC8742765 DOI: 10.1158/1535-7163.mct-21-0548] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Although WNT signaling is frequently dysregulated in solid tumors, drugging this pathway has been challenging due to off-tumor effects. Current clinical pan-WNT inhibitors are nonspecific and lead to adverse effects, highlighting the urgent need for more specific WNT pathway-targeting strategies. We identified elevated expression of the WNT receptor Frizzled class receptor 7 (FZD7) in multiple solid cancers in The Cancer Genome Atlas, particularly in the mesenchymal and proliferative subtypes of ovarian serous cystadenocarcinoma, which correlate with poorer median patient survival. Moreover, we observed increased FZD7 protein expression in ovarian tumors compared with normal ovarian tissue, indicating that FZD7 may be a tumor-specific antigen. We therefore developed a novel antibody-drug conjugate, septuximab vedotin (F7-ADC), which is composed of a chimeric human-mouse antibody to human FZD7 conjugated to the microtubule-inhibiting drug monomethyl auristatin E (MMAE). F7-ADC selectively binds human FZD7, potently kills ovarian cancer cells in vitro, and induces regression of ovarian tumor xenografts in murine models. To evaluate F7-ADC toxicity in vivo, we generated mice harboring a modified Fzd7 gene where the resulting Fzd7 protein is reactive with the human-targeting F7-ADC. F7-ADC treatment of these mice did not induce acute toxicities, indicating a potentially favorable safety profile in patients. Overall, our data suggest that the antibody-drug conjugate approach may be a powerful strategy to combat FZD7-expressing ovarian cancers in the clinic.
Collapse
Affiliation(s)
- Myan Do
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Christina C N Wu
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Pooja R Sonavane
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Edwin F Juarez
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Jason Ross
- Department of Global Creative Studio, Illumina, Inc., San Diego, California
| | | | - Charmi Patel
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, La Jolla, California.,Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dennis A Carson
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Science, University of California San Diego, La Jolla, California
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
128
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
129
|
Larasati Y, Boudou C, Koval A, Katanaev VL. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD 7 in cancer. Drug Discov Today 2021; 27:777-792. [PMID: 34915171 DOI: 10.1016/j.drudis.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The Wnt signaling is of paramount pathophysiological importance. Despite showing promising anticancer activities in pre-clinical studies, current Wnt pathway inhibitors face complications in clinical trials resulting from on-target toxicity. Hence, the targeting of pathway component(s) that are essential for cancer but dispensable for normal physiology is key to the development of a safe Wnt signaling inhibitor. Frizzled7 (FZD7) is a Wnt pathway receptor that is redundant in healthy tissues but crucial in various cancers. FZD7 modulates diverse aspects of carcinogenesis, including cancer growth, metastasis, maintenance of cancer stem cells, and chemoresistance. In this review, we describe state-of-the-art knowledge of the functions of FZD7 in carcinogenesis and adult tissue homeostasis. Next, we overview the development of small molecules and biomolecules that target FZD7. Finally, we discuss challenges and possibilities in developing FZD7-selective antagonists.
Collapse
Affiliation(s)
- Yonika Larasati
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia.
| |
Collapse
|
130
|
Yang Y, Wang Y, Jia H, Li B, Xing D, Li JJ. MicroRNA-1 Modulates Chondrocyte Phenotype by Regulating FZD7 of Wnt/ β-Catenin Signaling Pathway. Cartilage 2021; 13:1019S-1029S. [PMID: 33215510 PMCID: PMC8804847 DOI: 10.1177/1947603520973255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is an incurable joint disease characterized by pronounced pain. MicroRNAs constitute epigenetic mechanisms that may affect OA progression by contributing to changes in chondrocyte phenotype. This study investigates for the first time whether there is a link between miRNA-1 (miR-1) and OA pathogenesis, and the molecular mechanisms involved. DESIGN OA-associated gene expression, including MMP-13, ADAMTS5, and COL2A1 was compared in chondrocytes from non-OA and OA cartilage, and in SW1353 cells over- and underexpressing miR-1. Bioinformatics and luciferase reporter assay were conducted to confirm whether FZD7 was a target of miR-1. The effects of miR-1 on FZD7 expression and downstream Wnt/β-catenin signalling were investigated. RESULTS Non-OA and OA chondrocytes differed significantly in the expression of miR-1 and OA-associated genes. MiR-1 over- and underexpression in SW1353 cells, respectively, reduced and enhanced gene expression associated with cartilage catabolism. FZD7, which has an important role in the Wnt/β-catenin signaling pathway, was shown to be a potential target of miR-1. MiR-1 binding to FZD7 increased the levels of phosphorylated (inactivated) β-catenin, thereby preventing downstream β-catenin signaling. CONCLUSIONS Inhibition of Wnt/β-catenin signaling by miR-1 in chondrocytes may attenuate the expression of genes that regulate the activity of catabolic enzymes. This finding may be useful for future investigations of molecular targets for OA treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopaedics, Tianjin
Hospital, Tianjin, China
| | - Yawei Wang
- Department of Electromyography, Tianjin
Hospital, Tianjin, China
| | - Haobo Jia
- Department of Orthopaedics, Tianjin
Hospital, Tianjin, China
| | - Bing Li
- Department of Orthopaedics, Tianjin
Hospital, Tianjin, China
| | - Dan Xing
- Arthritis Clinic & Research Center,
Peking University People’s Hospital, Peking University, Beijing, China
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine
and Health, University of Sydney, St. Leonards, New South Wales, Australia,School of Biomedical Engineering,
Faculty of Engineering and IT, University of Technology Sydney, Ultimo, New South
Wales, Australia,Jiao Jiao Li, School of Biomedical
Engineering, Faculty of Engineering and IT, University of Technology Sydney,
Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
131
|
Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13235993. [PMID: 34885103 PMCID: PMC8657426 DOI: 10.3390/cancers13235993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy. The cause of chemoresistance is still largely unknown and may be due to epigenetics modifications that are driving HGSOC metastasis and treatment resistance. The identification of epigenetic changes in chemoresistant HGSOC enables the development of epigenetic modulating drugs that may be used to improve outcomes. Several epigenetic modulating drugs have displayed promise as drug targets for HGSOC, such as demethylating agents azacitidine and decitabine. Others, such as histone deacetylase inhibitors and miRNA-targeting therapies, demonstrated promising preclinical results but resulted in off-target side effects in clinical trials. This article reviews the epigenetic modifications identified in chemoresistant HGSOC and clinical trials utilizing epigenetic therapies in HGSOC.
Collapse
|
132
|
Antitumor Effect of Sclerostin against Osteosarcoma. Cancers (Basel) 2021; 13:cancers13236015. [PMID: 34885123 PMCID: PMC8656567 DOI: 10.3390/cancers13236015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Osteosarcoma is highly variable and heterogeneous, which is one of the reasons for its resistance to treatment. Because osteosarcoma is defined by abnormal bone formation, we hypothesize its suppression could lead to effective treatment for all types of osteosarcomas. Sclerostin is secreted by osteocytes and inhibits the canonical pathway by binding to LRP5/6, thereby suppressing bone formation. The resulting suppression of bone formation leads to bone loss and osteoporosis. Here, we investigated the antitumor effect of sclerostin against osteosarcoma and found that sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Abstract Various risk factors and causative genes of osteosarcoma have been reported in the literature; however, its etiology remains largely unknown. Bone formation is a shared phenomenon in all types of osteosarcomas, and sclerostin is an extracellular soluble factor secreted by osteocytes that prevents bone formation by inhibiting the Wnt signaling pathway. We aimed to investigate the antitumor effect of sclerostin against osteosarcoma. Osteosarcoma model mice were prepared by transplantation into the dorsal region of C3H/He and BALB/c-nu/nu mice using osteosarcoma cell lines LM8 (murine) and 143B (human), respectively. Cell proliferations were evaluated by using alamarBlue and scratch assays. The migratory ability of the cells was evaluated using a migration assay. Sclerostin was injected intraperitoneally for 7 days to examine the suppression of tumor size and extension of survival. The administration of sclerostin to osteosarcoma cells significantly inhibited the growth and migratory ability of osteosarcoma cells. Kaplan–Meier curves and survival data demonstrated that sclerostin significantly inhibited tumor growth and improved survival. Sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Osteosarcoma model mice inhibited tumor growth and prolonged survival periods by the administration of sclerostin. The effect of existing anticancer drugs such as doxorubicin should be investigated for future clinical applications.
Collapse
|
133
|
Kowalski-Jahn M, Schihada H, Turku A, Huber T, Sakmar TP, Schulte G. Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. SCIENCE ADVANCES 2021; 7:eabj7917. [PMID: 34757789 PMCID: PMC8580317 DOI: 10.1126/sciadv.abj7917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Frizzleds (FZD1–10) are G protein–coupled receptors containing an extracellular cysteine-rich domain (CRD) binding Wingless/Int-1 lipoglycoproteins (WNTs). Despite the role of WNT/FZD signaling in health and disease, our understanding of how WNT binding is translated into receptor activation and transmembrane signaling remains limited. Current hypotheses dispute the roles for conformational dynamics. To clarify how WNT binding to FZD translates into receptor dynamics, we devised conformational FZD-CRD biosensors based on bioluminescence resonance energy transfer (BRET). Using FZD with N-terminal nanoluciferase (Nluc) and fluorescently labeled unnatural amino acids in the linker domain and extracellular loop 3, we show that WNT-3A and WNT-5A induce similar CRD conformational rearrangements despite promoting distinct signaling pathways and that CRD dynamics are not required for WNT/β-catenin signaling. Thus, these FZD-CRD biosensors provide insights into binding, activation, and signaling processes in FZDs. The sensor design is broadly applicable to explore ligand-induced dynamics also in other membrane receptors.
Collapse
Affiliation(s)
- Maria Kowalski-Jahn
- Karolinska Institutet, Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Biomedicum 6D, S-17165 Stockholm, Sweden
| | - Hannes Schihada
- Karolinska Institutet, Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Biomedicum 6D, S-17165 Stockholm, Sweden
| | - Ainoleena Turku
- Karolinska Institutet, Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Biomedicum 6D, S-17165 Stockholm, Sweden
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, S-17164 Stockholm, Sweden
| | - Gunnar Schulte
- Karolinska Institutet, Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Biomedicum 6D, S-17165 Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
134
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
135
|
A highly predictive autoantibody-based biomarker panel for prognosis in early-stage NSCLC with potential therapeutic implications. Br J Cancer 2021; 126:238-246. [PMID: 34728792 PMCID: PMC8770460 DOI: 10.1038/s41416-021-01572-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.
Collapse
|
136
|
Sharma A, Mir R, Galande S. Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer. Front Genet 2021; 12:681053. [PMID: 34552611 PMCID: PMC8450413 DOI: 10.3389/fgene.2021.681053] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past four decades have elucidated the role of Wnt/β-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/β-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rafeeq Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
137
|
A novel peptidomimetic therapeutic for selective suppression of lung cancer stem cells over non-stem cancer cells. Bioorg Chem 2021; 116:105340. [PMID: 34530236 DOI: 10.1016/j.bioorg.2021.105340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Cancers are highly heterogeneous and typically contain a small subset of drug-resisting cells called tumor initiating cells or cancer stem cells (CSCs). CSCs can self-renew, divide asymmetrically, and often cause tumor invasion and metastasis. Therefore, treatments specifically targeting CSCs are critical to improve patient survival. Recently, we identified a highly specific peptidomimetic (peptoid - PCS2) that selectively binds to the CSC subpopulation of lung cancer over the remaining cancer cells (non-CSCs). Subsequently, we identified plectin as the target of PCS2. Plectin is an intracellular structural protein, which is involved in tumor invasion and metastasis when it appears on cell surface. While PCS2 monomer did not display any anti-cancer activity, we designed a series of homo-dimeric versions of PCS2, and identified PCS2D1.2 optimized homo-dimer that displayed highly specific cytotoxicity towards CSCs over non-CSCs. PCS2D1.2 effectively blocked the in vitro colony formation and cell migration, hallmarks of CSCs. Furthermore, PCS2D1.2 reduced the in vivo tumor formation. In both in vitro and in vivo studies, PCS2D1.2 effectively reduced plectin expression and/or plectin-rich CSCs, but had no effect on non-CSCs. Therefore, PCS2D1.2 has the potential to be developed as a highly CSC specific drug candidate, which can be used in combination with current anti-cancer drugs.
Collapse
|
138
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
139
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
140
|
Wang Z, Zhao T, Zhang S, Wang J, Chen Y, Zhao H, Yang Y, Shi S, Chen Q, Liu K. The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy. Biomark Res 2021; 9:68. [PMID: 34488905 PMCID: PMC8422786 DOI: 10.1186/s40364-021-00323-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling was initially recognized to be vital for tissue development and homeostasis maintenance. Further studies revealed that this pathway is also important for tumorigenesis and progression. Abnormal expression of signaling components through gene mutation or epigenetic regulation is closely associated with tumor progression and poor prognosis in several tissues. Additionally, Wnt signaling also influences the tumor microenvironment and immune response. Some strategies and drugs have been proposed to target this pathway, such as blocking receptors/ligands, targeting intracellular molecules, beta-catenin/TCF4 complex and its downstream target genes, or tumor microenvironment and immune response. Here we discuss the roles of these components in Wnt signaling pathway in tumorigenesis and cancer progression, the underlying mechanisms that is responsible for the activation of Wnt signaling, and a series of drugs targeting the Wnt pathway provide multiple therapeutic values. Although some of these drugs exhibit exciting anti-cancer effect, clinical trials and systematic evaluation should be strictly performed along with multiple-omics technology.
Collapse
Affiliation(s)
- Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Shihui Zhang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH164UU, UK
| | - Junkai Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yaxin Yang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| |
Collapse
|
141
|
Teixido C, Castillo P, Martinez-Vila C, Arance A, Alos L. Molecular Markers and Targets in Melanoma. Cells 2021; 10:2320. [PMID: 34571969 PMCID: PMC8469294 DOI: 10.3390/cells10092320] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Melanoma develops as a result of several genetic alterations, with UV radiation often acting as a mutagenic risk factor. Deep knowledge of the molecular signaling pathways of different types of melanoma allows better characterization and provides tools for the development of therapies based on the intervention of signals promoted by these cascades. The latest World Health Organization classification acknowledged the specific genetic drivers leading to melanoma and classifies melanocytic lesions into nine distinct categories according to the associate cumulative sun damage (CSD), which correlates with the molecular alterations of tumors. The largest groups are melanomas associated with low-CSD or superficial spreading melanomas, characterized by frequent presentation of the BRAFV600 mutation. High-CSD melanomas include lentigo maligna type and desmoplastic melanomas, which often have a high mutation burden and can harbor NRAS, BRAFnon-V600E, or NF1 mutations. Non-CSD-associated melanomas encompass acral and mucosal melanomas that usually do not show BRAF, NRAS, or NF1 mutations (triple wild-type), but in a subset may have KIT or SF3B1 mutations. To improve survival, these driver alterations can be treated with targeted therapy achieving significant antitumor activity. In recent years, relevant improvement in the prognosis and survival of patients with melanoma has been achieved, since the introduction of BRAF/MEK tyrosine kinase inhibitors and immune checkpoint inhibitors. In this review, we describe the current knowledge of molecular pathways and discuss current and potential therapeutic targets in melanoma, focusing on their clinical relevance of development.
Collapse
Affiliation(s)
- Cristina Teixido
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Paola Castillo
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| | - Clara Martinez-Vila
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1–3, 08243 Manresa, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain;
| | - Llucia Alos
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain; (P.C.); (L.A.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain;
| |
Collapse
|
142
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
143
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
144
|
Wang Z, Zhang M, Quereda V, Frydman SM, Ming Q, Luca VC, Duckett DR, Ji H. Discovery of an Orally Bioavailable Small-Molecule Inhibitor for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:12109-12131. [PMID: 34382808 PMCID: PMC8817233 DOI: 10.1021/acs.jmedchem.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is strongly associated with many diseases including cancer invasion and metastasis. Small-molecule targeting of the central signaling node of this pathway, β-catenin, is a biologically rational approach to abolish hyperactivation of β-catenin signaling but has been demonstrated to be a difficult task. Herein, we report a drug-like small molecule, ZW4864, that binds with β-catenin and selectively disrupts the protein-protein interaction (PPI) between B-cell lymphoma 9 (BCL9) and β-catenin while sparing the β-catenin/E-cadherin PPI. ZW4864 dose-dependently suppresses β-catenin signaling activation, downregulates oncogenic β-catenin target genes, and abrogates invasiveness of β-catenin-dependent cancer cells. More importantly, ZW4864 shows good pharmacokinetic properties and effectively suppresses β-catenin target gene expression in the patient-derived xenograft mouse model. This study offers a selective chemical probe to explore β-catenin-related biology and a drug-like small-molecule β-catenin/BCL9 disruptor for future drug development.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Victor Quereda
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Sylvia M Frydman
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Qianqian Ming
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Vincent C Luca
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Derek R Duckett
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| |
Collapse
|
145
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
146
|
WNT Signaling as a Therapeutic Target for Glioblastoma. Int J Mol Sci 2021; 22:ijms22168428. [PMID: 34445128 PMCID: PMC8395085 DOI: 10.3390/ijms22168428] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT (Wingless/Integrated) signaling pathway is implicated in various stages of glioblastoma, which is an aggressive brain tumor for which therapeutic options are limited. WNT has been recognized as a hallmark of therapeutic challenge due to its context-dependent role and critical function in healthy tissue homeostasis. In this review, we deeply scrutinize the WNT signaling pathway and its involvement in the genesis of glioblastoma as well as its acquired therapy resistance. We also provide an analysis of the WNT pathway in terms of its therapeutic importance in addition to an overview of the current targeted therapies under clinical investigation.
Collapse
|
147
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
148
|
Abreu de Oliveira WA, Moens S, El Laithy Y, van der Veer BK, Athanasouli P, Cortesi EE, Baietti MF, Koh KP, Ventura JJ, Amant F, Annibali D, Lluis F. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer. Front Oncol 2021; 11:705384. [PMID: 34367990 PMCID: PMC8340846 DOI: 10.3389/fonc.2021.705384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/β-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers' expression, formation of tumorspheres and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.
Collapse
Affiliation(s)
| | - Stijn Moens
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium
| | - Youssef El Laithy
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Bernard K van der Veer
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Paraskevi Athanasouli
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Kian Peng Koh
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, Netherlands
| | - Daniela Annibali
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
149
|
Li Z, Zhang M, Teuscher KB, Ji H. Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:11195-11218. [PMID: 34270257 DOI: 10.1021/acs.jmedchem.1c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| |
Collapse
|
150
|
Carrano A, Juarez JJ, Incontri D, Ibarra A, Cazares HG. Sex-Specific Differences in Glioblastoma. Cells 2021; 10:cells10071783. [PMID: 34359952 PMCID: PMC8303471 DOI: 10.3390/cells10071783] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Juan Jose Juarez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Diego Incontri
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Hugo Guerrero Cazares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence:
| |
Collapse
|