101
|
Krook-Magnuson E, Gelinas JN, Soltesz I, Buzsáki G. Neuroelectronics and Biooptics: Closed-Loop Technologies in Neurological Disorders. JAMA Neurol 2015; 72:823-9. [PMID: 25961887 DOI: 10.1001/jamaneurol.2015.0608] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Brain-implanted devices are no longer a futuristic idea. Traditionally, therapies for most neurological disorders are adjusted based on changes in clinical symptoms and diagnostic measures observed over time. These therapies are commonly pharmacological or surgical, requiring continuous or irreversible treatment regimens that cannot respond rapidly to fluctuations of symptoms or isolated episodes of dysfunction. In contrast, closed-loop systems provide intervention only when needed by detecting abnormal neurological signals and modulating them with instantaneous feedback. Closed-loop systems have been applied to several neurological conditions (most notably epilepsy and movement disorders), but widespread use is limited by conceptual and technical challenges. Herein, we discuss how advances in experimental closed-loop systems hold promise for improved clinical benefit in patients with neurological disorders.
Collapse
Affiliation(s)
| | - Jennifer N Gelinas
- New York University Neuroscience Institute, Langone Medical Center, New York3New York University Center for Neural Sciences, New York
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine
| | - György Buzsáki
- New York University Neuroscience Institute, Langone Medical Center, New York3New York University Center for Neural Sciences, New York
| |
Collapse
|
102
|
Riedel P, Ragert P, Schelinski S, Kiebel SJ, von Kriegstein K. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition. Cortex 2015; 68:86-99. [DOI: 10.1016/j.cortex.2014.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
|
103
|
Kotilainen T, Lehto SM, Wikgren J. Effect of transcranial direct current stimulation on semantic discrimination eyeblink conditioning. Behav Brain Res 2015; 292:142-6. [PMID: 26099815 DOI: 10.1016/j.bbr.2015.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a neuromodulation method that has been used to modulate learning. We tested whether anodal tDCS targeted at the left DLPFC could enhance learning in a semantic variant of discrimination eyeblink conditioning, i.e., whether the stimulation would have a specific effect on the discrimination ability, rate of acquisition, amplitude of the conditioned response (CR), or all of these. METHODS Immediately prior to the eyeblink conditioning, the participants received either active stimulation of 1 mA for 10 min or sham stimulation. The anode was placed over F3 and the cathode over the right supraorbital area. The conditioned stimuli (CSs) were common Finnish male and female names that were presented as text. Male names were reinforced with an unconditioned stimulus. RESULTS Stimulation had no effect on the learning rate or discrimination ratio, but the stimulated participants showed steeper CR acquisition in the initial phase of the experiment. Nevertheless, the participants in the stimulation group showed greater eyeblink CRs to the non-reinforced CS. DISCUSSION Contrary to our initial hypothesis, the magnitude and rate of CRs to non-reinforced CS was higher in the active stimulation group than in the sham stimulation group, which may suggest deterioration of discrimination and contingency awareness in the used task. Our observations may suggest a lack of effect on the participants' ability to discriminate between two different types of CS. Furthermore, cathodal modulation of the right prefrontal cortex may explain the change in magnitude and rate of CRs to non-reinforced CS.
Collapse
Affiliation(s)
- Tuukka Kotilainen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Jan Wikgren
- Centre for Interdisciplinary Brain Research, Jyvaskyla, Finland; Department of Psychology, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland.
| |
Collapse
|
104
|
|
105
|
Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol 2015; 113:1334-41. [PMID: 25505103 PMCID: PMC4346723 DOI: 10.1152/jn.00208.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/03/2014] [Indexed: 12/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is emerging as a versatile tool to affect brain function. While the acute neurophysiological effects of stimulation are well understood, little is know about the long-term effects. One hypothesis is that stimulation modulates ongoing neural activity, which then translates into lasting effects via physiological plasticity. Here we used carbachol-induced gamma oscillations in hippocampal rat slices to establish whether prolonged constant current stimulation has a lasting effect on endogenous neural activity. During 10 min of stimulation, the power and frequency of gamma oscillations, as well as multiunit activity, were modulated in a polarity specific manner. Remarkably, the effects on power and multiunit activity persisted for more than 10 min after stimulation terminated. Using a computational model we propose that altered synaptic efficacy in excitatory and inhibitory pathways could be the source of these lasting effects. Future experimental studies using this novel in vitro preparation may be able to confirm or refute the proposed hypothesis.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| |
Collapse
|
106
|
Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 2015; 18:pyu047. [PMID: 25522391 PMCID: PMC4368894 DOI: 10.1093/ijnp/pyu047] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system.
Collapse
Affiliation(s)
| | - Francesca Cicchetti
- Centre Hospitalier Universitaire de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti).
| |
Collapse
|
107
|
Cohen Kadosh R. Modulating and enhancing cognition using brain stimulation: Science and fiction. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2014.996569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
108
|
Understanding the behavioural consequences of noninvasive brain stimulation. Trends Cogn Sci 2015; 19:13-20. [DOI: 10.1016/j.tics.2014.10.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/19/2014] [Accepted: 10/29/2014] [Indexed: 01/05/2023]
|
109
|
Bestmann S. Computational neurostimulation in basic and translational research. PROGRESS IN BRAIN RESEARCH 2015; 222:xv-xx. [PMID: 26541385 DOI: 10.1016/s0079-6123(15)00159-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
110
|
Poepperling JO, Hannon T, Erbis M. Electroacupuncture and Transcranial Direct Current Stimulation: Simultaneous Treatment for Patients with Chronic Poststroke Symptoms. Med Acupunct 2014. [DOI: 10.1089/acu.2014.1070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - Timothy Hannon
- Clinical Exercise Physiologist, Northeastern Rehabilitation Associates, Scranton, PA
| | - Mary Erbis
- Northeastern Rehabilitation Associates, Scranton, PA
| |
Collapse
|
111
|
Sebastião AM, Ribeiro JA. Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Res 2014; 1621:102-13. [PMID: 25446444 DOI: 10.1016/j.brainres.2014.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023]
Abstract
Synaptic plasticity mechanisms, i.e. the sequence of events that underlies persistent changes in synaptic strength as a consequence of transient alteration in neuronal firing, are greatly influenced by the 'chemical atmosphere' of the synapses, that is to say by the presence of molecules at the synaptic cleft able to fine-tune the activity of other molecules more directly related to plasticity. One of those fine tuners is adenosine, known for a long time as an ubiquitous neuromodulator and metamodulator and recognized early as influencing synaptic plasticity. In this review we will refer to the mechanisms that adenosine can use to affect plasticity, emphasizing aspects of the neurobiology of adenosine relevant to its ability to control synaptic functioning. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
112
|
de Xivry JJO, Shadmehr R. Electrifying the motor engram: effects of tDCS on motor learning and control. Exp Brain Res 2014; 232:3379-95. [PMID: 25200178 PMCID: PMC4199902 DOI: 10.1007/s00221-014-4087-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Abstract
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
113
|
Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U. Non-invasive cerebellar stimulation--a consensus paper. THE CEREBELLUM 2014; 13:121-38. [PMID: 23943521 DOI: 10.1007/s12311-013-0514-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.
Collapse
Affiliation(s)
- G Grimaldi
- Unité d'Etude du Mouvement, Hôpital Erasme-ULB, 808 Route de Lennik, 1070, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci 2014; 8:159. [PMID: 25237299 PMCID: PMC4154388 DOI: 10.3389/fnsys.2014.00159] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023] Open
Abstract
There is a growing demand for new brain-enhancing technologies to improve mental performance, both for patients with cognitive disorders and for healthy individuals. Transcranial direct current stimulation (tDCS) is a non-invasive, painless, and easy to use neuromodulatory technique that can improve performance on a variety of cognitive tasks in humans despite its exact mode of action remains unclear. We have conducted a mini-review of the literature to first briefly summarize the growing amount of data from clinical trials assessing the efficacy of tDCS, focusing exclusively on learning and memory performances in healthy human subjects and in patients with depression, schizophrenia, and other neurological disorders. We then discuss these findings in the context of the strikingly few studies resulting from animal research. Finally, we highlight future directions and limitations in this field and emphasize the need to develop translational studies to better understand how tDCS improves memory, a necessary condition before it can be used as a therapeutic tool.
Collapse
Affiliation(s)
- Djamila Bennabi
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Solène Pedron
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Emmanuel Haffen
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France ; INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology, University Hospital of Besançon Besançon, France
| | - Julie Monnin
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France ; INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology, University Hospital of Besançon Besançon, France
| | - Yvan Peterschmitt
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Vincent Van Waes
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| |
Collapse
|
115
|
Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul 2014; 7:525-31. [PMID: 24776785 DOI: 10.1016/j.brs.2014.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Classical conditioning of the eyeblink reflex is a simple form of motor learning which depends on the integrity of the cerebellum. Acquisition of conditioned eyeblink responses is markedly reduced in patients with cerebellar disorders. Noninvasive transcranial direct current stimulation (tDCS) has been reported to modify the excitability of the cerebellar cortex. OBJECTIVE The aim of the study was to assess whether acquisition of conditioned eyeblink responses (CR) is altered by cerebellar tDCS. METHODS A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 30 healthy subjects (18 female, 12 male, mean age 23.4 ± 1.9 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. tDCS (2 mA intensity, ramp like onset) was applied over the right cerebellar hemisphere ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 10) using anodal, cathodal or sham stimulation. The investigator as well as the participants was blinded to the stimulation modality. RESULTS CR acquisition was significantly enhanced by anodal tDCS (mean total CR incidence 73.4 ± 25.2%) and significantly reduced by cathodal stimulation (12.6 ± 17.2%) compared to sham stimulation (43.8 ± 24.1%). During anodal tDCS CR onset occurred significantly earlier, that is mean onset of responses was shifted closer to CS onset. CONCLUSION Acquisition and timing of conditioned eyeblink responses is modified by cerebellar tDCS in a polarity dependent manner.
Collapse
Affiliation(s)
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Germany.
| |
Collapse
|
116
|
Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul 2014; 7:508-15. [PMID: 24698973 DOI: 10.1016/j.brs.2014.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The importance of slow-wave sleep (SWS), hallmarked by the occurrence of sleep slow oscillations (SO), for the consolidation of hippocampus-dependent memories has been shown in numerous studies. Previously, the application of transcranial direct current stimulation, oscillating at the frequency of endogenous slow oscillations, during SWS enhanced memory consolidation for a hippocampus dependent task in humans suggesting a causal role of slowly oscillating electric fields for sleep dependent memory consolidation. OBJECTIVE Here, we aimed to replicate and extend these findings to a rodent model. METHODS Slow oscillatory direct transcranial current stimulation (SO-tDCS) was applied over the frontal cortex of rats during non-rapid eye movement (NREM) sleep and its effects on memory consolidation in the one-trial object-place recognition task were examined. A retention interval of 24 h was used to investigate the effects of SO-tDCS on long-term memory. RESULTS Animals' preference for the displaced object was significantly greater than chance only when animals received SO-tDCS. EEG spectral power indicated a trend toward a transient enhancement of endogenous SO activity in the SO-tDCS condition. CONCLUSIONS These results support the hypothesis that slowly oscillating electric fields causal affect sleep dependent memory consolidation, and demonstrate that oscillatory tDCS can be a valuable tool to investigate the function of endogenous cortical network activity.
Collapse
|
117
|
Iuculano T, Cohen Kadosh R. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia. Front Hum Neurosci 2014; 8:38. [PMID: 24570659 PMCID: PMC3916771 DOI: 10.3389/fnhum.2014.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/17/2014] [Indexed: 01/29/2023] Open
Abstract
Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.
Collapse
Affiliation(s)
- Teresa Iuculano
- Department of Experimental Psychology, University of Oxford Oxford, UK ; Stanford Cognitive and Systems Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Palo Alto, CA, USA ; Institute of Cognitive Neuroscience, University College London London, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| |
Collapse
|
118
|
Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci 2014; 8:9. [PMID: 24523678 PMCID: PMC3906576 DOI: 10.3389/fnsys.2014.00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 11/13/2022] Open
Abstract
Cerebellar ataxias represent a very heterogeneous group of disabling disorders for which we lack effective symptomatic therapies in most cases. There is currently an intense interest in the use of non-invasive transcranial DC stimulation (tDCS) to modulate the activity of the cerebellum in ataxic disorders. We performed a detailed laboratory assessment of the effects of transcranial cerebello-cerebral DC stimulation (tCCDCS, including a sham procedure) on upper limb tremor and dysmetria in 2 patients presenting a dominant spinocerebellar ataxia (SCA) type 2, one of the most common SCAs encountered during practice. Both patients had a very similar triplet expansion size in the ATXN2 gene (respectively, 39 and 40 triplets). tCCDCS reduced both postural tremor and action tremor, as confirmed by spectral analysis. Quadratical PSD (power spectral density) of postural tremor dropped to 38.63 and 41.42% of baseline values in patient 1 and 2, respectively. The integral of the subband 4-20 Hz dropped to 46.9 and 62.3% of baseline values, respectively. Remarkably, tCCDCS canceled hypermetria and reduced dramatically the onset latency of the antagonist EMG activity associated with fast goal-directed movements toward 3 aimed targets (0.2, 0.3, and 0.4 rad). Following tCCDCS, the latency dropped from 108-98 to 63-57 ms in patient 1, and from 74-87 to 41-46 ms in patient 2 (mean control values ± SD: 36 ± 8 to 45 ± 11 ms), corresponding to a major drop of z scores for the 2 patients from 7.12 ± 0.69 to 1.28 ± 1.27 (sham procedure: 6.79 ± 0.71). This is the first demonstration that tCCDCS improves upper limb tremor and hypermetria in SCA type 2. In particular, this is the first report of a favorable effect on the onset latency of the antagonist EMG activity, a neurophysiological marker of the defect in programming of timing of motor commands. Our results indicate that tCCDCS should be considered in the symptomatic management of upper limb motor deficits in cerebellar ataxias. Future studies addressing a tDCS-based neuromodulation to improve motor control of upper limbs are required (a) in a large group of cerebellar disorders, and (b) in different subgroups of ataxic patients. The anatomical location of the cerebellum below the skull is particularly well suited for such studies.
Collapse
Affiliation(s)
| | - Nordeyn Oulad Ben Taib
- Unité d'Etude du Mouvement, ULB Neurologie Bruxelles, Belgium ; Service de Neurochirurgie, CHU Saint-Pierre Bruxelles, Belgium
| | - Mario Manto
- Unité d'Etude du Mouvement, ULB Neurologie Bruxelles, Belgium ; Fonds de la Recherche Scientifique-ULB Bruxelles, Belgium
| | | |
Collapse
|
119
|
Binder S, Rawohl J, Born J, Marshall L. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci 2014; 7:220. [PMID: 24409131 PMCID: PMC3884143 DOI: 10.3389/fnbeh.2013.00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023] Open
Abstract
Slow wave sleep, hallmarked by the occurrence of slow oscillations (SO), plays an important role for the consolidation of hippocampus-dependent memories. Transcranial stimulation by weak electric currents oscillating at the endogenous SO frequency (SO-tDCS) during post-learning sleep was previously shown by us to boost SO activity and improve the consolidation of hippocampus-dependent memory in human subjects. Here, we aimed at replicating and extending these results to a rodent model. Rats were trained for 12 days at the beginning of their inactive phase in the reference memory version of the radial arm maze. In a between subjects design, animals received SO-tDCS over prefrontal cortex (PFC) or sham stimulation within a time frame of 1 h during subsequent non-rapid eye movement (NREM) sleep. Applied over multiple daily sessions SO-tDCS impacted cortical network activity as measured by EEG and behavior: at the EEG level, SO-tDCS enhanced post-stimulation upper delta (2–4 Hz) activity whereby the first stimulations of each day were preferentially affected. Furthermore, commencing on day 8, SO-tDCS acutely decreased theta activity indicating long-term effects on cortical networks. Behaviorally, working memory for baited maze arms was enhanced up to day 4, indicating enhanced consolidation of task-inherent rules, while reference memory errors did not differ between groups. Taken together, we could show here for the first time an effect of SO-tDCS during NREM sleep on cognitive functions and on cortical activity in a rodent model.
Collapse
Affiliation(s)
- Sonja Binder
- Department of Neuroendocrinology, University of Lübeck Lübeck, Germany
| | - Julia Rawohl
- Department of Neuroendocrinology, University of Lübeck Lübeck, Germany
| | - Jan Born
- Department of Neuroendocrinology, University of Lübeck Lübeck, Germany ; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Lisa Marshall
- Department of Neuroendocrinology, University of Lübeck Lübeck, Germany ; Graduate School for Computing in Medicine and Life Sciences, University of Lübeck Lübeck, Germany
| |
Collapse
|
120
|
Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Soria-Frisch A, Grau C, Dunne S, Miranda PC. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 2014; 21:333-45. [PMID: 22949089 DOI: 10.1109/tnsre.2012.2200046] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we provide a broad overview of models and technologies pertaining to transcranial current brain stimulation (tCS), a family of related noninvasive techniques including direct current (tDCS), alternating current (tACS), and random noise current stimulation (tRNS). These techniques are based on the delivery of weak currents through the scalp (with electrode current intensity to area ratios of about 0.3-5 A/m2) at low frequencies (typically < 1 kHz) resulting in weak electric fields in the brain (with amplitudes of about 0.2-2 V/m). Here we review the biophysics and simulation of noninvasive, current-controlled generation of electric fields in the human brain and the models for the interaction of these electric fields with neurons, including a survey of in vitro and in vivo related studies. Finally, we outline directions for future fundamental and technological research.
Collapse
Affiliation(s)
- Giulio Ruffini
- Starlab Neuroscience Research, Starlab Barcelona, 08022 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
122
|
Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 2013; 7:687. [PMID: 24167483 PMCID: PMC3805939 DOI: 10.3389/fnhum.2013.00687] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS) with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (∼1 Hz) and gamma oscillations (∼30 Hz). We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of The City University of New York New York, USA
| | | | | | | |
Collapse
|
123
|
de Berker AO, Bikson M, Bestmann S. Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Front Hum Neurosci 2013; 7:613. [PMID: 24109445 PMCID: PMC3790257 DOI: 10.3389/fnhum.2013.00613] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 11/13/2022] Open
Abstract
The transcranial application of weak currents to the human brain has enjoyed a decade of widespread use, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with transcranial direct current stimulation (tDCS) is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique's use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modeling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behavior can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.
Collapse
Affiliation(s)
- Archy O de Berker
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London London, UK
| | | | | |
Collapse
|
124
|
Rushmore RJ, DeSimone C, Valero-Cabré A. Multiple sessions of transcranial direct current stimulation to the intact hemisphere improves visual function after unilateral ablation of visual cortex. Eur J Neurosci 2013; 38:3799-807. [PMID: 24118563 DOI: 10.1111/ejn.12373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022]
Abstract
Damage to cerebral systems is frequently followed by the emergence of compensatory mechanisms, which serve to reduce the effects of brain damage and allow recovery of function. Intrinsic recovery, however, is rarely complete. Non-invasive brain stimulation technologies have the potential to actively shape neural circuits and enhance recovery from brain damage. In this study, a stable deficit for detecting and orienting to visual stimuli presented in the contralesional visual hemifield was generated by producing unilateral brain damage of the right posterior parietal and contiguous visual cortical areas. A long regimen of inhibitory non-invasive transcranial direct-current stimulation (cathodal tDCS, 2 mA, 20 min) was applied to the contralateral (intact) posterior parietal cortex over 14 weeks (total of 70 sessions, one per day, 5 days per week) and behavioral outcomes were periodically assessed. In three out of four stimulated cats, lasting recovery of visuospatial function was observed. Recovery started after 2-3 weeks of stimulation, and recovered targets were located first in the periphery, and moved to more central visual field locations with the accrual of stimulation sessions. Recovery for moving tasks followed a biphasic pattern before reaching plateau levels. Recovery did not occur for more difficult visual tasks. These findings highlight the ability of multiple sessions of transcranial direct-current stimulation to produce recovery of visuospatial function after unilateral brain damage.
Collapse
Affiliation(s)
- R J Rushmore
- Laboratory of Cerebral Dynamics, Plasticity, and Rehabilitation, Boston University School of Medicine, 700 Albany Street, W702, Boston, MA, 02118, USA
| | | | | |
Collapse
|
125
|
Krause B, Márquez-Ruiz J, Cohen Kadosh R. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 2013; 7:602. [PMID: 24068995 PMCID: PMC3781319 DOI: 10.3389/fnhum.2013.00602] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool for cognitive enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements. We suggest that part of the mechanism of action of tDCS can be explained by non-invasive modulations of the E/I balance.
Collapse
Affiliation(s)
- Beatrix Krause
- 1Department of Experimental Psychology, University of Oxford Oxford, Oxfordshire, UK
| | | | | |
Collapse
|
126
|
Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods 2013; 219:297-311. [PMID: 23954780 DOI: 10.1016/j.jneumeth.2013.07.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022]
Abstract
Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES.
Collapse
Affiliation(s)
- Berkan Guleyupoglu
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
127
|
Faraji J, Gomez-Palacio-Schjetnan A, Luczak A, Metz GA. Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res 2013; 253:78-89. [PMID: 23871611 DOI: 10.1016/j.bbr.2013.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 02/01/2023]
Abstract
It is thought that a close dialogue between the primary motor (M1) and somatosensory (S1) cortices is necessary for skilled motor learning. The extent of the relative S1 contribution in producing skilled reaching movements, however, is still unclear. Here we used anodal transcranial direct current stimulation (tDCS), which is able to alter polarity-specific excitability in the S1, to facilitate skilled movement in intact behaving rats. We hypothesized that the critical role of S1 in reaching performance can be enhanced by bilateral tDCS. Pretrained rats were assigned to control or stimulation conditions: (1) UnAno: the unilateral application of an anodal current to the side contralateral to the paw preferred for reaching; (2) BiAno1: bilateral anodal current; (3) BiAno2: a bilateral anodal current with additional 30ms of 65μA pulses every 5s. Rats received tDCS (65μA; 10min/rat) to the S1 during skilled reach training for 20 days (online-effect phase). After-effect assessment occurred for the next ten days in the absence of electrical stimulation. Quantitative and qualitative analyses of online-effects of tDCS showed that UnAno and BiAno1 somatosensory stimulation significantly improve skilled reaching performance. Bilateral BiAno1 stimulation was associated with greater qualitative functional improvement than unilateral UnAno stimulation. tDCS-induced improvements were not observed in the after-effects phase. Quantitative cytoarchitectonic analysis revealed that somatosensory tDCS bilaterally increases cortical neural density. The findings emphasize the central role of bilateral somatosensory feedback in skill acquisition through modulation of cortico-motor excitability.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4.
| | | | | | | |
Collapse
|
128
|
Edgley SA, Gandevia SC. Batteries and the brain. J Physiol 2013; 591:3105. [DOI: 10.1113/jphysiol.2013.255604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
129
|
Chib VS, Yun K, Takahashi H, Shimojo S. Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Transl Psychiatry 2013; 3:e268. [PMID: 23756377 PMCID: PMC3693403 DOI: 10.1038/tp.2013.44] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The midbrain lies deep within the brain and has an important role in reward, motivation, movement and the pathophysiology of various neuropsychiatric disorders such as Parkinson's disease, schizophrenia, depression and addiction. To date, the primary means of acting on this region has been with pharmacological interventions or implanted electrodes. Here we introduce a new noninvasive brain stimulation technique that exploits the highly interconnected nature of the midbrain and prefrontal cortex to stimulate deep brain regions. Using transcranial direct current stimulation (tDCS) of the prefrontal cortex, we were able to remotely activate the interconnected midbrain and cause increases in participants' appraisals of facial attractiveness. Participants with more enhanced prefrontal/midbrain connectivity following stimulation exhibited greater increases in attractiveness ratings. These results illustrate that noninvasive direct stimulation of prefrontal cortex can induce neural activity in the distally connected midbrain, which directly effects behavior. Furthermore, these results suggest that this tDCS protocol could provide a promising approach to modulate midbrain functions that are disrupted in neuropsychiatric disorders.
Collapse
Affiliation(s)
- V S Chib
- Division of Biology, California Institute of Technology, Pasadena, CA 19128, USA.
| | - K Yun
- Division of Biology, California Institute of Technology, Pasadena, CA, USA,Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - H Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - S Shimojo
- Division of Biology, California Institute of Technology, Pasadena, CA, USA,Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
130
|
|
131
|
Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast 2013; 2013:613197. [PMID: 23766921 PMCID: PMC3673402 DOI: 10.1155/2013/613197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
We assessed the effects of anodal/cathodal direct current stimulation (DCS) applied epidurally over the cerebellum. We studied the excitability of both the motor cortex and the anterior horn of the spinal cord in adult rats under continuous anesthesia. We also investigated the effects on the spatial representation of a couple of agonist/antagonist muscles on primary motor cortex. Moreover, we evaluated the effects on the afferent inhibition in a paradigm of conditioned corticomotor responses. Anodal DCS of the cerebellum (1) decreased the excitability of the motor cortex, (2) reduced the excitability of F waves, as shown by the decrease of both mean F/mean M ratios and persistence of F waves, (3) exerted a “smoothing effect” on corticomotor maps, reshaping the representation of muscles on the motor cortex, and (4) enhanced the afferent inhibition of conditioned motor evoked responses. Cathodal DCS of the cerebellum exerted partially reverse effects. DCS of the cerebellum modulates the excitability of both motor cortex and spinal cord at the level of the anterior horn. This is the first demonstration that cerebellar DCS tunes the shape of corticomotor maps. Our findings provide a novel mechanism by which DCS of the cerebellum exerts a remote neuromodulatory effect upon motor cortex.
Collapse
|
132
|
Sehm B, Kipping J, Schäfer A, Villringer A, Ragert P. A Comparison between Uni- and Bilateral tDCS Effects on Functional Connectivity of the Human Motor Cortex. Front Hum Neurosci 2013; 7:183. [PMID: 23675337 PMCID: PMC3646257 DOI: 10.3389/fnhum.2013.00183] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/23/2013] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been shown to induce changes in motor performance and learning. Recent studies indicate that tDCS is capable of modulating widespread neural network properties within the brain. However the temporal evolution of online- and after-effects of tDCS on functional connectivity (FC) within and across the stimulated motor cortices (M1) still remain elusive. In the present study, two different tDCS setups were investigated: (i) unilateral M1 tDCS (anode over right M1, cathode over the contralateral supraorbital region) and (ii) bilateral M1 tDCS (anode over right M1, cathode over left M1). In a randomized single-blinded cross-over design, 12 healthy subjects underwent functional magnetic resonance imaging at rest before, during and after 20 min of either bi-, unilateral, or sham M1 tDCS. Seed-based FC analysis was used to investigate tDCS-induced changes across and within M1. We found that bilateral M1 tDCS induced (a) a decrease in interhemispheric FC during stimulation and (b) an increase in intracortical FC within right M1 after termination of the intervention. While unilateral M1 tDCS also resulted in similar effects during stimulation, no such changes could be observed after termination of tDCS. Our results provide evidence that depending on the electrode montage, tDCS acts upon a modulation of either intracortical and/or interhemispheric processing of M1.
Collapse
Affiliation(s)
- Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic for Cognitive Neurology, University of Leipzig Leipzig, Germany
| | | | | | | | | |
Collapse
|
133
|
Tanaka T, Takano Y, Tanaka S, Hironaka N, Kobayashi K, Hanakawa T, Watanabe K, Honda M. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci 2013; 7:6. [PMID: 23596399 PMCID: PMC3622879 DOI: 10.3389/fnsys.2013.00006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/16/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Transcranial direct-current stimulation (tDCS) is a non-invasive procedure that achieves polarity-dependent modulation of neuronal membrane potentials. It has recently been used as a functional intervention technique for the treatment of psychiatric and neurological diseases; however, its neuronal mechanisms have not been fully investigated in vivo. OBJECTIVE/HYPOTHESIS To investigate whether the application of cathodal or anodal tDCS affects extracellular dopamine and serotonin levels in the rat striatum. METHODS Stimulation and in vivo microdialysis were carried out under urethane anesthesia, and microdialysis probes were slowly inserted into the striatum. After the collection of baseline fractions in the rat striatum, cathodal or anodal tDCS was applied continuously for 10 min with a current intensity of 800 μA from an electrode placed on the skin of the scalp. Dialysis samples were collected every 10 min until at least 400 min after the onset of stimulation. RESULTS Following the application of cathodal, but not anodal, tDCS for 10 min, extracellular dopamine levels increased for more than 400 min in the striatum. There were no significant changes in extracellular serotonin levels. CONCLUSION These findings suggest that tDCS has a direct and/or indirect effect on the dopaminergic system in the rat basal ganglia.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 2013; 591:2563-78. [PMID: 23478132 DOI: 10.1113/jphysiol.2012.247171] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modulate cortical excitability. Although increased/decreased excitability under the anode/cathode electrode is nominally associated with membrane depolarization/hyperpolarization, which cellular compartments (somas, dendrites, axons and their terminals) mediate changes in cortical excitability remains unaddressed. Here we consider the acute effects of DCS on excitatory synaptic efficacy. Using multi-scale computational models and rat cortical brain slices, we show the following. (1) Typical tDCS montages produce predominantly tangential (relative to the cortical surface) direction currents (4-12 times radial direction currents), even directly under electrodes. (2) Radial current flow (parallel to the somatodendritic axis) modulates synaptic efficacy consistent with somatic polarization, with depolarization facilitating synaptic efficacy. (3) Tangential current flow (perpendicular to the somatodendritic axis) modulates synaptic efficacy acutely (during stimulation) in an afferent pathway-specific manner that is consistent with terminal polarization, with hyperpolarization facilitating synaptic efficacy. (4) Maximal polarization during uniform DCS is expected at distal (the branch length is more than three times the membrane length constant) synaptic terminals, independent of and two-three times more susceptible than pyramidal neuron somas. We conclude that during acute DCS the cellular targets responsible for modulation of synaptic efficacy are concurrently somata and axon terminals, with the direction of cortical current flow determining the relative influence.
Collapse
Affiliation(s)
- Asif Rahman
- Department of Biomedical Engineering, The City College of The City University of New York, Convent Avenue at 140th Street, Steinman Hall, 4th Floor, T-454, New York, NY 10031, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Song W, Kerr CC, Lytton WW, Francis JT. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PLoS One 2013; 8:e57453. [PMID: 23472086 PMCID: PMC3589388 DOI: 10.1371/journal.pone.0057453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.
Collapse
Affiliation(s)
- Weiguo Song
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Cliff C. Kerr
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - William W. Lytton
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Neurology, Kings County Hospital, Brooklyn, New York, United States of America
- The Robert Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, Brooklyn, New York, United States of America
| | - Joseph T. Francis
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- The Robert Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, Brooklyn, New York, United States of America
| |
Collapse
|
136
|
Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat 2013; 2013:170256. [PMID: 23533955 PMCID: PMC3600193 DOI: 10.1155/2013/170256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/17/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches.
Collapse
|
137
|
Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol 2013; 9:e1002898. [PMID: 23459152 PMCID: PMC3573006 DOI: 10.1371/journal.pcbi.1002898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO) in the human electro-encephalogram (EEG). A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
138
|
Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastião AM. Adenosine: setting the stage for plasticity. Trends Neurosci 2013; 36:248-57. [PMID: 23332692 DOI: 10.1016/j.tins.2012.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/09/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
It is widely accepted that Hebbian forms of plasticity mediate selective modifications in synaptic strength underlying information encoding in response to experience and circuit formation or refinement throughout development. Several complementary forms of homeostatic plasticity coordinate to keep Hebbian plasticity in check, frequently through the actions of conserved regulatory molecules. Recent evidence suggests that this may be the case for adenosine, which is ubiquitous in the brain and is released by both neurons and glial cells via constitutive and activity-dependent mechanisms. Through A1 and A2A receptor activation, adenosine modulates neuronal homeostasis and tunes the ability of synapses to undergo and/or sustain plasticity. Here, we review how adenosine equilibrates neuronal activity and sets the stage for synaptic plasticity.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
139
|
Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0104-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractTranscranial electrical stimulation (TES) includes methods such as transcranial direct current stimulation, transcranial random noise stimulation, and transcranial alternating current stimulation. These methods provide novel ways of enhancing human cognitive abilities for restorative purposes, or for general cognitive enhancement, by modulating neuronal activity. I discuss here the basic principles behind these methods and provide some illustrations of their efficacy in cognitive enhancement in those with typical and atypical brain function. Next, I outline some future directions for research that are have been largely neglected, such as the issue of individual differences, cognitive side effects, the efficacy of TES for use with healthy elderly populations, children with atypical development, and sports. The results observed thus far with TES as well as its future possibilities have significant implications for both basic and translational neuroscience.
Collapse
|
140
|
Bikson M, Dmochowski J, Rahman A. The "quasi-uniform" assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimul 2012; 6:704-5. [PMID: 23290681 DOI: 10.1016/j.brs.2012.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022] Open
|
141
|
Bikson M, Reato D, Rahman A. Cellular and Network Effects of Transcranial Direct Current Stimulation. TRANSCRANIAL BRAIN STIMULATION 2012. [DOI: 10.1201/b14174-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
142
|
Medeiros LF, de Souza ICC, Vidor LP, de Souza A, Deitos A, Volz MS, Fregni F, Caumo W, Torres ILS. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 2012; 3:110. [PMID: 23293607 PMCID: PMC3531595 DOI: 10.3389/fpsyt.2012.00110] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/04/2012] [Indexed: 12/20/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique that is affordable and easy to operate compared to other neuromodulation techniques. Anodal stimulation increases cortical excitability, while the cathodal stimulation decreases it. Although tDCS is a promising treatment approach for chronic pain as well as for neuropsychiatric diseases and other neurological disorders, several complex neurobiological mechanisms that are not well understood are involved in its effect. The purpose of this systematic review is to summarize the current knowledge regarding the neurobiological mechanisms involved in the effects of tDCS. The initial search resulted in 171 articles. After applying inclusion and exclusion criteria, we screened 32 full-text articles to extract findings about the neurobiology of tDCS effects including investigation of cortical excitability parameters. Overall, these findings show that tDCS involves a cascade of events at the cellular and molecular levels. Moreover, tDCS is associated with glutamatergic, GABAergic, dopaminergic, serotonergic, and cholinergic activity modulation. Though these studies provide important advancements toward the understanding of mechanisms underlying tDCS effects, further studies are needed to integrate these mechanisms as to optimize clinical development of tDCS.
Collapse
Affiliation(s)
- Liciane Fernandes Medeiros
- Post-Graduate Program in Biological Sciences, Department of Physiology, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil ; Pharmacology Department, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil ; Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|