101
|
Vinogradov AE. Accelerated pathway evolution in mouse-like rodents involves cell cycle control. Mamm Genome 2015; 26:609-18. [PMID: 26424469 DOI: 10.1007/s00335-015-9605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Rodents include both the cancer-susceptible short-lived mouse and the two unrelated cancer-resistant long-lived mole-rats. In this work, their genomes were analyzed with the goal to reveal pathways enriched in genes, which are more similar between the mole-rats than between the mouse and the naked mole-rat. The pathways related to cell cycle control were prominent. They include external signal transduction and all cell cycle stages. There are several stem cell pathways among them. The other enriched pathways involve ubiquitin-dependent protein degradation, immunity, mRNA splicing, and apoptosis. The ubiquitin-dependent protein degradation is a core of network of enriched pathways. However, this phenomenon is not specific for the mouse and the mole-rats. The other muroid species show features similar to the mouse, whereas the non-muroid rodents and the human show features similar to the mole-rats. The higher ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) indicates the accelerated evolution of revealed pathways in the muroid rodents (except the blind mole-rat). Paradoxically, the dN/dS averaged over the whole genome is lower in the muroids, i.e., the purifying selection is generally stronger in them. In practical sense, these data suggest caveat for using muroid rodents (mouse, rat, and hamsters) as biomedical models of human conditions involving cell cycle and show the network of pathways where muroid genes are most different (compared with non-muroid) from human genes. The guinea pig is emphasized as a more suitable rodent model for biomedical research involving cell cycle.
Collapse
|
102
|
Ingram CM, Troendle NJ, Gill CA, Braude S, Honeycutt RL. Challenging the inbreeding hypothesis in a eusocial mammal: population genetics of the naked mole-rat, Heterocephalus glaber. Mol Ecol 2015; 24:4848-65. [PMID: 26407630 DOI: 10.1111/mec.13358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
The role of genetic relatedness in the evolution of eusociality has been the topic of much debate, especially when contrasting eusocial insects with vertebrates displaying reproductive altruism. The naked mole-rat, Heterocephalus glaber, was the first described eusocial mammal. Although this discovery was based on an ecological constraints model of eusocial evolution, early genetic studies reported high levels of relatedness in naked mole-rats, providing a compelling argument that low dispersal rates and consanguineous mating (inbreeding as a mating system) are the driving forces for the evolution of this eusocial species. One caveat to accepting this long-held view is that the original genetic studies were based on limited sampling from the species' geographic distribution. A growing body of evidence supports a contrary view, with the original samples not representative of the species-rather reflecting a single founder event, establishing a small population south of the Athi River. Our study is the first to address these competing hypotheses by examining patterns of molecular variation in colonies sampled from north and south of the Athi and Tana rivers, which based on our results, serve to isolate genetically distinct populations of naked mole-rats. Although colonies south of the Athi River share a single mtDNA haplotype and are fixed at most microsatellite loci, populations north of the Athi River are considerably more variable. Our findings support the position that the low variation observed in naked mole-rat populations south of the Athi River reflects a founder event, rather than a consequence of this species' unusual mating system.
Collapse
Affiliation(s)
- Colleen M Ingram
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.,Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Clare A Gill
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Stanton Braude
- International Center for Tropical Ecology, University of Missouri, St. Louis, MO, 63130, USA.,Washington University in St. Louis, St. Louis, MO, 63130, USA
| | | |
Collapse
|
103
|
Comparative cellular biogerontology: Where do we stand? Exp Gerontol 2015; 71:109-17. [PMID: 26343259 DOI: 10.1016/j.exger.2015.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023]
Abstract
Due to the extreme variation in life spans among species, using a comparative approach to address fundamental questions about the aging process has much to offer. For example, maximum life span can vary by as much as several orders of magnitude among taxa. In recent years, using primary cell lines cultured from species with disparate life spans and aging rates has gained considerable momentum as a means to dissect the mechanisms underlying the variation in aging rates among animals. In this review, we reiterate the strengths of comparative cellular biogerontology, as well as provide a survey of the current state of the field. By and large this work sprang from early studies using cell lines derived from long-lived mutant mice. Specifically, they suggested that an enhanced resistance to cellular stress was strongly associated with increased longevity of select laboratory models. Since then, we and others have shown that the degree of stress resistance and species longevity is also correlated among cell lines derived from free-living populations of both mammals and birds, and more recent studies have begun to reveal the biochemical and physiological underpinnings to these differences. The continued study of cultured cell lines from vertebrates with disparate life spans is likely to provide considerable insight toward unifying mechanisms of longevity assurance.
Collapse
|
104
|
Davies KTJ, Bennett NC, Tsagkogeorga G, Rossiter SJ, Faulkes CG. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis. Mol Biol Evol 2015; 32:3089-107. [PMID: 26318402 PMCID: PMC4652621 DOI: 10.1093/molbev/msv175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Christopher G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
105
|
Kogan V, Molodtsov I, Menshikov LI, Reis RJS, Fedichev P. Stability analysis of a model gene network links aging, stress resistance, and negligible senescence. Sci Rep 2015; 5:13589. [PMID: 26316217 PMCID: PMC4551969 DOI: 10.1038/srep13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz "law" of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals.
Collapse
Affiliation(s)
- Valeria Kogan
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russian Federation
- Gero Limited, Unit 1, 12/F, International Commerce Center, 1 Austin Road West, Kowloon, Hong Kong
| | - Ivan Molodtsov
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russian Federation
- Gero Limited, Unit 1, 12/F, International Commerce Center, 1 Austin Road West, Kowloon, Hong Kong
| | - Leonid I. Menshikov
- Gero Limited, Unit 1, 12/F, International Commerce Center, 1 Austin Road West, Kowloon, Hong Kong
- Northern (Arctic) Federal University, 163002, Severnaya Dvina Emb. 17, Arkhangelsk, Russian Federation
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter Fedichev
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russian Federation
- Gero Limited, Unit 1, 12/F, International Commerce Center, 1 Austin Road West, Kowloon, Hong Kong
| |
Collapse
|
106
|
Buffenstein R, Nelson OL, Corbit KC. Questioning the preclinical paradigm: natural, extreme biology as an alternative discovery platform. Aging (Albany NY) 2015; 6:913-20. [PMID: 25553771 PMCID: PMC4276785 DOI: 10.18632/aging.100704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pace at which science continues to advance is astonishing. From cosmology, microprocessors, structural engineering, and DNA sequencing our lives are continually affected by science-based technology. However, progress in treating human ailments, especially age-related conditions such as cancer and Alzheimer's disease, moves at a relative snail's pace. Given that the amount of investment is not disproportionately low, one has to question why our hopes for the development of efficacious drugs for such grievous illnesses have been frustratingly unrealized. Here we discuss one aspect of drug development –rodent models – and propose an alternative approach to discovery research rooted in evolutionary experimentation. Our goal is to accelerate the conversation around how we can move towards more translative preclinical work.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, TX University of Texas Health Science Center at San Antonio, TX USA
| | - O Lynne Nelson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 9916, USA
| | - Kevin C Corbit
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA 91360, USA
| |
Collapse
|
107
|
Thieme R, Kurz S, Kolb M, Debebe T, Holtze S, Morhart M, Huse K, Szafranski K, Platzer M, Hildebrandt TB, Birkenmeier G. Analysis of Alpha-2 Macroglobulin from the Long-Lived and Cancer-Resistant Naked Mole-Rat and Human Plasma. PLoS One 2015; 10:e0130470. [PMID: 26103567 PMCID: PMC4477878 DOI: 10.1371/journal.pone.0130470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/20/2015] [Indexed: 01/18/2023] Open
Abstract
Background The naked mole-rat (NMR) is a long-lived and cancer resistant species. Identification of potential anti-cancer and age related mechanisms is of great interest and makes this species eminent to investigate anti-cancer strategies and understand aging mechanisms. Since it is known that the NMR expresses higher liver mRNA-levels of alpha 2-macroglobulin than mice, nothing is known about its structure, functionality or expression level in the NMR compared to the human A2M. Results Here we show a comprehensive analysis of NMR- and human plasma-A2M, showing a different prediction in glycosylation of NMR-A2M, which results in a higher molecular weight compared to human A2M. Additionally, we found a higher concentration of A2M (8.3±0.44 mg/mL vs. and 4.4±0.20 mg/mL) and a lower total plasma protein content (38.7±1.79 mg/mL vs. 61.7±3.20 mg/mL) in NMR compared to human. NMR-A2M can be transformed by methylamine and trypsin resulting in a conformational change similar to human A2M. NMR-A2M is detectable by a polyclonal antibody against human A2M. Determination of tryptic and anti-tryptic activity of NMR and human plasma revealed a higher anti-tryptic activity of the NMR plasma. On the other hand, less proteolytic activity was found in NMR plasma compared to human plasma. Conclusion We found transformed NMR-A2M binding to its specific receptor LRP1. We could demonstrate lower protein expression of LRP1 in the NMR liver tissue compared to human but higher expression of A2M. This was accompanied by a higher EpCAM protein expression as central adhesion molecule in cancer progression. NMR-plasma was capable to increase the adhesion in human fibroblast in vitro most probably by increasing CD29 protein expression. This is the first report, demonstrating similarities as well as distinct differences between A2M in NMR and human plasma. This might be directly linked to the intriguing phenotype of the NMR and suggests that A2M might probably play an important role in anti-cancer and the anti-aging mechanisms in the NMR.
Collapse
Affiliation(s)
- René Thieme
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Susanne Kurz
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Marlen Kolb
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Tewodros Debebe
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Michaela Morhart
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Klaus Huse
- Fritz Lipmann Institute–Leibniz Institute for Age Research, Jena, Germany
| | - Karol Szafranski
- Fritz Lipmann Institute–Leibniz Institute for Age Research, Jena, Germany
| | - Matthias Platzer
- Fritz Lipmann Institute–Leibniz Institute for Age Research, Jena, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
108
|
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 2015; 22:11-9. [PMID: 25565028 DOI: 10.1038/nsmb.2939] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
The ribosome, central to protein synthesis in all cells, is a complex multicomponent assembly with rRNA at its functional core. During the process of ribosome biogenesis, diverse noncoding RNAs participate in controlling the quantity and quality of this rRNA. In this Review, I discuss the multiple roles assumed by noncoding RNAs during the different steps of ribosome biogenesis and how they contribute to the generation of ribosome heterogeneity, which affects normal and pathophysiological processes.
Collapse
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
109
|
Skulachev MV, Skulachev VP. New data on programmed aging — slow phenoptosis. BIOCHEMISTRY (MOSCOW) 2014; 79:977-93. [DOI: 10.1134/s0006297914100010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
110
|
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Šumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 2014; 8:1354-64. [PMID: 25176646 PMCID: PMC4350764 DOI: 10.1016/j.celrep.2014.07.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/11/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Collapse
Affiliation(s)
- Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Inge Seim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | | | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lan Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Bae Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Roderick T Bronson
- Rodent Histopathology Laboratory, Harvard Medical School, Boston, MA 02115, USA
| | - Radim Šumbera
- University of South Bohemia, Faculty of Science, Ceske Budejovice 37005, Czech Republic
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Xin Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark; King Abdulaziz University, Jeddah 21441, Saudi Arabia.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
111
|
Tawfik DS. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr Opin Chem Biol 2014; 21:73-80. [DOI: 10.1016/j.cbpa.2014.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022]
|
112
|
Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet 2014; 15:531-40. [PMID: 24981598 DOI: 10.1038/nrg3728] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammals have evolved a remarkable diversity of ageing rates. Within the single order of Rodentia, maximum lifespans range from 4 years in mice to 32 years in naked mole rats. Cancer rates also differ substantially between cancer-prone mice and almost cancer-proof naked mole rats and blind mole rats. Recent progress in rodent comparative biology, together with the emergence of whole-genome sequence information, has opened opportunities for the discovery of genetic factors that control longevity and cancer susceptibility.
Collapse
|
113
|
Zamer WE, Scheiner SM. A conceptual framework for organismal biology: linking theories, models, and data. Integr Comp Biol 2014; 54:736-56. [PMID: 24935989 DOI: 10.1093/icb/icu075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Implicit or subconscious theory is especially common in the biological sciences. Yet, theory plays a variety of roles in scientific inquiry. First and foremost, it determines what does and does not count as a valid or interesting question or line of inquiry. Second, theory determines the background assumptions within which inquiries are pursued. Third, theory provides linkages among disciplines. For these reasons, it is important and useful to develop explicit theories for biology. A general theory of organisms is developed, which includes 10 fundamental principles that apply to all organisms, and 6 that apply to multicellular organisms only. The value of a general theory comes from its utility to help guide the development of more specific theories and models. That process is demonstrated by examining two domains: ecoimmunology and development. For the former, a constitutive theory of ecoimmunology is presented, and used to develop a specific model that explains energetic trade-offs that may result from an immunological response of a host to a pathogen. For the latter, some of the issues involved in trying to devise a constitutive theory that covers all of development are explored, and a more narrow theory of phenotypic novelty is presented. By its very nature, little of a theory of organisms will be new. Rather, the theory presented here is a formal expression of nearly two centuries of conceptual advances and practice in research. Any theory is dynamic and subject to debate and change. Such debate will occur as part of the present, initial formulation, as the ideas presented here are refined. The very process of debating the form of the theory acts to clarify thinking. The overarching goal is to stimulate debate about the role of theory in the study of organisms, and thereby advance our understanding of them.
Collapse
Affiliation(s)
- William E Zamer
- Biological Sciences Directorate, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| | - Samuel M Scheiner
- Biological Sciences Directorate, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| |
Collapse
|