101
|
Hirose Y, Misawa N, Yonekawa C, Nagao N, Watanabe M, Ikeuchi M, Eki T. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. DNA Res 2017; 24:387-396. [PMID: 28338901 PMCID: PMC5737509 DOI: 10.1093/dnares/dsx011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 01/30/2023] Open
Abstract
Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Naomi Misawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Chinatsu Yonekawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Nobuyoshi Nagao
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Mai Watanabe
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihiko Eki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
102
|
Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B. Phycocyanin: A Potential Drug for Cancer Treatment. J Cancer 2017; 8:3416-3429. [PMID: 29151925 PMCID: PMC5687155 DOI: 10.7150/jca.21058] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yajing Huang
- Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
103
|
Zlenko DV, Galochkina TV, Krasilnikov PM, Stadnichuk IN. Coupled rows of PBS cores and PSII dimers in cyanobacteria: symmetry and structure. PHOTOSYNTHESIS RESEARCH 2017; 133:245-260. [PMID: 28365856 DOI: 10.1007/s11120-017-0362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/23/2017] [Indexed: 05/26/2023]
Abstract
Phycobilisome (PBS) is a giant water-soluble photosynthetic antenna transferring the energy of absorbed light mainly to the photosystem II (PSII) in cyanobacteria. Under the low light conditions, PBSs and PSII dimers form coupled rows where each PBS is attached to the cytoplasmic surface of PSII dimer, and PBSs come into contact with their face surfaces (state 1). The model structure of the PBS core that we have developed earlier by comparison and combination of different fine allophycocyanin crystals, as reported in Zlenko et al. (Photosynth Res 130(1):347-356, 2016b), provides a natural way of the PBS core face-to-face stacking. According to our model, the structure of the protein-protein contact between the neighboring PBS cores in the rows is the same as the contact between the APC hexamers inside the PBS core. As a result, the rates of energy transfer between the cores can occur, and the row of PBS cores acts as an integral PBS "supercore" providing energy transfer between the individual PBS cores. The PBS cores row pitch in our elaborated model (12.4 nm) is very close to the PSII dimers row pitch obtained by the electron microscopy (12.2 nm) that allowed to unite a model of the PBS cores row with a model of the PSII dimers row. Analyzing the resulting model, we have determined the most probable locations of ApcD and ApcE terminal emitter subunits inside the bottom PBS core cylinders and also revealed the chlorophyll molecules of PSII gathering energy from the PBS.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991.
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276.
| | - Tatiana V Galochkina
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- INRIA Team Dracula, INRIA Antenne Lyon la Doua, 69603, Villeurbanne, France
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
| | - Pavel M Krasilnikov
- Biological Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/12, Moscow, Russia, 119991
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| | - Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya St, 35, Moscow, Russia, 127276
| |
Collapse
|
104
|
Nozue S, Katayama M, Terazima M, Kumazaki S. Comparative study of thylakoid membranes in terminal heterocysts and vegetative cells from two cyanobacteria, Rivularia M-261 and Anabaena variabilis, by fluorescence and absorption spectral microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:742-749. [DOI: 10.1016/j.bbabio.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/15/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
105
|
Ho MY, Soulier NT, Canniffe DP, Shen G, Bryant DA. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:24-33. [PMID: 28391049 DOI: 10.1016/j.pbi.2017.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 05/28/2023]
Abstract
Most cyanobacteria are obligate oxygenic photoautotrophs, and thus their growth and survival is highly dependent on effective utilization of incident light. Cyanobacteria have evolved a diverse set of phytochromes and cyanobacteriochromes (CBCRs) that allow cells to respond to light in the range from ∼300nm to ∼750nm. Together with associated response regulators, these photosensory proteins control many aspects of cyanobacterial physiology and metabolism. These include far-red light photoacclimation (FaRLiP), complementary chromatic acclimation (CCA), low-light photoacclimation (LoLiP), photosystem content and stoichiometry (long-term adaptation), short-term acclimation (state transitions), circadian rhythm, phototaxis, photomorphogenesis/development, and cellular aggregation. This minireview highlights some discoveries concerning phytochromes and CBCRs as well as two acclimation processes that improve light harvesting and energy conversion under specific irradiance conditions: FaRLiP and CCA.
Collapse
Affiliation(s)
- Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan T Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
106
|
Alcántara-Sánchez F, Leyva-Castillo LE, Chagolla-López A, González de la Vara L, Gómez-Lojero C. Distribution of isoforms of ferredoxin-NADP + reductase (FNR) in cyanobacteria in two growth conditions. Int J Biochem Cell Biol 2017; 85:123-134. [PMID: 28189842 DOI: 10.1016/j.biocel.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Ferredoxin-NADP+ reductase (FNR) transfers reducing equivalents between ferredoxin and NADP(H) in the photosynthetic electron transport chains of chloroplasts and cyanobacteria. In most cyanobacteria, FNR is coded by a single petH gene. The structure of FNR in photosynthetic organisms can be constituted by FAD-binding and NADPH-binding domains (FNR-2D), or by these and an additional N-terminal domain (FNR-3D). In this article, biochemical evidence is provided supporting the induction of FNR-2D by iron or combined nitrogen deficiency in the cyanobacteria Synechocystis PCC 6803 and Anabaena variabilis ATCC 29413. In cell extracts of these cyanobacteria, most of FNR was associated to phycobilisomes (PBS) or phycocyanin (PC), and the rest was found as free enzyme. Free FNR activity increased in both cyanobacteria under iron stress and during diazotrophic conditions in A. variabilis. Characterization of FNR from both cyanobacteria showed that the PBS-associated enzyme was FNR-3D and the free enzyme was mostly a FNR-2D isoform. Predominant isoforms in heterocysts of A. variabilis were FNR-2D; where its N-terminal sequence lacked an initial (formyl)methionine. This means that FNR-3D is targeted to thylakoid membrane, and anchored to PBS, and FNR-2D is found as a soluble protein in the cytoplasm, when iron or fixed nitrogen deficiencies prevail in the environment. Moreover, given that Synechocystis and Anabaena variabilis are dissimilar in genotype, phenotype and ecology, the presence of these two-domain proteins in these species suggests that the mechanism of FNR induction is common among cyanobacteria regardless of their habitat and morphotype.
Collapse
Affiliation(s)
- Felipe Alcántara-Sánchez
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| | - Lourdes Elizabeth Leyva-Castillo
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| | | | | | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| |
Collapse
|
107
|
Alboresi A, Le Quiniou C, Yadav SKN, Scholz M, Meneghesso A, Gerotto C, Simionato D, Hippler M, Boekema EJ, Croce R, Morosinotto T. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. THE NEW PHYTOLOGIST 2017; 213:714-726. [PMID: 27620972 PMCID: PMC5216901 DOI: 10.1111/nph.14156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Clotilde Le Quiniou
- Department of Physics and Astronomy and Institute for Lasers, Life and BiophotonicsFaculty of SciencesVU University AmsterdamDe Boelelaan 10811081 HVAmsterdamthe Netherlands
| | - Sathish K. N. Yadav
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747 AGGroningenthe Netherlands
| | - Martin Scholz
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünster48143Germany
| | - Andrea Meneghesso
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Caterina Gerotto
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Diana Simionato
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Michael Hippler
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünster48143Germany
| | - Egbert J. Boekema
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747 AGGroningenthe Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and BiophotonicsFaculty of SciencesVU University AmsterdamDe Boelelaan 10811081 HVAmsterdamthe Netherlands
| | - Tomas Morosinotto
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| |
Collapse
|
108
|
Zlenko DV, Krasilnikov PM, Stadnichuk IN. Structural modeling of the phycobilisome core and its association with the photosystems. PHOTOSYNTHESIS RESEARCH 2016; 130:347-356. [PMID: 27121945 DOI: 10.1007/s11120-016-0264-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
The phycobilisome (PBS) is a major light-harvesting complex in cyanobacteria and red algae. To obtain the detailed structure of the hemidiscoidal PBS core composed of allophycocyanin (APC) and minor polypeptide components, we analyzed all nine available 3D structures of APCs from different photosynthetic species and found several variants of crystal packing that potentially correspond to PBS core organization. Combination of face-to-face APC trimer crystal packing with back-to-back APC hexamer packing suggests two variants of the tricylindrical PBS core. To choose one of these structures, a computational model of the PBS core complex and photosystem II (PSII) dimer with minimized distance between the terminal PBS emitters and neighboring antenna chlorophylls was built. In the selected model, the distance between two types of pigments does not exceed 37 Å corresponding to the Förster mechanism of energy transfer. We also propose a model of PBS and photosystem I (PSI) monomer interaction showing a possibility of supercomplex formation and direct energy transfer from the PBS to PSI.
Collapse
Affiliation(s)
- D V Zlenko
- Biological faculty, M.V. Lomonosov Moscow State University, Lenin hills, 1/12, Moscow, Russia, 119991.
| | - Pavel M Krasilnikov
- Biological faculty, M.V. Lomonosov Moscow State University, Lenin hills, 1/12, Moscow, Russia, 119991
| | - Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya st, 35, Moscow, Russia, 127276
| |
Collapse
|
109
|
Gao F, Zhao J, Chen L, Battchikova N, Ran Z, Aro EM, Ogawa T, Ma W. The NDH-1L-PSI Supercomplex Is Important for Efficient Cyclic Electron Transport in Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1451-1464. [PMID: 27621424 PMCID: PMC5100770 DOI: 10.1104/pp.16.00585] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Two mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in sll1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport. Blue native-polyacrylamide gel electrophoresis followed by immunoblotting and mass spectrometry analyses of the wild type and a mutant containing CpcG2 fused with yellow fluorescent protein-histidine6 indicated the presence of a novel NDH-1L-CpcG2-PSI supercomplex, which was absent in the cpcG2 deletion mutant, the PSI-less mutant, and several other strains deficient in NDH-1L and/or NDH-1M. Coimmunoprecipitation and pull-down analyses on CpcG2-yellow fluorescent protein-histidine6, using antibody against green fluorescent protein and nickel column chromatography, confirmed the association of CpcG2 with the supercomplex. Conversely, the use of antibodies against NdhH or NdhK after blue native-polyacrylamide gel electrophoresis and in coimmunoprecipitation experiments verified the necessity of CpcG2 in stabilizing the supercomplex. Furthermore, deletion of CpcG2 destabilized NDH-1L as well as its degradation product NDH-1M and significantly decreased the number of functional PSI centers, consistent with the involvement of CpcG2 in NDH-1-dependent cyclic electron transport. The CpcG2 deletion, however, had no effect on respiration. Thus, we propose that the formation of an NDH-1L-CpcG2-PSI supercomplex in cyanobacteria facilitates PSI cyclic electron transport via NDH-1L.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Liping Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Natalia Battchikova
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Zhaoxing Ran
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Eva-Mari Aro
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Teruo Ogawa
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.)
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (F.G., J.Z., L.C., Z.R., W.M.);
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland (N.B., E.-M.A.); and
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan (T.O.)
| |
Collapse
|
110
|
Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1619-1626. [DOI: 10.1016/j.bbabio.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022]
|
111
|
Shen G, Gan F, Bryant DA. The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. PHOTOSYNTHESIS RESEARCH 2016; 128:325-340. [PMID: 27071628 DOI: 10.1007/s11120-016-0257-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC-MS-MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, 4406 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
112
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
113
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
114
|
Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803. Sci Rep 2016; 6:22168. [PMID: 26923200 PMCID: PMC4770689 DOI: 10.1038/srep22168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
Collapse
Affiliation(s)
- Miguel A. Hernández-Prieto
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Trudi Ann Semeniuk
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Matthias E. Futschik
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
115
|
Liu LN. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:256-65. [PMID: 26619924 PMCID: PMC4756276 DOI: 10.1016/j.bbabio.2015.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022]
Abstract
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Cyanobacterial thylakoid membranes carry out both oxygenic photosynthesis and respiration. Electron transport components are located in the thylakoid membrane and functionally coordinate with each other. Distribution and dynamics of electron transport components are physiologically regulated in response to environmental change.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
116
|
Magnuson A, Cardona T. Thylakoid membrane function in heterocysts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:309-19. [PMID: 26545609 DOI: 10.1016/j.bbabio.2015.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 01/19/2023]
Abstract
Multicellular cyanobacteria form different cell types in response to environmental stimuli. Under nitrogen limiting conditions a fraction of the vegetative cells in the filament differentiate into heterocysts. Heterocysts are specialized in atmospheric nitrogen fixation and differentiation involves drastic morphological changes on the cellular level, such as reorganization of the thylakoid membranes and differential expression of thylakoid membrane proteins. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase by developing an extra polysaccharide layer that limits air diffusion into the heterocyst and by upregulating heterocyst-specific respiratory enzymes. In this review article, we summarize what is known about the thylakoid membrane in heterocysts and compare its function with that of the vegetative cells. We emphasize the role of photosynthetic electron transport in providing the required amounts of ATP and reductants to the nitrogenase enzyme. In the light of recent high-throughput proteomic and transcriptomic data, as well as recently discovered electron transfer pathways in cyanobacteria, our aim is to broaden current views of the bioenergetics of heterocysts. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Ann Magnuson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120, Uppsala, Sweden.
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
117
|
Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:46-59. [PMID: 26474523 DOI: 10.1016/j.bbabio.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022]
Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells.
Collapse
Affiliation(s)
- Shuho Nozue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Mukuno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumi Tsuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
118
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|
119
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
120
|
Cyanobacterial Light-Harvesting Phycobilisomes Uncouple From Photosystem I During Dark-To-Light Transitions. Sci Rep 2015; 5:14193. [PMID: 26388233 PMCID: PMC4585685 DOI: 10.1038/srep14193] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/18/2015] [Indexed: 11/08/2022] Open
Abstract
Photosynthetic organisms cope with changes in light quality by balancing the excitation energy flow between photosystems I (PSI) and II (PSII) through a process called state transitions. Energy redistribution has been suggested to be achieved by movement of the light-harvesting phycobilisome between PSI and PSII, or by nanometre scale rearrangements of the recently discovered PBS-PSII-PSI megacomplexes. The alternative ‘spillover’ model, on the other hand, states that energy redistribution is achieved by mutual association/dissociation of PSI and PSII. State transitions have always been studied by changing the redox state of the electron carriers using electron transfer inhibitors, or by applying illumination conditions with different colours. However, the molecular events during natural dark-to-light transitions in cyanobacteria have largely been overlooked and still remain elusive. Here we investigated changes in excitation energy transfer from phycobilisomes to the photosystems upon dark-light transitions, using picosecond fluorescence spectroscopy. It appears that megacomplexes are not involved in these changes, and neither does spillover play a role. Instead, the phycobilisomes partly energetically uncouple from PSI in the light but hardly couple to PSII.
Collapse
|
121
|
Bricker TM, Mummadisetti MP, Frankel LK. Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:227-46. [PMID: 26390944 DOI: 10.1016/j.jphotobiol.2015.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/24/2023]
Abstract
Tandem mass spectrometry often coupled with chemical modification techniques, is developing into increasingly important tool in structural biology. These methods can provide important supplementary information concerning the structural organization and subunit make-up of membrane protein complexes, identification of conformational changes occurring during enzymatic reactions, identification of the location of posttranslational modifications, and elucidation of the structure of assembly and repair complexes. In this review, we will present a brief introduction to Photosystem II, tandem mass spectrometry and protein modification techniques that have been used to examine the photosystem. We will then discuss a number of recent case studies that have used these techniques to address open questions concerning PS II. These include the nature of subunit-subunit interactions within the phycobilisome, the interaction of phycobilisomes with Photosystem I and the Orange Carotenoid Protein, the location of CyanoQ, PsbQ and PsbP within Photosystem II, and the identification of phosphorylation and oxidative modification sites within the photosystem. Finally, we will discuss some of the future prospects for the use of these methods in examining other open questions in PS II structural biochemistry.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Manjula P Mummadisetti
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Laurie K Frankel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
122
|
Onishi A, Aikawa S, Kondo A, Akimoto S. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. PHOTOSYNTHESIS RESEARCH 2015; 125:191-199. [PMID: 25596847 DOI: 10.1007/s11120-015-0089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.
Collapse
Affiliation(s)
- Aya Onishi
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
123
|
Chang L, Liu X, Li Y, Liu CC, Yang F, Zhao J, Sui SF. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res 2015; 25:726-37. [PMID: 25998682 DOI: 10.1038/cr.2015.59] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 11/24/2014] [Accepted: 01/29/2015] [Indexed: 11/09/2022] Open
Abstract
Phycobilisomes (PBSs) are light-harvesting antennae that transfer energy to photosynthetic reaction centers in cyanobacteria and red algae. PBSs are supermolecular complexes composed of phycobiliproteins (PBPs) that bear chromophores for energy absorption and linker proteins. Although the structures of some individual components have been determined using crystallography, the three-dimensional structure of an entire PBS complex, which is critical for understanding the energy transfer mechanism, remains unknown. Here, we report the structures of an intact PBS and a PBS in complex with photosystem II (PSII) from Anabaena sp. strain PCC 7120 using single-particle electron microscopy in combination with biochemical and molecular analyses. In the PBS structure, all PBP trimers and the conserved linker protein domains were unambiguously located, and the global distribution of all chromophores was determined. We provide evidence that ApcE and ApcF are critical for the formation of a protrusion at the bottom of PBS, which plays an important role in mediating PBS interaction with PSII. Our results provide insights into the molecular architecture of an intact PBS at different assembly levels and provide the basis for understanding how the light energy absorbed by PBS is transferred to PSII.
Collapse
Affiliation(s)
- Leifu Chang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [3] Current address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Xianwei Liu
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yanbing Li
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Cui-Cui Liu
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Yang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jindong Zhao
- 1] State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China [2] Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Sen-Fang Sui
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
124
|
Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00357-15. [PMID: 25953174 PMCID: PMC4424290 DOI: 10.1128/genomea.00357-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA).
Collapse
|
125
|
Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00385-15. [PMID: 25931605 PMCID: PMC4417701 DOI: 10.1128/genomea.00385-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains.
Collapse
|
126
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
127
|
Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 2015; 72:39-51. [PMID: 25841081 DOI: 10.1016/j.micron.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Bioenergetic reactions in chloroplasts and mitochondria are catalyzed by large multi-subunit membrane proteins. About two decades ago it became clear that several of these large membrane proteins further associate into supercomplexes and since then a number of new ones have been described. In this review we focus on supercomplexes involved in light harvesting and electron transfer in the primary reactions of oxygenic photosynthesis and on the mitochondrial supercomplexes that catalyze electron transfer and ATP synthesis in oxidative phosphorylation. Functional and structural aspects are overviewed. In addition, several relevant technical aspects are discussed, including membrane solubilization with suitable detergents and methods of purification. Some open questions are addressed, such as the lack of high-resolution structures, the outstanding gaps in the knowledge about supercomplexes involved in cyclic electron transport in photosynthesis and the unusual mitochondrial protein complexes of protists and in particular of ciliates.
Collapse
|
128
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
129
|
Bernstein HC, Konopka A, Melnicki MR, Hill EA, Kucek LA, Zhang S, Shen G, Bryant DA, Beliaev AS. Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front Microbiol 2014; 5:488. [PMID: 25285095 PMCID: PMC4168726 DOI: 10.3389/fmicb.2014.00488] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/30/2014] [Indexed: 01/30/2023] Open
Abstract
Synechococcus sp. PCC 7002 was grown to steady state in optically thin turbidostat cultures under conditions for which light quantity and quality was systematically varied by modulating the output of narrow-band LEDs. Cells were provided photons absorbed primarily by chlorophyll (680 nm) or phycocyanin (630 nm) as the organism was subjected to four distinct mono- and dichromatic regimes. During cultivation with dichromatic light, growth rates were generally proportional to the total incident irradiance at values <275 μmol photons m(-2) · s(-1) and were not affected by the ratio of 630:680 nm wavelengths. Notably, under monochromatic light conditions, cultures exhibited similar growth rates only when they were irradiated with 630 nm light; cultures irradiated with only 680 nm light grew at rates that were 60-70% of those under other light quality regimes at equivalent irradiances. The functionality of photosystem II and associated processes such as maximum rate of photosynthetic electron transport, rate of cyclic electron flow, and rate of dark respiration generally increased as a function of growth rate. Nonetheless, some of the photophysiological parameters measured here displayed distinct patterns with respect to growth rate of cultures adapted to a single wavelength including phycobiliprotein content, which increased under severely light-limited growth conditions. Additionally, the ratio of photosystem II to photosystem I increased ~40% over the range of growth rates, although cells grown with 680 nm light only had the highest ratios. These results suggest the presence of effective mechanisms which allow acclimation of Synechococcus sp. PCC 7002 acclimation to different irradiance conditions.
Collapse
Affiliation(s)
- Hans C. Bernstein
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
- Chemical and Biological Signature Science, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
- Department of Biological Sciences, Purdue UniversityW. Lafayette, IN, USA
| | - Matthew R. Melnicki
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Eric A. Hill
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Leo A. Kucek
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Shuyi Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Gaozhong Shen
- Department of Biological Sciences, Purdue UniversityW. Lafayette, IN, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| | - Alexander S. Beliaev
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| |
Collapse
|
130
|
Zhang P, Frankel LK, Bricker TM. Integration of apo-α-phycocyanin into phycobilisomes and its association with FNRL in the absence of the phycocyanin α-subunit lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e105952. [PMID: 25153076 PMCID: PMC4143364 DOI: 10.1371/journal.pone.0105952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022] Open
Abstract
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laurie K. Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Terry M. Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
131
|
Li M, Semchonok DA, Boekema EJ, Bruce BD. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. THE PLANT CELL 2014; 26:1230-45. [PMID: 24681621 PMCID: PMC4001380 DOI: 10.1105/tpc.113.120782] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.
Collapse
Affiliation(s)
- Meng Li
- Department of Biochemistry, Cellular, and Molecular
Biology, University of Tennessee, Knoxville, Tennessee 37996
- The Bredesen Center for Interdisciplinary Research and
Graduate Education, University of Tennessee, Knoxville, Tennessee 37996
| | - Dmitry A. Semchonok
- Department of Electron Microscopy, Groningen Biomolecular
Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The
Netherlands
| | - Egbert J. Boekema
- Department of Electron Microscopy, Groningen Biomolecular
Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The
Netherlands
| | - Barry D. Bruce
- Department of Biochemistry, Cellular, and Molecular
Biology, University of Tennessee, Knoxville, Tennessee 37996
- The Bredesen Center for Interdisciplinary Research and
Graduate Education, University of Tennessee, Knoxville, Tennessee 37996
- Department of Microbiology, University of Tennessee,
Knoxville, Tennessee 37996
- Sustainable Energy and Education Research Center,
University of Tennessee, Knoxville, Tennessee 37996
- Address correspondence to
| |
Collapse
|