101
|
Libardo MDJ, Nagella S, Lugo A, Pierce S, Angeles-Boza AM. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation. Biochem Biophys Res Commun 2014; 456:446-51. [PMID: 25482446 DOI: 10.1016/j.bbrc.2014.11.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.
Collapse
Affiliation(s)
- M Daben J Libardo
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Sai Nagella
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Andrea Lugo
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Scott Pierce
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
102
|
Gornowicz A, Tokajuk G, Bielawska A, Maciorkowska E, Jabłoński R, Wójcicka A, Bielawski K. The assessment of sIgA, histatin-5, and lactoperoxidase levels in saliva of adolescents with dental caries. Med Sci Monit 2014; 20:1095-100. [PMID: 24974109 PMCID: PMC4087079 DOI: 10.12659/msm.890468] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Saliva contains a number of protective factors such as mucins, immunoglobulins (e.g., IgA, IgG, and IgM), and enzymes (e.g., lysozyme and lactoperoxidases) that play an important role in the maintenance of oral health. The aim of this study was to compare levels of sIgA, histatin-5, and lactoperoxidase in saliva of adolescents with dental caries. MATERIAL AND METHODS Thirty-five adolescents (age 18 years) from high school were examined. Eight subjects with DMF=3 (Group I) and 27 adolescents with DMF>11 (Group II) were enrolled for this study. Clinical evaluation procedures comprised oral examination (including tooth, periodontal, and oral mucosal status) and collection of saliva samples. Saliva was collected for enzyme-linked immunosorbent assay (ELISA) and was used for determination of sIgA, histatin-5, and lactoperoxidase levels. RESULTS Our results showed that adolescents with very high intensity of dental caries (DMF>11) had increased levels of sIgA, histatin-5, and lactoperoxidase compared to adolescents with lower intensity of caries. The increase was statistically significant (p<0.05). CONCLUSIONS We suggest that high intensity of caries is associated with increased levels of some salivary components - sIgA, histatin-5 and lactoperoxidase - that possess strong bactericidal or bacteriostatic effects, resulting in aggregation of oral bacteria and their clearance from the oral cavity.
Collapse
Affiliation(s)
- Agnieszka Gornowicz
- Department of Biotechnology, Medical University in Białystok, Białystok, Poland
| | - Grażyna Tokajuk
- Department of Periodontal and Oral Mucosa Diseases, Medical University in Białystok, Białystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University in Białystok, Białystok, Poland
| | - Elżbieta Maciorkowska
- Department of Developmental Period Medicine and Pediatric Nursing, Medical University in Białystok, Białystok, Poland
| | - Robert Jabłoński
- Department of Developmental Period Medicine and Pediatric Nursing, Medical University in Białystok, Białystok, Poland
| | - Anna Wójcicka
- Maxillofacial and Plastic Surgery Clinic, Medical University in Białystok, Białystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University in Białystok, Białystok, Poland
| |
Collapse
|
103
|
Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar Drugs 2014; 12:3838-51. [PMID: 24979270 PMCID: PMC4113801 DOI: 10.3390/md12073838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022] Open
Abstract
Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA) as well as on the potato dextrose broth (PDB) medium. Moreover, BDDE decreases the incidence of fruit decay and severity of strawberries infected with B. cinerea. Further studies have revealed that BDDE decreases the germination rate and inhibits the mycelial growth of B. cinerea. The inhibition mechanisms are related to the disruption of the cell membrane integrity in B. cinerea spores and newly formed germ tubes. This study also suggests that BDDE possibly interacts with DNA via intercalation and minor groove binding. The studies provide evidence that BDDE has potential application in the control of gray mold after fruit harvest and the compound could serve as a candidate or lead template for rational drug design and for the development of antifungal agents.
Collapse
|
104
|
Interplay between Candida albicans and the antimicrobial peptide armory. EUKARYOTIC CELL 2014; 13:950-7. [PMID: 24951441 DOI: 10.1128/ec.00093-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antimicrobial peptides (AMPs) are key elements of innate immunity, which can directly kill multiple bacterial, viral, and fungal pathogens. The medically important fungus Candida albicans colonizes different host niches as part of the normal human microbiota. Proliferation of C. albicans is regulated through a complex balance of host immune defense mechanisms and fungal responses. Expression of AMPs against pathogenic fungi is differentially regulated and initiated by interactions of a variety of fungal pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors (PRRs) on human cells. Inflammatory signaling and other environmental stimuli are also essential to control fungal proliferation and to prevent parasitism. To persist in the host, C. albicans has developed a three-phase AMP evasion strategy, including secretion of peptide effectors, AMP efflux pumps, and regulation of signaling pathways. These mechanisms prevent C. albicans from the antifungal activity of the major AMP classes, including cathelicidins, histatins, and defensins leading to a basal resistance. This minireview summarizes human AMP attack and C. albicans resistance mechanisms and current developments in the use of AMPs as antifungal agents.
Collapse
|
105
|
How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. EUKARYOTIC CELL 2014; 13:958-64. [PMID: 24951439 DOI: 10.1128/ec.00095-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histatins are salivary cationic peptides that provide the first line of defense against oral candidiasis caused by Candida albicans. This minireview presents a critical evaluation of our knowledge of the candidacidal mechanism of histatin 5 (Hst 5). Hst 5 is the most potent among all histatin family members with regard to its antifungal activity. The mode of action of Hst 5 has been a subject of intense debate. Unlike other classical host innate immune proteins, pore formation or membrane lysis by Hst 5 has largely been disproven, and it is now known that all targets of Hst 5 are intracellular. Hst 5 binds C. albicans cell wall proteins (Ssa1/2) and glycans and is taken up by the cells through fungal polyamine transporters in an energy-dependent manner. Once inside the fungal cells, Hst 5 may affect mitochondrial functions and cause oxidative stress; however, the ultimate cause of cell death is by volume dysregulation and ion imbalance triggered by osmotic stress. Besides these diverse targets, a novel mechanism based on the metal binding abilities of Hst 5 is discussed. Finally, translational approaches for Hst 5, based on peptide design and synergy with other known drugs, are considered a step forward for bench-to-bed application of Hst 5.
Collapse
|
106
|
Libardo MD, Cervantes JL, Salazar JC, Angeles-Boza AM. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs. ChemMedChem 2014; 9:1892-901. [PMID: 24803240 DOI: 10.1002/cmdc.201402033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.
Collapse
Affiliation(s)
- M Daben Libardo
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Rd, Storrs, CT 06269 (USA)
| | | | | | | |
Collapse
|
107
|
Li N, Gao C, Peng X, Wang W, Luo M, Fu YJ, Zu YG. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol 2014; 165:263-72. [DOI: 10.1016/j.resmic.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023]
|
108
|
Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 2014; 6:77-90. [DOI: 10.4155/fmc.13.189] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections are associated with very high mortality rates ranging from 20–90% for opportunistic fungal pathogens such as Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungal resistance to antimycotic treatment can be genotypic (due to resistant strains) as well as phenotypic (due to more resistant fungal lifestyles, such as biofilms). With regard to the latter, biofilms are considered to be critical in the development of invasive fungal infections. However, there are only very few antimycotics, such as miconazole (azoles), echinocandins and liposomal formulations of amphotericin B (polyenes), which are also effective against fungal biofilms. Interestingly, these antimycotics all induce reactive oxygen species (ROS) in fungal (biofilm) cells. This review provides an overview of the different classes of antimycotics and novel antifungal compounds that induce ROS in fungal planktonic and biofilm cells. Moreover, different strategies to further enhance the antibiofilm activity of such ROS-inducing antimycotics will be discussed.
Collapse
|
109
|
Melino S, Santone C, Di Nardo P, Sarkar B. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs. FEBS J 2013; 281:657-72. [DOI: 10.1111/febs.12612] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Sonia Melino
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Italy
| | - Celeste Santone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Italy
| | - Paolo Di Nardo
- Department of Medical Sciences and Translational Medicine; University of Rome Tor Vergata; Italy
| | - Bibudhendra Sarkar
- Department of Molecular Structure and Function; The Hospital for Sick Children; University of Toronto; Ontario Canada
- Department of Biochemistry; University of Toronto; Ontario Canada
| |
Collapse
|
110
|
van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 2013; 70:3545-70. [PMID: 23381653 PMCID: PMC11114075 DOI: 10.1007/s00018-013-1260-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.
Collapse
|
111
|
|
112
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 2013; 62:1175-1183. [DOI: 10.1099/jmm.0.055467-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO.
Collapse
Affiliation(s)
- Yuxin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, 843300, Xinjiang, PR China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jun Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xiaoquan Ban
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Bingxin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Youwei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
113
|
Hayes BME, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 2013; 57:3667-75. [PMID: 23689717 PMCID: PMC3719733 DOI: 10.1128/aac.00365-13] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.
Collapse
Affiliation(s)
| | - Mark R. Bleackley
- La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | | | | | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
114
|
Maurya IK, Thota CK, Sharma J, Tupe SG, Chaudhary P, Singh MK, Thakur IS, Deshpande M, Prasad R, Chauhan VS. Mechanism of action of novel synthetic dodecapeptides against Candida albicans. Biochim Biophys Acta Gen Subj 2013; 1830:5193-203. [PMID: 23876294 DOI: 10.1016/j.bbagen.2013.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Three de novo designed low molecular weight cationic peptides (IJ2, IJ3 and IJ4) containing an unnatural amino acid α,β-didehydrophenylalanine (∆Phe) exhibited potent antifungal activity against fluconazole (FLC) sensitive and resistant clinical isolates of Candida albicans as well as non-albicans and other yeast and filamentous pathogenic fungi. In the present study, their synthesis, susceptibility of different fungi and the mechanism of anti-candidal action have been elucidated. METHODS The antimicrobial peptides (AMPs) were synthesized by solid-phase method and checked for antifungal activity against different yeasts and fungi by broth microdilution method. Anti-candidal mode of action of the peptides was investigated through detecting membrane permeabilization by confocal microscopy, Reactive Oxygen Species (ROS) generation by fluorometry, apoptosis and necrosis by flow cytometry and cell wall damage using Scanning and Transmission Electron Microscopy. RESULTS AND CONCLUSIONS The MIC of the peptides against C. albicans and other yeast and filamentous fungal pathogens ranged between 3.91 and 250μM. All three peptides exhibited effect on multiple targets in C. albicans including disruption of cell wall structures, compromised cell membrane permeability leading to their enhanced entry into the cells, accumulation of ROS and induction of apoptosis. The peptides also showed synergistic effect when used in combination with fluconazole (FLC) and caspofungin (CAS) against C. albicans. GENERAL SIGNIFICANCE The study suggests that the AMPs alone or in combination with conventional antifungals hold promise for the control of fungal pathogens, and need to be further explored for treatment of fungal infections.
Collapse
Affiliation(s)
- Indresh Kumar Maurya
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Tati S, Jang WS, Li R, Kumar R, Puri S, Edgerton M. Histatin 5 resistance of Candida glabrata can be reversed by insertion of Candida albicans polyamine transporter-encoding genes DUR3 and DUR31. PLoS One 2013; 8:e61480. [PMID: 23613860 PMCID: PMC3632557 DOI: 10.1371/journal.pone.0061480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/11/2013] [Indexed: 12/29/2022] Open
Abstract
Candida albicans and Candida glabrata are predominant fungi associated with oral candidiasis. Histatin 5 (Hst 5) is a small cationic human salivary peptide with high fungicidal activity against C. albicans, however many strains of C. glabrata are resistant. Since Hst 5 requires fungal binding to cell wall components prior to intracellular translocation, reduced Hst 5 binding to C. glabrata may be the reason for its insensitivity. C. glabrata has higher surface levels of β-1,3-glucans as compared with C. albicans; however these differences did not account for reduced Hst 5 uptake and killing in C. glabrata. Similarly, the biofilm matrix of C. glabrata contained significantly higher levels of β-1,3-glucans compared with C. albicans, but it did not reduce the percentage of Hst 5 positive fungal cells in the biofilm. Hst 5 enters C. albicans cell through polyamine transporters Dur3p and Dur31p that are uncharacterized in C. glabrata. C. glabrata strains expressing CaDur3 and CaDur31 had two-fold higher killing and uptake of Hst 5. Thus, neither C. glabrata cell surface or biofilm matrix β-1,3-glucan levels affected Hst 5 toxicity; rather the crucial rate limiting step is reduced uptake that can be overcome by expression of C. albicans Dur proteins in C. glabrata.
Collapse
Affiliation(s)
- Swetha Tati
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Woong Sik Jang
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Rui Li
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Rohitashw Kumar
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Sumant Puri
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Mira Edgerton
- Department of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
116
|
Khan SA, Fidel PL, Thunayyan AA, Varlotta S, Meiller TF, Jabra-Rizk MA. Impaired Histatin-5 Levels and Salivary Antimicrobial Activity against C. albicans in HIV Infected Individuals. ACTA ACUST UNITED AC 2013; 4. [PMID: 23730535 DOI: 10.4172/2155-6113.1000193] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HIV-infected individuals constitute a population highly susceptible to opportunistic infections, particularly oral candidiasis caused by the most pathogenic human fungal species Candida albicans. Host-produced salivary antimicrobial peptides are considered to be an important part of the host innate immune system involved in protection of the oral cavity against colonization and infection by microbial species. Histatin-5 (Hst-5) specifically has exhibited potent anti-candidal properties in vitro. However, its importance in protecting the oral mucosa against candidal colonization and importantly, its contribution to the observed enhanced susceptibility of HIV-infected individuals to candidiasis has not been previously investigated. To that end, a novel immunoassay was used to demonstrate significant decrease in salivary Hst-5 levels in HIV+ individuals concomitant with enhanced candidal prevalence. Further, saliva's anti-candidal potency was found to be proportional to Hst-5 concentration and significantly compromised in HIV+ subjects compared to controls. The key role for Hst-5 was further confirmed upon exposure to the Hst-5-specific antibody where saliva's initial killing activity was substantially compromised. Combined, these findings identify Hst-5 as a key anti-candidal salivary component and demonstrate its decreased levels in HIV infection providing new insights into oral Innate immune defense mechanisms and the enhanced susceptibility of HIV+ individuals to oral candidiasis.
Collapse
Affiliation(s)
- Shariq A Khan
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Chemokines are best known for their classic leukocyte chemotactic activity, which is critical for directing the immune response to sites of infection and injury. However, recent studies have suggested that at least some chemokines may also interfere with infectious agents directly. Antimicrobial chemokines tend to contain amphipathic alpha helical secondary structure, and broad-spectrum activity against both Gram-positive and Gram negative bacteria, as well as fungi. Conversely, several bacteria have been identified that possess mechanisms for specifically blocking the antimicrobial activities of chemokines. Although the precise mechanisms by which chemokines and microbes disarm one another in vitro remain unknown, there is now emerging evidence in vivo that such interactions may be biologically significant. More research will be needed to determine whether chemokines with direct antimicrobial activity may be translated into a novel class of antibiotics.
Collapse
Affiliation(s)
- Sunny C. Yung
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
118
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
119
|
Muñoz A, Read ND. Live-cell imaging and analysis shed light on the complexity and dynamics of antimicrobial Peptide action. Front Immunol 2012; 3:248. [PMID: 22912634 PMCID: PMC3418630 DOI: 10.3389/fimmu.2012.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Affiliation(s)
- Alberto Muñoz
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh Edinburgh, UK
| | | |
Collapse
|
120
|
Andrian E, Qi G, Wang J, Halperin SA, Lee SF. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading) 2012; 158:2099-2106. [DOI: 10.1099/mic.0.058073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elisoa Andrian
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Gaofu Qi
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
121
|
Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One 2012; 7:e30147. [PMID: 22272289 PMCID: PMC3260232 DOI: 10.1371/journal.pone.0030147] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/12/2011] [Indexed: 12/15/2022] Open
Abstract
The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus.
Collapse
Affiliation(s)
- Jun Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| | - Xiaoquan Ban
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| | - Hong Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| | - Jingsheng He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| | - Yuxin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| | - Youwei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Institute of Traditional Chinese Medicine & Natural Products, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
122
|
Carmona L, Gandía M, López-García B, Marcos JF. Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production. Biochem Biophys Res Commun 2012; 417:56-61. [DOI: 10.1016/j.bbrc.2011.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 01/30/2023]
|
123
|
Yount NY, Cohen SE, Kupferwasser D, Waring AJ, Ruchala P, Sharma S, Wasserman K, Jung CL, Yeaman MR. Context mediates antimicrobial efficacy of kinocidin congener peptide RP-1. PLoS One 2011; 6:e26727. [PMID: 22073187 PMCID: PMC3208557 DOI: 10.1371/journal.pone.0026727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/02/2011] [Indexed: 11/21/2022] Open
Abstract
Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible ((S)) or resistant ((R)) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized ST(S) and CA strains at both pH, whereas permeabilization was modest for ST(R) or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH- and target-cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context-specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity.
Collapse
Affiliation(s)
- Nannette Y. Yount
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Samuel E. Cohen
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Deborah Kupferwasser
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Alan J. Waring
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Division of Molecular Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shantanu Sharma
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, United States of America
| | - Karlman Wasserman
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Division of Pulmonary / Critical Care Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Chun-Ling Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R. Yeaman
- Division of Infectious Diseases, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Division of Molecular Medicine, Los Angeles County-Harbor University of California Los Angeles Medical Center, Torrance, California, United States of America
| |
Collapse
|
124
|
Andrade D, Assis DM, Santos JA, Alves FM, Hirata IY, Araujo MS, Blaber SI, Blaber M, Juliano MA, Juliano L. Substrate specificity of kallikrein-related peptidase 13 activated by salts or glycosaminoglycans and a search for natural substrate candidates. Biochimie 2011; 93:1701-9. [DOI: 10.1016/j.biochi.2011.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
125
|
Brouwer CPJM, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides 2011; 32:1953-1963. [PMID: 21827807 DOI: 10.1016/j.peptides.2011.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
Abstract
There is an urgent need to develop new antimicrobial drugs especially for combating the rise of infections caused by multi-resistant pathogens such as MRSA and VRSA. The problem of antibiotic resistant micro-organisms is expected to increase disproportionally and controlling of infections is becoming difficult because of the rapid spread of those micro-organisms. Primary therapy with classical antibiotics is becoming more ineffective. Combinational therapy of antibiotics with antimicrobial peptides (AMP's) has been suggested as an alternative approach to improve treatment outcome. Their unique mechanism of action and safety profile makes AMP's appealing candidates for simultaneous or sequential use in different cases of infections. In this review, for antimicrobial treatment the application of synthetic antimicrobial peptide hLF(1-11), derived from the first 11 amino acids of human lactoferrin is evaluated in both pre-clinical and clinical settings. Present information indicates that this derivate from lactoferrin is well tolerated in pre-clinical tests and clinical trials and thus hLF(1-11) is an interesting candidate for further exploration in various clinical indications of obscure infections, including meningitis. Another approach of using AMP's is their use in prevention of infections e.g. as coating for dental or bone implants or in biosensing applications or useful as infection specific radiopharmaceutical.
Collapse
Affiliation(s)
- Carlo P J M Brouwer
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Room C4-R-77, Leiden, The Netherlands
| | | | | |
Collapse
|
126
|
Maurya IK, Pathak S, Sharma M, Sanwal H, Chaudhary P, Tupe S, Deshpande M, Chauhan VS, Prasad R. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 2011; 32:1732-40. [PMID: 21693143 DOI: 10.1016/j.peptides.2011.06.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
In the present work, we investigated the antifungal activity of two de novo designed, antimicrobial peptides VS2 and VS3, incorporating unnatural amino acid α,β-dehydrophenylalanine (ΔPhe). We observed that the low-hemolytic peptides could irreversibly inhibit the growth of various Candida species and multidrug resistance strains at MIC(80) values ranging from 15.62 μM to 250 μM. Synergy experiments showed that MIC(80) of the peptides was drastically reduced in combination with an antifungal drug fluconazole. The dye PI uptake assay was used to demonstrate peptide induced cell membrane permeabilization. Intracellular localization of the FITC-labeled peptides in Candida albicans was studied by confocal microscopy and FACS. Killing kinetics, PI uptake assay, and the intracellular presence of FITC-peptides suggested that growth inhibition is not solely a consequence of increased membrane permeabilization. We showed that entry of the peptide in Candida cells resulted in accumulation of reactive oxygen species (ROS) leading to cell necrosis. Morphological alteration in Candida cells caused by the peptides was visualized by electron microscopy. We propose that de novo designed VS2 and VS3 peptides have multiple detrimental effects on target fungi, which ultimately result in cell wall disruption and killing. Therefore, these peptides represent a good template for further design and development as antifungal agents.
Collapse
Affiliation(s)
- Indresh Kumar Maurya
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Qin G, Liu J, Cao B, Li B, Tian S. Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis. PLoS One 2011; 6:e21945. [PMID: 21755012 PMCID: PMC3130790 DOI: 10.1371/journal.pone.0021945] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/13/2011] [Indexed: 11/25/2022] Open
Abstract
How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H2O2) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H2O2-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H2O2-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F1F0 ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H2O2-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H2O2 stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H2O2.
Collapse
Affiliation(s)
- Guozheng Qin
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- * E-mail: (GQ); (ST)
| | - Jia Liu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
- * E-mail: (GQ); (ST)
| |
Collapse
|
128
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
129
|
Chang WQ, Wu XZ, Cheng AX, Zhang L, Ji M, Lou HX. Retigeric acid B exerts antifungal effect through enhanced reactive oxygen species and decreased cAMP. Biochim Biophys Acta Gen Subj 2011; 1810:569-76. [PMID: 21320573 DOI: 10.1016/j.bbagen.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Retigeric acid B (RAB), a triterpene acid isolated from Lobaria kurokawae exerts antifungal effect. The present study was designed to elucidate the underlying mechanisms by which RAB regulates the proliferation and cell death of Candida albicans. METHODS We measured the metabolic activity of C. albicans with WST1 Cell Proliferation and Cytotoxicity Assay Kit, analyzed the cell cycle by flow cytometry, visualized the ultrastructure by transmission electron microscopy (TEM) and investigated the apoptosis and necrosis induced by RAB using confocal microscopy. The reactive oxygen species (ROS) accumulation was determined by spectrophotometry, flow cytometry and fluorescent microscopy. The mtΔψ was detected using flow cytometry. And the levels of intracellular cAMP and ATP were measured with cAMP ELISA and ATP Assay Kits, respectively. RESULTS The proliferation of the yeasts was blocked in G(2)/M phase by a low dose of RAB treatment and in G(1) phase at high concentration. When cultured in phosphate buffered saline (PBS) deprived of energy source, yeasts displayed the phenotype of death caused by accumulated ROS, mtΔψ hyperpolarization and dramatic decrease in ATP level in the presence of high dose of RAB. GENERAL SIGNIFICANCE RAB inhibits the growth of C. albicans by stimulating ROS production and reducing intracellular cAMP. The ROS accumulation, mtΔψ hyperpolarization, ATP depletion and damaged plasma membrane integrity together mediate cell death of C. albicans induced by RAB. Our findings provide a novel molecular mechanism for exploring possible applications of lichen derived metabolites in fighting fungal infection in humans.
Collapse
Affiliation(s)
- Wen-Qiang Chang
- Department of Natural Product Chemistry, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
130
|
Komatsu T, Salih E, Helmerhorst EJ, Offner GD, Oppenheim FG. Influence of histatin 5 on Candida albicans mitochondrial protein expression assessed by quantitative mass spectrometry. J Proteome Res 2011; 10:646-55. [PMID: 21080726 PMCID: PMC3033980 DOI: 10.1021/pr100861k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Individual aspects of the mode of action of histatin 5, a human salivary antifungal protein, have been partially elucidated, but the mechanism likely involves a complex set of events that have not been characterized. Previous evidence points toward histatin-induced alterations in mitochondrial function. The purpose of the present study was to verify and quantify changes in the mitochondrial proteome of Candida albicans treated with histatin 5. Cell killing was determined by plating and differential protein expression levels in the mitochondrial samples were determined by quantitative proteomics approaches employing mTRAQ and ICAT labeling and Western blotting. Relative quantitation ratios were established for 144 different proteins. Up-regulated mitochondrial proteins were predominantly involved in genome maintenance and gene expression, whereas proteins that constitute the respiratory enzyme complexes were mostly down-regulated. The differential expression of ATP synthase gamma chain and elongation factor 1-alpha were confirmed by Western blotting by comparison to levels of cytochrome c which were unchanged upon histatin treatment. The mTRAQ and ICAT proteomics results suggest that key steps in the histatin 5 antifungal mechanism involve a bioenergetic collapse of C. albicans, caused essentially by a decrease in mitochondrial ATP synthesis.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, Massachusetts 02118, USA
- Department of Clinical Care Medicine, Division of Dentistry for Special Patients, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka Kanagawa 238-8580, Japan
| | - Erdjan Salih
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, Massachusetts 02118, USA
| | - Eva J. Helmerhorst
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, Massachusetts 02118, USA
| | - Gwynneth D. Offner
- Department of Medicine, Boston University Medical Center, 650 Albany Street, Boston, Massachusetts 02118, USA
| | - Frank G. Oppenheim
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
131
|
Lu Z, Wang Y, Zhai L, Che Q, Wang H, Du S, Wang D, Feng F, Liu J, Lai R, Yu H. Novel cathelicidin-derived antimicrobial peptides from Equus asinus. FEBS J 2010; 277:2329-39. [PMID: 20423460 DOI: 10.1111/j.1742-4658.2010.07648.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, EA-CATH1 and EA-CATH2 were identified from a constructed lung cDNA library of donkey (Equus asinus) as members of cathelicidin-derived antimicrobial peptides, using a nested PCR-based cloning strategy. Composed of 25 and 26 residues, respectively, EA-CATH1 and EA-CATH2 are smaller than most other cathelicidins and have no sequence homology to other cathelicidins identified to date. Chemically synthesized EA-CATH1 exerted potent antimicrobial activity against most of the 32 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, and minimal inhibitory concentration values against Gram-positive bacteria were mostly in the range of 0.3-2.4 microg mL(-1). EA-CATH1 showed an extraordinary serum stability and no haemolytic activity against human erythrocytes in a dose up to 20 microg mL(-1). CD spectra showed that EA-CATH1 mainly adopts an alpha-helical conformation in a 50% trifluoroethanol/water solution, but a random coil in aqueous solution. Scanning electron microscope observations of Staphylococcus aureus (ATCC2592) treated with EA-CATH1 demonstrated that EA-CATH could cause rapid disruption of the bacterial membrane, and in turn lead to cell lysis. This might explain the much faster killing kinetics of EA-CATH1 than conventional antibiotics revealed by killing kinetics data. In the presence of CaCl(2), EA-CATH1 exerted haemagglutination activity, which might potentiate an inhibition against the bacterial polyprotein interaction with the host erythrocyte surface, thereby possibly restricting bacterial colonization and spread.
Collapse
Affiliation(s)
- Zekuan Lu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Jang WS, Bajwa JS, Sun JN, Edgerton M. Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Mol Microbiol 2010; 77:354-70. [PMID: 20487276 PMCID: PMC2909388 DOI: 10.1111/j.1365-2958.2010.07210.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Salivary histatin 5 (Hst 5) is a cationic salivary protein with high fungicidal activity against Candida albicans. Binding to the cell wall followed by intracellular translocation is required for killing; however, specific binding components and critical toxic events are not understood. In this study, laminarin (β-1,3-glucan) but not sialic acid, mannan or pustulan mediated Hst 5 binding to C. albicans, and was disassociated by 100 mM NaCl. Time-lapse confocal microscopy revealed a dose-dependent rate of cytosolic uptake of Hst 5 that invariably preceded propidium iodide (PI) entry, demonstrating that translocation itself does not disrupt membrane integrity. Cell toxicity was manifest by vacuolar expansion followed by PI entrance; however, loss of endocytotic vacuolar trafficking of Hst 5 did not reduce killing. Extracellular NaCl (100 mM), but not sorbitol, prevented vacuolar expansion and PI entry in cells already containing cytosolic Hst 5, thus showing a critical role for ionic balance in Hst 5 toxicity. Hst 5 uptake, but not cell wall binding, was blocked by pretreatment with azide or carbonyl cyanide m-chlorophenylhydrazone; however, 10% of de-energized cells had membrane disruption. Thus, Hst 5 is capable of heterogeneous intracellular entry routes, but only direct cytosolic translocation causes cell death as a result of ionic efflux.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
133
|
Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010; 48:983-1001. [PMID: 20116425 PMCID: PMC3587154 DOI: 10.1016/j.freeradbiomed.2010.01.028] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/15/2022]
Abstract
Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
134
|
Abstract
Abstract
Histatins are a group of antimicrobial peptides, found in the saliva of man and some higher primates, which possess antifungal properties. Histatins bind to a receptor on the fungal cell membrane and enter the cytoplasm where they target the mitochondrion. They induce the non-lytic loss of ATP from actively respiring cells, which can induce cell death. In addition, they have been shown to disrupt the cell cycle and lead to the generation of reactive oxygen species. Their mode of action is distinct from those exhibited by the conventional azole and polyene drugs, hence histatins may have applications in controlling drug-resistant fungal infections. The possibility of utilising histatins for the control of fungal infections of the oral cavity is being actively pursued with the antifungal properties of topical histatin preparations and histatin-impregnated denture acrylic being evaluated. Initial clinical studies are encouraging, having demonstrated the safety and efficacy of histatin preparations in blocking the adherence of the yeast Candida albicans to denture acrylic, retarding plaque formation and reducing the severity of gingivitis. Histatins may represent a new generation of antimicrobial compounds for the treatment of oral fungal infections and have the advantage, compared with conventional antifungal agents, of being a normal component of human saliva with no apparent adverse effects on host tissues and having a mode of action distinct to azole and polyene antifungals.
Collapse
Affiliation(s)
- Kevin Kavanagh
- Medical Mycology Unit, Department of Biology, National Institute for Cellular Biotechnology, NUI Maynooth, Co. Kildare, Ireland.
| | | |
Collapse
|
135
|
Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie van Leeuwenhoek 2010; 97:413-7. [DOI: 10.1007/s10482-010-9417-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
136
|
Tay WM, Hanafy AI, Angerhofer A, Ming LJ. A plausible role of salivary copper in antimicrobial activity of histatin-5--metal binding and oxidative activity of its copper complex. Bioorg Med Chem Lett 2009; 19:6709-12. [PMID: 19846304 DOI: 10.1016/j.bmcl.2009.09.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 09/26/2009] [Accepted: 09/30/2009] [Indexed: 11/17/2022]
Abstract
Histatin-5 (Hn5) is an antimicrobial salivary peptide of 24 amino acids. Two specific metal-binding sites were revealed with electronic, NMR, and EPR spectroscopy. The complex Cu(2)(II)-Hn5 effectively oxidizes catechol, exhibiting enzyme-like kinetics (k(cat)=0.011 and 0.060 s(-1) and k(cat)/K(m)=19 and 50 M(-1)s(-1) without and with 12.8mM H(2)O(2), respectively). The significant oxidative activity may contribute to the biological activity of this antibiotic metallopeptide.
Collapse
Affiliation(s)
- William M Tay
- Department of Chemistry and MBIG, University of South Florida, Tampa, FL 33620-5250, USA
| | | | | | | |
Collapse
|
137
|
|
138
|
Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA. A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 2009; 4:e5039. [PMID: 19352427 PMCID: PMC2661360 DOI: 10.1371/journal.pone.0005039] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/03/2009] [Indexed: 11/18/2022] Open
Abstract
Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps), involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap) family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the first defined mechanism behind the enhanced susceptibility of HIV+ individuals to oral candidiasis since the emergence of HIV.
Collapse
Affiliation(s)
- Timothy F. Meiller
- Department of Oncology and Diagnostic Sciences, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland Medical System, Baltimore, Maryland, United States of America
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute (HKI), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Lydia Schild
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute (HKI), Jena, Germany
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, Dental School, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
| | - Mark A. Scheper
- Department of Oncology and Diagnostic Sciences, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenbaum Cancer Center, University of Maryland Medical System, Baltimore, Maryland, United States of America
| | - Robert Winkler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute (HKI), Jena, Germany
| | - Amy Ton
- Department of Oncology and Diagnostic Sciences, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
- Department of Pathology, School of Medicine, University of Maryland – Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
139
|
Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. MICROBIOLOGY-SGM 2009; 155:413-423. [PMID: 19202089 DOI: 10.1099/mic.0.023309-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Signal transduction pathways mediated by mitogen-activated protein kinases (MAPKs) play crucial roles in eukaryotic cells. In the pathogenic fungus Candida albicans the HOG MAPK pathway regulates the response to external stresses (osmotic and oxidative among others) and is involved in morphogenesis and virulence. We show here that the lack of the Hog1 MAPK increases the sensitivity of this fungus to inhibitors of the respiratory chain. hog1 mutants also show an enhanced basal respiratory rate compared to parental strains, and higher levels of intracellular reactive oxygen species despite an increased expression of detoxifying enzymes. We also demonstrate that although oxidative phosphorylation is essentially unaffected, hog1 mutants have an altered mitochondrial membrane potential. Data indicate that hog1-defective mutants are more dependent on mitochondrial ATP synthesis, probably due to an increased cellular ATP demand. Our results therefore link a MAPK pathway with respiratory metabolism in pathogenic fungi.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sara Carvaihlo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Cesar Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Eduardo Rial
- Departamento de Ciencias de Proteínas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
140
|
Imamura Y, Fujigaki Y, Oomori Y, Ouryouji K, Yanagisawa S, Miyazawa H, Wang PL. Transcriptional regulation of the salivary histatin gene: finding of a strong positive regulatory element and its binding protein. J Biochem 2008; 145:279-88. [PMID: 19060311 DOI: 10.1093/jb/mvn165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Histatins are salivary proteins found and expressed in human salivary glands. They play a role in the non-immune system of antimicrobial defense, for instance, against Candida albicans. The transcriptional regulatory sequences of the histatin gene, HIS1, have remained obscure for a long time. Here, we cloned the putative promoter from human genomic DNA and tested it in a luciferase reporter system. This promoter is much more active in salivary gland cells than in other cell types. Analysis of deletion mutants revealed that the region encompassing -2254 to -1748 is a strong positive transcriptional element, and its functional core sequence (termed HTN27 box) works in correct and reverse orientations in synergy with downstream sequences, the region spanning -680 to +28 and a proximal promoter. The plus single-stranded HTN27 box is specifically bound by a 100 kDa protein that is present in HSG cells, but not in HeLa cells. These findings indicate that the regulation of the histatin gene expression may be intricate, and it seems to have a cell-type preference in the salivary gland cells.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Department of Pharmacology, Matsumoto Dental University, Nagano 399-0781, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Houghton EA, Nicholas KM. In vitro reactive oxygen species production by histatins and copper(I,II). J Biol Inorg Chem 2008; 14:243-51. [DOI: 10.1007/s00775-008-0444-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/09/2008] [Indexed: 12/15/2022]
|
142
|
Fanali C, Inzitari R, Cabras T, Pisano E, Castagnola M, Celletti R, Manni A, Messana I. α-Defensin Levels in Whole Saliva of Totally Edentulous Subjects. Int J Immunopathol Pharmacol 2008; 21:845-9. [DOI: 10.1177/039463200802100409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Salivary levels of α-defensins 1–4 and histatins 1, 3 and 5 were determined in 11 totally edentulous patients, 11 younger healthy adults with normal gingival mucosa (Control group I) and 8 subjects, age-matched with edentulous patients, having a minimum of 25 teeth (Control group II). Whole saliva was treated with trifluoroacetic acid and the acidic soluble fraction analyzed by High Performance Liquid Chromatography-Mass Spectrometry. The area of the extracted ion current peaks was used for peptide quantification. Levels of α-defensinsl-4, but not of histatins, were significantly lower in totally edentulous patients with respect to both Control group I and Control group II. The two control groups did not show significant differences. The reduced level of oral α-defensins, which are mainly of crevicular origin, is most likely due to the absence of the gingival sulcus in the edentulous subjects. The near absence of α-defensins might be in part responsible for the higher vulnerability of the oral cavity to oral pathogen infections observed in totally edentulous patients.
Collapse
Affiliation(s)
- C. Fanali
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica and Istituto Scientifico Internazionale (ISI) per la Ricerca sulla Fertilità e l'Infertilità Umana - Paolo VI, Roma
| | - R. Inzitari
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica and Istituto Scientifico Internazionale (ISI) per la Ricerca sulla Fertilità e l'Infertilità Umana - Paolo VI, Roma
| | - T. Cabras
- Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari, Cagliari
| | - E. Pisano
- Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari, Cagliari
| | - M. Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica and Istituto Scientifico Internazionale (ISI) per la Ricerca sulla Fertilità e l'Infertilità Umana - Paolo VI, Roma
- Istituto di Chimica per il Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche (C.N.R.), Roma c/o Università Cattolica, Roma
| | - R. Celletti
- Dipartimento di Scienze Odontostomatologiche, Università “G. d'Annunzio”, Chieti
| | - A. Manni
- Istituto di Clinica Odontoiatrica, Università Cattolica, Roma, Italia
| | - I. Messana
- Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari, Cagliari
| |
Collapse
|
143
|
Mochon AB, Liu H. The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog 2008; 4:e1000190. [PMID: 18974864 PMCID: PMC2568956 DOI: 10.1371/journal.ppat.1000190] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides play an important role in host defense against microbial pathogens. Their high cationic charge and strong amphipathic structure allow them to bind to the anionic microbial cell membrane and disrupt the membrane bilayer by forming pores or channels. In contrast to the classical pore-forming peptides, studies on histatin-5 (Hst-5) have suggested that the peptide is transported into the cytoplasm of Candida albicans in a non-lytic manner, and cytoplasmic Hst-5 exerts its candicidal activities on various intracellular targets, consistent with its weak amphipathic structure. To understand how Hst-5 is internalized, we investigated the localization of FITC-conjugated Hst-5. We find that Hst-5 is internalized into the vacuole through receptor-mediated endocytosis at low extracellular Hst-5 concentrations, whereas under higher physiological concentrations, Hst-5 is translocated into the cytoplasm through a mechanism that requires a high cationic charge on Hst-5. At intermediate concentrations, two cell populations with distinct Hst-5 localizations were observed. By cell sorting, we show that cells with vacuolar localization of Hst-5 survived, while none of the cells with cytoplasmic Hst-5 formed colonies. Surprisingly, extracellular Hst-5, upon cell surface binding, induces a perturbation on the cell surface, as visualized by an immediate and rapid internalization of Hst-5 and propidium iodide or rhodamine B into the cytoplasm from the site using time-lapse microscopy, and a concurrent rapid expansion of the vacuole. Thus, the formation of a spatially restricted site in the plasma membrane causes the initial injury to C. albicans and offers a mechanism for its internalization into the cytoplasm. Our study suggests that, unlike classical channel-forming antimicrobial peptides, action of Hst-5 requires an energized membrane and causes localized disruptions on the plasma membrane of the yeast. This mechanism of cell membrane disruption may provide species-specific killing with minimal damage to microflora and the host and may be used by many other antimicrobial peptides.
Collapse
Affiliation(s)
- A. Brian Mochon
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
144
|
Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother 2008; 52:4081-8. [PMID: 18710913 DOI: 10.1128/aac.01597-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human lactoferrin (hLf) induced an apoptosis-like phenotype in Candida albicans cells, which includes phosphatidylserine externalization, nuclear chromatin condensation, DNA degradation, and increased reactive oxygen species (ROS) production. Intracellular ROS accumulation was seen to correlate with candidacidal activity in hLf-treated cells. Mitochondrial activity was involved as indicated by mitochondrial depolarization and increased hLf resistance of cells preincubated with sordarin or erythromycin, the latter of which inhibits protein synthesis in mitoribosomes. Interestingly, Cl(-)- and K(+)-channel blockers prevented the hLf antimicrobial activity, but only when cells were pretreated with the blocking agent (tetraethylammonium) prior to the hLf-induced K(+)-release period. These results indicate for the first time that K(+)-channel-mediated K(+) efflux is required for the progression of apoptosis-like process in yeast, suggesting that this essential apoptotic event of higher eukaryotes has been evolutionary conserved among species ranging from yeasts to humans.
Collapse
|
145
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
146
|
Stallmann HP, de Roo R, Faber C, Amerongen AVN, Wuisman PIJM. In vivo release of the antimicrobial peptide hLF1-11 from calcium phosphate cement. J Orthop Res 2008; 26:531-8. [PMID: 17972323 DOI: 10.1002/jor.20511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the release of human lactoferrin 1-11 (hLF1-11), a potent antimicrobial peptide, in an animal model. Calcium phosphate cement with 50 mg/g hLF1-11 was injected into the femoral canal of 12 rabbits. One, 3, and 7 days later, four animals were terminated, and the femora excised. Sections of bone and cement were removed for histological analysis. We used liquid chromatography-mass spectrometry/mass spectrometry for semiquantitative determination of the hLF1-11 concentration. Blood samples were drawn for leukocyte count and differentiation to identify a potential immunomodulating effect of hLF1-11. After an initial burst release, the hLF1-11 concentration in cement and bone decreased steadily. This in vivo release profile is consistent with earlier in vitro studies. Tissue ingrowth into the cement, without signs of inflammation or necrosis, was observed. Leukocytosis or a shift in leukocyte differentiation did not occur. The carrier released over 99% of the hLF1-11, resulting in peak concentrations at the cement-bone interface. This indicates that hLF1-11 could become a valuable prophylactic agent in osteomyelitis treatment.
Collapse
Affiliation(s)
- Hein P Stallmann
- Department of Orthopaedic Surgery, VU University Medical Center, P.O. Box 7057, Amsterdam, 1007 MB, The Netherlands.
| | | | | | | | | |
Collapse
|
147
|
Luque-Ortega JR, van't Hof W, Veerman ECI, Saugar JM, Rivas L. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 2008; 22:1817-28. [PMID: 18230684 DOI: 10.1096/fj.07-096081] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On these premises, Hst5 activity was assayed on both stages of its life cycle, promastigotes and amastigotes (LC(50)=7.3 and 14.4 microM, respectively). In a further step, its lethal mechanism was studied. The main conclusions drawn were as follows: 1) Hst5 causes limited and temporary damage to the plasma membrane of the parasites, as assessed by electron microscopy, depolarization, and entrance of the vital dye SYTOX Green; 2) Hst5 translocates into the cytoplasm of Leishmania in an achiral receptor-independent manner with accumulation into the mitochondrion, as shown by confocal microscopy; and 3) Hst5 produces a bioenergetic collapse of the parasite, caused essentially by the decrease of mitochondrial ATP synthesis through inhibition of F(1)F(0)-ATPase, with subsequent fast ATP exhaustion. By using the Hst5 enantiomer, it was found that the key steps of its lethal mechanism involved no chiral recognition. Hst5 thus constitutes the first leishmanicidal peptide with a defined nonstereospecific intracellular target. The prospects of its development, by its own or as a carrier molecule for other leishmanicidal molecules, into a novel anti-Leishmania drug with a preferential subcellular accumulation are discussed.
Collapse
|
148
|
Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. Drug-induced apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1436-48. [PMID: 18252203 DOI: 10.1016/j.bbamcr.2008.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/04/2023]
Abstract
In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.
Collapse
Affiliation(s)
- B Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
149
|
Vylkova S, Jang WS, Li W, Nayyar N, Edgerton M. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. EUKARYOTIC CELL 2007; 6:1876-88. [PMID: 17715369 PMCID: PMC2043398 DOI: 10.1128/ec.00039-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 07/27/2007] [Indexed: 01/24/2023]
Abstract
Histatin 5 (Hst 5) is a salivary cationic peptide that has toxicity for Candida albicans by inducing rapid cellular ion imbalance and cell volume loss. Microarray analyses of peptide-treated cells were used to evaluate global gene responses elicited by Hst 5. The major transcriptional response of C. albicans to Hst 5 was expression of genes involved in adaptation to osmotic stress, including production of glycerol (RHR2, SKO1, and PDC11) and the general stress response (CTA1 and HSP70). The oxidative-stress genes AHP1, TRX1, and GPX1 were mildly induced by Hst 5. Cell defense against Hst 5 was dependent on the Hog1 mitogen-activated protein kinase (MAPK) pathway, since C. albicans hog1/hog1 mutants were significantly hypersensitive to Hst 5 but not to Mkc1 MAPK or Cek1 MAPK mutants. Activation of the high-osmolarity glycerol (HOG) pathway was demonstrated by phosphorylation of Hog1 MAPK as well as by glycerol production following Hst 5 treatment in a dose-dependent manner. C. albicans cells prestressed with sorbitol were less sensitive to subsequent Hst 5 treatment; however, cells treated concurrently with osmotic stress and Hst 5 were hypersensitive to Hst 5. In contrast, cells subjected to oxidative stress had no difference in sensitivity to Hst 5. These results suggest a common underlying cellular response to osmotic stress and Hst 5. The HOG stress response pathway likely represents a significant and effective challenge to physiological levels of Hst 5 and other toxic peptides in fungal cells.
Collapse
Affiliation(s)
- Slavena Vylkova
- Department of Oral Biology, SUNY at Buffalo Main Street Campus, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
150
|
A Review of the Salivary Proteome and Peptidome and Saliva-derived Peptide Therapeutics. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9109-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|