101
|
Ishihara K, Nakamoto M, Nakao M. DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling. Hum Mol Genet 2017; 25:5383-5394. [PMID: 27798106 DOI: 10.1093/hmg/ddw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators partition the genome into functional units to control gene expression, particularly in complex chromosomal regions. The CCCTC-binding factor (CTCF) is an insulator-binding protein that functions in transcriptional regulation and higher-order chromatin formation. Variable CTCF-binding sites have been identified to be cell type-specific partly due to differential DNA methylation. Here, we show that DNA methylation-independent removable CTCF insulator is responsible for retinoic acid (RA)-mediated higher-order chromatin remodeling in the human HOXA gene locus. Detailed chromatin analysis characterized multiple CTCF-enriched sites and RA-responsive enhancers at this locus. These regulatory elements and transcriptionally silent HOXA genes are closely positioned under basal conditions. Notably, upon RA signaling, the RAR/RXR transcription factor induced loss of adjacent CTCF binding and changed the higher-order chromatin conformation of the overall locus. Targeted disruption of a CTCF site by genome editing with zinc finger nucleases and CRISPR/Cas9 system showed that the site is required for chromatin conformations that maintain the initial associations among insulators, enhancers and promoters. The results indicate that the initial chromatin conformation affects subsequent RA-induced HOXA gene activation. Our study uncovers that a removable insulator spatiotemporally switches higher-order chromatin and multiple gene activities via cooperation of CTCF and key transcription factors.
Collapse
Affiliation(s)
- Ko Ishihara
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masafumi Nakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
102
|
Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 2017; 129:1071-1081. [PMID: 28115366 PMCID: PMC5374731 DOI: 10.1182/blood-2016-09-692574] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.
Collapse
Affiliation(s)
- Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
103
|
Chan CP, Kok KH, Jin DY. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:147-166. [PMID: 29052136 DOI: 10.1007/978-981-10-5765-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4+ T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, 145 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
104
|
Miyazato P, Katsuya H, Fukuda A, Uchiyama Y, Matsuo M, Tokunaga M, Hino S, Nakao M, Satou Y. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci Rep 2016; 6:28324. [PMID: 27321866 PMCID: PMC4913254 DOI: 10.1038/srep28324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive.
Collapse
Affiliation(s)
- Paola Miyazato
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Hiroo Katsuya
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Asami Fukuda
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Yoshikazu Uchiyama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, Japan
| | - Misaki Matsuo
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Michiyo Tokunaga
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute for Molecular Biology and Embryology, Kumamoto University, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute for Molecular Biology and Embryology, Kumamoto University, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Science of Technology Agency, Tokyo, Japan
| | - Yorifumi Satou
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| |
Collapse
|
105
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
106
|
Miyazato P, Matsuo M, Katsuya H, Satou Y. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus. Viruses 2016; 8:v8060171. [PMID: 27322309 PMCID: PMC4926191 DOI: 10.3390/v8060171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases, such as adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/Tropic spastic paraparesis (HAM/TSP). As a retrovirus, its life cycle includes a step where HTLV-1 is integrated into the host genomic DNA and forms proviral DNA. In the chronic phase of the infection, HTLV‑1 is known to proliferate as a provirus via the mitotic division of the infected host cells. There are generally tens of thousands of infected clones within an infected individual. They exist not only in peripheral blood, but also in various lymphoid organs. Viral proteins encoded in HTLV-1 genome play a role in the proliferation and survival of the infected cells. As is the case with other chronic viral infections, HTLV-1 gene expression induces the activation of the host immunity against the virus. Thus, the transcription from HTLV-1 provirus needs to be controlled in order to evade the host immune surveillance. There should be a dynamic and complex regulation in vivo, where an equilibrium between viral antigen expression and host immune surveillance is achieved. The mechanisms regulating viral gene expression from the provirus are a key to understanding the persistent/latent infection with HTLV-1 and its pathogenesis. In this article, we would like to review our current understanding on this topic.
Collapse
Affiliation(s)
- Paola Miyazato
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Misaki Matsuo
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiroo Katsuya
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Yorifumi Satou
- International Research Center for Medical Sciences, Center for AIDS Research, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|