101
|
Vere G, Kealy R, Kessler BM, Pinto-Fernandez A. Ubiquitomics: An Overview and Future. Biomolecules 2020; 10:E1453. [PMID: 33080838 PMCID: PMC7603029 DOI: 10.3390/biom10101453] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| | - Rachel Kealy
- St Anne’s College, University of Oxford, Oxford OX2 6HS, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute (CAMS), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| |
Collapse
|
102
|
Yapa MM, Yu P, Liao F, Moore AG, Hua Z. Generation of a fertile ask1 mutant uncovers a comprehensive set of SCF-mediated intracellular functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:493-509. [PMID: 33543567 DOI: 10.1111/tpj.14939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/09/2020] [Indexed: 06/12/2023]
Abstract
Many eukaryotic intracellular processes employ protein ubiquitylation by ubiquitin E3 ligases for functional regulation or protein quality control. In plants, the multi-subunit Skp1-Cullin1-F-box (SCF) complexes compose the largest group of E3 ligases whose specificity is determined by a diverse array of F-box proteins. Although both sequence divergence and polymorphism of F-box genes well support a broad spectrum of SCF functions, experimental evidence is scarce due to the low number of identified SCF substrates. Taking advantage of the bridge role of Skp1 between F-box and Cullin1 in the complex, we systematically analyzed the functional influence of a well-characterized Arabidopsis Skp1-Like1 (ASK1) Ds insertion allele, ask1, in different Arabidopsis accessions. Through 10 generations of backcrossing with Columbia-0 (Col-0), we partially rescued the fertility of this otherwise sterile ask1 allele in Landsberg erecta, thus providing experimental evidence showing the polymorphic roles of SCF complexes. This ask1 mutant produces twisted rosette leaves, a reduced number of petals, fewer viable pollen grains, and larger embryos and seeds compared to Col-0. RNA-Seq-based transcriptome analysis of ask1 uncovered a large spectrum of SCF functions, which is greater than a 10-fold increase compared with previous studies. We also identified its hyposensitive responses to auxin and abscisic acid treatments and enhanced far-red light/phyA-mediated photomorphogenesis. Such diverse roles are consistent with the 20-30% reduction of ubiquitylation events in ask1 estimated by immunoblotting analysis in this work. Collectively, we conclude that ASK1 is a predominant Skp1 protein in Arabidopsis and that the fertile ask1 mutant allowed us to uncover a comprehensive set of SCF functions.
Collapse
Affiliation(s)
- Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Fanglei Liao
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Abigail G Moore
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
103
|
Abstract
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
Collapse
|
104
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
105
|
Ubiquitin-Conjugating Enzyme E2 E Inhibits the Accumulation of Rice Stripe Virus in Laodelphax striatellus (Fallén). Viruses 2020; 12:v12090908. [PMID: 32825037 PMCID: PMC7551955 DOI: 10.3390/v12090908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential protagonist in host-pathogen interactions. Among the three classes of enzymes in the UPS, ubiquitin-conjugating enzyme E2 plays a dual role in viral pathogenesis; however, the role of insect E2s in interactions with plant viruses is unclear. Twenty E2-encoding genes in Laodelphax striatellus, the small brown planthopper, were identified and classified into 17 groups by transcriptomic and phylogenetic analysis. Full-length cDNAs of four LstrE2s (LstrE2 A/E/G2/H) were obtained by rapid-amplification of cDNA ends (RACE-PCR) analysis. Expression of the four LstrE2s showed tissue- and development-specific patterns. RT-qPCR analyses revealed that Rice stripe viruse (RSV) infection increased the level of LstrE2 A/E/G2/H. Further study indicated that repression of LstrE2 E via RNAi caused significant increases in the expression of RSV coat protein mRNA and protein levels. These findings suggest that LstrE2 E inhibits RSV accumulation in the planthopper body. Understanding the function of LstrE2 E in RSV accumulation may ultimately result in the development of novel antiviral strategies.
Collapse
|
106
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
107
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
108
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
109
|
Regulatory effects of moxibustion on ubiquitin and NLRP3 proteins in colon of ulcerative colitis rats. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1162-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
110
|
Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov 2020; 6:23. [PMID: 32377373 PMCID: PMC7198486 DOI: 10.1038/s41421-020-0155-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
ATG8 family proteins are evolutionary conserved ubiquitin-like modifiers, which become attached to the headgroup of the membrane lipid phosphatidylethanolamine in a process referred to as lipidation. This reaction is carried out analogous to the conjugation of ubiquitin to its target proteins, involving the E1-like ATG7, the E2-like ATG3 and the E3-like ATG12-ATG5-ATG16 complex, which determines the site of lipidation. ATG8 lipidation is a hallmark of autophagy where these proteins are involved in autophagosome formation, the fusion of autophagosomes with lysosomes and cargo selection. However, it has become evident that ATG8 lipidation also occurs in processes that are not directly related to autophagy. Here we discuss recent insights into the targeting of ATG8 lipidation in autophagy and other pathways with special emphasis on the recruitment and activation of the E3-like complex.
Collapse
Affiliation(s)
- Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| |
Collapse
|
111
|
Tao NN, Zhang ZZ, Ren JH, Zhang J, Zhou YJ, Wai Wong VK, Kwan Law BY, Cheng ST, Zhou HZ, Chen WX, Xu HM, Chen J. Overexpression of ubiquitin-conjugating enzyme E2 L3 in hepatocellular carcinoma potentiates apoptosis evasion by inhibiting the GSK3β/p65 pathway. Cancer Lett 2020; 481:1-14. [PMID: 32268166 DOI: 10.1016/j.canlet.2020.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
Abstract
UBE2L3 is a ubiquitin-conjugating protein belonging to the E2 family that consists of 153 amino acid residues. In this study, we found that UBE2L3 was generally upregulated in clinical HCC samples compared to non-tumour samples and that there was a strong association between high UBE2L3 expression and tumour size, clinical grade and prognosis in HCC patients. UBE2L3 depletion inhibited the proliferation and induced the apoptosis of HCC cells. At the molecular level, we observed that UBE2L3 depletion enhanced the protein stability of GSK3β, thus promoting the expression and activation of GSK3β. Subsequently, activated GSK3β phosphorylated p65 and promoted its nuclear translocation to increase the expression of target genes, including PUMA, Bax, Bim, Bad, and Bid. In vivo, knockout of UBE2L3 in HCC cells inhibited tumour growth in orthotopic liver injection nude mouse models. Moreover, inhibition of p65 or GSK3β significantly restored the effects induced by UBE2L3 knockout in HCC. Together, this study reveals the stimulatory effect of UBE2L3 on HCC cell proliferation, suggesting that UBE2L3 may be an important pro-tumorigenic factor in liver carcinogenesis and a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Na-Na Tao
- Department of Infectious Disease, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhen-Zhen Zhang
- Department of Infectious Disease, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Zhang
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei-Xian Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Mei Xu
- Department of Infectious Disease, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Juan Chen
- Department of Infectious Disease, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
112
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
113
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
114
|
Ji Y, Yao J, Zhao Y, Zhai J, Weng Z, He Y. Extracellular ubiquitin levels are increased in coronary heart disease and associated with the severity of the disease. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:256-264. [PMID: 32077763 DOI: 10.1080/00365513.2020.1728783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: This study aimed to evaluate concentration of plasma extracellular ubiquitin (UB) in coronary heart disease (CHD) patients and its correlation with the disease severity.Methods: Levels of UB and stromal cell-derived factor-1a (SDF-1a) were measured in 60 healthy controls and 67 CHD cases. Coronary atherosclerosis was assessed with Gensini scoring system. Spearman correlation was used to evaluate the correlation between UB and low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) or SDF-1a. The receiver-operating characteristic (ROC) curve was established to assess the predictive value of UB.Results: Plasma UB levels were significantly higher in CHD patients than in controls (p < .0001), and the levels in those with acute myocardial infarction (AMI) were higher than stable angina pectoris (SAP) and unstable angina pectoris (UAP) groups (both p < .01). UB was also positively correlated with Gensini score, CRP, CK-MB and cTnI in CHD. ROC analysis of UB showed that the area under the curve (AUC) were 0.711 (95%CI, 0.623-0.799) and 0.778 (95%CI, 0.666-0.890) for CHD and acute coronary syndrome (ACS), respectively. Plasma SDF-1a levels were elevated in CHD patients but showed no significant correlation with UB concentration or the severity of the disease.Conclusion: Plasma UB concentration was increased in CHD and the change of UB levels may reflect the progression of CHD.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, China
| | - Yunxiao Zhao
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juping Zhai
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Weng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
115
|
Taylor NC, Hessman G, Kramer HB, McGouran JF. Probing enzymatic activity - a radical approach. Chem Sci 2020; 11:2967-2972. [PMID: 34122797 PMCID: PMC8157568 DOI: 10.1039/c9sc05258e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are known to have numerous important interactions with the ubiquitin cascade and their dysregulation is associated with several diseases, including cancer and neurodegeneration. They are an important class of enzyme, and activity-based probes have been developed as an effective strategy to study them. Existing activity-based probes that target the active site of these enzymes work via nucleophilic mechanisms. We present the development of latent ubiquitin-based probes that target DUBs via a site selective, photoinitiated radical mechanism. This approach differs from existing photocrosslinking probes as it requires a free active site cysteine. In contrast to existing cysteine reactive probes, control over the timing of the enzyme-probe reaction is possible as the alkene warhead is completely inert under ambient conditions, even upon probe binding. The probe's reactivity has been demonstrated against recombinant DUBs and to capture endogenous DUB activity in cell lysate. This allows more finely resolved investigations of DUBs.
Collapse
Affiliation(s)
- Neil C Taylor
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford Parks Road Oxford OX1 3PT UK
| | - Joanna F McGouran
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| |
Collapse
|
116
|
Cai Y, Su J, Wang N, Zhao W, Zhu M, Su S. Comprehensive analysis of the ubiquitome in rabies virus-infected brain tissue of Mus musculus. Vet Microbiol 2020; 241:108552. [DOI: 10.1016/j.vetmic.2019.108552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023]
|
117
|
Akinjiyan FA, Fazal A, Hild M, Beckwith REJ, Ross NT, Paulk J, Carbonneau S. A Novel Luminescence-Based High-Throughput Approach for Cellular Resolution of Protein Ubiquitination Using Tandem Ubiquitin Binding Entities (TUBEs). SLAS DISCOVERY 2020; 25:350-360. [PMID: 31997692 DOI: 10.1177/2472555219901261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery. Conventional approaches for studying ubiquitination either have high protein requirements or rely on exogenous or modified ubiquitin moieties, thus limiting their utility. In order to circumvent these issues, we developed a high-throughput live-cell assay that combines the NanoBiT luminescence-based technology with tandem ubiquitin binding entities (TUBEs) to resolve substrate ubiquitination. To demonstrate the effectiveness and utility of this assay, we studied compound-induced ubiquitination of the G to S Phase Transition 1 (GSPT1) protein. Using this assay, we characterized compounds with varying levels of GSPT1 ubiquitination activity. This method provides a live-cell-based approach for assaying substrate ubiquitination that can be adapted to study the kinetics of ubiquitin transfer onto a substrate protein of interest. In addition, our results show that this approach is portable for studying the ubiquitination of target proteins with diverse functions.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Aleem Fazal
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Marc Hild
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Rohan E J Beckwith
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Nathan T Ross
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Joshiawa Paulk
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Seth Carbonneau
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
118
|
Taylor NC, McGouran JF. Strategies to Target Specific Components of the Ubiquitin Conjugation/Deconjugation Machinery. Front Chem 2020; 7:914. [PMID: 31998698 PMCID: PMC6966607 DOI: 10.3389/fchem.2019.00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The regulation of ubiquitination status in the cell is controlled by ubiquitin ligases acting in tandem with deubiquitinating enzymes. Ubiquitination controls many key processes in the cell from division to death making its tight regulation key to optimal cell function. Activity based protein profiling has emerged as a powerful technique to study these important enzymes. With around 100 deubiquitinating enzymes and 600 ubiquitin ligases in the human genome targeting a subclass of these enzymes or even a single enzyme is a compelling strategy to unpick this complex system. In this review we will discuss different approaches adopted, including activity-based probes centered around ubiquitin-protein, ubiquitin-peptide and mutated ubiquitin scaffolds. We examine challenges faced and opportunities presented to increase specificity in activity-based protein profiling of the ubiquitin conjugation/deconjugation machinery.
Collapse
Affiliation(s)
- Neil C Taylor
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
119
|
Qi X, Tang X, Liu W, Fu X, Luo H, Ghimire S, Zhang N, Si H. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:438-446. [PMID: 31812009 DOI: 10.1016/j.plaphy.2019.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
The ubiquitin/26S proteasome pathway is widely related to plant growth and metabolism and response to treatment by specifically degrading ubiquitin-modified proteins, including RING-finger-type E3 ubiquitin ligase (RING). The RING finger protein (RFP) gene family, determining the specificity of the ubiquitination process, is numerous and complex in function. In this study, we constructed a pCEGFP-StRFP2 fusion protein expression vector and transformed it into tobacco to achieve transient expression, thereby confirming that StRFP2 is localized in the cell membrane and cytoplasm. The result of qRT-PCR analysis showed that StRFP2 gene was significantly expressed in potato leaves, and the expression level of StRFP2 was significantly up-regulated under drought treatment. The transgenic plants of overexpressing StRFP2 gene were obtained with Agrobacterium tumefaciens-mediated transformation. Plant height, stem diameter, root length, fresh weight and root-shoot ratio of transgenic plants were significantly higher than those of non-transgenic plants (WT), indicating that the growth of plants was significantly promoted after overexpression of StRFP2 gene. Under PEG osmotic stress, the expressional level of StRFP2 in transgenic potato plants was significantly higher than that of WT. Furthermore, the free proline content and CAT activity in transgenic plants were higher than WT, on the contrary, MDA was lower than WT, and transgenic plants have stronger water retention capacity under simulated drought stress treatment, which indicated that StRFP2 could strengthen the tolerance of plants responding to drought stress. The above evidence strongly suggested that the StRFP2 gene is obviously up-regulated expression by drought stress, thereby enhancing the drought tolerance of the potato.
Collapse
Affiliation(s)
- Xuehong Qi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyu Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shantwana Ghimire
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
120
|
IKEDA F. Diverse ubiquitin codes in the regulation of inflammatory signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:431-439. [PMID: 33177297 PMCID: PMC7725656 DOI: 10.2183/pjab.96.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin is a small protein used for posttranslational modification and it regulates every aspect of biological functions. Through a three-step cascade of enzymatic action, ubiquitin is conjugated to a substrate. Because ubiquitin itself can be post-translationally modified, this small protein generates various ubiquitin codes and triggers differing regulation of biological functions. For example, ubiquitin itself can be ubiquitinated, phosphorylated, acetylated, or SUMOylated. Via the type three secretion system, some bacterial effectors also modify the ubiquitin system in host cells. This review describes the general concept of the ubiquitin system as well as the fundamental functions of ubiquitin in the regulation of cellular responses during inflammation and bacterial infection.
Collapse
Affiliation(s)
- Fumiyo IKEDA
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
121
|
Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC, Martínez-Chantar ML. Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells 2019; 8:1575. [PMID: 31817258 PMCID: PMC6953033 DOI: 10.3390/cells8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches. On this basis, in the last years, several studies have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type, and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl modifications as well as novel strategies to assess the modified proteome can provide new insights into the overall role of Ubl modifications in liver fibrosis.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | | | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico;
| | - Marta Varela-Rey
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Teresa C. Delgado
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| |
Collapse
|
122
|
Wu M, Lu P, Yang Y, Liu L, Wang H, Xu Y, Chu J. LipoSVM: Prediction of Lysine Lipoylation in Proteins based on the Support Vector Machine. Curr Genomics 2019; 20:362-370. [PMID: 32476993 PMCID: PMC7235397 DOI: 10.2174/1389202919666191014092843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Lysine lipoylation which is a rare and highly conserved post-translational modification of proteins has been considered as one of the most important processes in the biological field. To obtain a comprehensive understanding of regulatory mechanism of lysine lipoylation, the key is to identify lysine lipoylated sites. The experimental methods are expensive and laborious. Due to the high cost and complexity of experimental methods, it is urgent to develop computational ways to predict lipoylation sites. Methodology In this work, a predictor named LipoSVM is developed to accurately predict lipoylation sites. To overcome the problem of an unbalanced sample, synthetic minority over-sampling technique (SMOTE) is utilized to balance negative and positive samples. Furthermore, different ratios of positive and negative samples are chosen as training sets. Results By comparing five different encoding schemes and five classification algorithms, LipoSVM is constructed finally by using a training set with positive and negative sample ratio of 1:1, combining with position-specific scoring matrix and support vector machine. The best performance achieves an accuracy of 99.98% and AUC 0.9996 in 10-fold cross-validation. The AUC of independent test set reaches 0.9997, which demonstrates the robustness of LipoSVM. The analysis between lysine lipoylation and non-lipoylation fragments shows significant statistical differences. Conclusion A good predictor for lysine lipoylation is built based on position-specific scoring matrix and support vector machine. Meanwhile, an online webserver LipoSVM can be freely downloaded from https://github.com/stars20180811/LipoSVM.
Collapse
Affiliation(s)
- Meiqi Wu
- Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengchao Lu
- Equipment Leasing Company of China Petroleum Pipeline Engineering Co., Ltd. 065000 Langfang City, Hebei Province, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Liwen Liu
- Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yan Xu
- Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jixun Chu
- Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
123
|
Tang C, Zhang WP. How Phosphorylation by PINK1 Remodels the Ubiquitin System: A Perspective from Structure and Dynamics. Biochemistry 2019; 59:26-33. [PMID: 31503455 DOI: 10.1021/acs.biochem.9b00715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubiquitin is an important signaling protein in cells. It functions by covalent attachment to substrate proteins and by noncovalent interactions with target proteins. Ubiquitins are also concatenated, and the resulting polyubiquitins recognize target proteins multivalently with enhanced specificity. The function of ubiquitin is enabled by the conformational dynamics of ubiquitin and polyubiquitins, which spans over 12 orders of magnitude in a time scale. Recently, it was found that ubiquitin can be phosphorylated by PINK1 at residues S65 and T66. Only sparsely populated for the unmodified ubiquitin, a C-terminally retracted conformation is stabilized for phosphorylated ubiquitin and is further enriched at an increasing pH. The modulation of tertiary structure further impacts the quaternary arrangements of ubiquitin subunits in polyubiquitins. Additionally, ubiquitin phosphorylation inhibits the activities of many enzymes responsible for attaching and removing polyubiquitins, thus remodeling the composition and length of polyubiquitins. The phosphorylation-remolded polyubiquitins can then recognize different target proteins. As PINK1 and ubiquitin phosphorylation levels are up-regulated under certain pathophysiological conditions, the remodeled ubiquitin system may be involved in the divergence of cell fate.
Collapse
Affiliation(s)
- Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan , Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences , Wuhan , Hubei 430071 , China
| | - Wei-Ping Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
124
|
Swayden M, Alzeeb G, Masoud R, Berthois Y, Audebert S, Camoin L, Hannouche L, Vachon H, Gayet O, Bigonnet M, Roques J, Silvy F, Carrier A, Dusetti N, Iovanna JL, Soubeyran P. PML hyposumoylation is responsible for the resistance of pancreatic cancer. FASEB J 2019; 33:12447-12463. [PMID: 31557059 DOI: 10.1096/fj.201901091r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to its rapidly acquired resistance to all conventional treatments. Despite drug-specific mechanisms of resistance, none explains how these cells resist the stress induced by any kind of anticancer treatment. Activation of stress-response pathways relies on the post-translational modifications (PTMs) of involved proteins. Among all PTMs, those mediated by the ubiquitin family of proteins play a central role. Our aim was to identify alterations of ubiquitination, neddylation, and sumoylation associated with the multiresistant phenotype and demonstrate their implications in the survival of PDAC cells undergoing treatment. This approach pointed at an alteration of promyelocytic leukemia (PML) protein sumoylation associated with both gemcitabine and oxaliplatin resistance. We could show that this alteration of PML sumoylation is part of a general mechanism of drug resistance, which in addition involves the abnormal activation of NF-κB and cAMP response element binding pathways. Importantly, using patient-derived tumors and cell lines, we identified a correlation between the levels of PML expression and sumoylation and the sensitivity of tumors to anticancer treatments.-Swayden, M., Alzeeb, G., Masoud, R., Berthois, Y., Audebert, S., Camoin, L., Hannouche, L., Vachon, H., Gayet, O., Bigonnet, M., Roques, J., Silvy, F., Carrier, A., Dusetti, N., Iovanna, J. L., Soubeyran, P. PML hyposumoylation is responsible for the resistance of pancreatic cancer.
Collapse
Affiliation(s)
- Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - George Alzeeb
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Rawand Masoud
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Yolande Berthois
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Laurent Hannouche
- Transcriptomique and Génomique Marseille Luminy (TGML), Théories et Approches de la Complexité Génomique (TAGC), INSERM, Aix-Marseille University, Marseille, France
| | - Hortense Vachon
- Transcriptomique and Génomique Marseille Luminy (TGML), Théories et Approches de la Complexité Génomique (TAGC), INSERM, Aix-Marseille University, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Julie Roques
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Françoise Silvy
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| |
Collapse
|
125
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
126
|
Abstract
Protein homeostasis is essential for the survival of cells. It is closely related to the functioning of the ubiquitin-proteasome system, which utilizes the small protein ubiquitin as a posttranslational modifier (PTM). Clinically, the modification is of great importance as its disruption is the cause of many diseases. Unlike other PTMs, ubiquitin can encode several cellular signals by being attached as a single molecule or as a chain of several ubiquitins in various conformations. Thus, ubiquitin signaling is dependent not only on the site of attachment but also on the chain type, the so-called ubiquitin chain topology.The most reliable quantification method for the chain topology uses a bottom-up targeted mass spectrometry-based proteomics technique. While similar to other targeted proteomics techniques, the measurement of ubiquitination chain topology is complicated. First, the ubiquitin chains in the sample have to be biochemically stabilized. Second, the selection of peptides for the analysis is restricted to a given set harboring the PTMs and does not allow for optimization for amenability to mass spectrometry-based quantification. Instead, the topology-characteristic peptides are fixed. We here present such a methodology, including notes for a successful application.
Collapse
|
127
|
Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R. Ubiquitination and SUMOylation in HIV Infection: Friends and Foes. Curr Issues Mol Biol 2019; 35:159-194. [PMID: 31422939 DOI: 10.21775/cimb.035.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As intracellular parasites, viruses hijack the cellular machinery to facilitate their replication and spread. This includes favouring the expression of their viral genes over host genes, appropriation of cellular molecules, and manipulation of signalling pathways, including the post-translational machinery. HIV, the causative agent of AIDS, is notorious for using post-translational modifications to generate infectious particles. Here, we discuss the mechanisms by which HIV usurps the ubiquitin and SUMO pathways to modify both viral and host factors to achieve a productive infection, and also how the host innate sensing system uses these post-translational modifications to hinder HIV replication.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
128
|
Shastri S, Chatterjee B, Thakur SS. Achievements in Cancer Research and its Therapeutics in Hundred Years. Curr Top Med Chem 2019; 19:1545-1562. [PMID: 31362690 DOI: 10.2174/1568026619666190730093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Cancer research has progressed leaps and bounds over the years. This review is a brief overview of the cancer research, milestone achievements and therapeutic studies on it over the one hundred ten years which would give us an insight into how far we have come to understand and combat this fatal disease leading to millions of deaths worldwide. Modern biology has proved that cancer is a very complex disease as still we do not know precisely how it triggers. It involves several factors such as protooncogene, oncogene, kinase, tumor suppressor gene, growth factor, signalling cascade, micro RNA, immunity, environmental factors and carcinogens. However, modern technology now helps the cancer patient on the basis of acquired and established knowledge in the last hundred years to save human lives.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suman S Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
129
|
Yang KC, Cui FC, Shi C, Chen WD, Li YQ. Evolution of Conformation and Dynamics of Solvents in Hydration Shell along the Urea-induced Unfolding of Ubiquitin. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2238-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
130
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
131
|
Yang M, Jin Y, Fan S, Liang X, Jia J, Tan Z, Huang T, Li Y, Ma T, Li M. Inhibition of neddylation causes meiotic arrest in mouse oocyte. Cell Cycle 2019; 18:1254-1267. [PMID: 31111756 DOI: 10.1080/15384101.2019.1617453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mammalian oocyte meiosis is a special form of cell division that provides haploid gametes for fertilization. Unlike in mitosis, post-translational modifications (PTMs) are more crucial during meiosis because of the absence of de novo mRNA transcription. As a classic PTM, protein neddylation is a biological process that mediates protein degradation by modifying cullin proteins and activating the Cullin-Ring E3 ligases. This process plays important roles in various biological processes such as autophagy and tumorigenesis. However, the function of neddylation in germ cells is unknown. In this study, we observed that the inhibition of neddylation by its specific inhibitor MLN4924 significantly arrests mouse oocyte at the stage of metaphase during meiosis. The arrested oocytes display impaired spindles with over-activation of spindle assembly checkpoint (SAC). Accordingly, we identified early mitosis inhibitor 1 (Emi1), a key inhibitor of anaphase-promoting complex/cyclosome (APC/CFzr1), as a substrate of neddylation-mediated protein degradation. Thus, our study uncovered an unknown role of neddylation in female germ cells and suggests that proper neddylation is essential for oocyte maturation.
Collapse
Affiliation(s)
- Mo Yang
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Yimei Jin
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Siying Fan
- c The Affiliated High School of Peking University , Beijing , China
| | - Xiaoling Liang
- d Department of Obstetrics and Gynecology , Peking University Shenzhen Hospital , Shenzhen , China
| | - Jialin Jia
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Zhongzhou Tan
- e School of Basic Medical Sciences , Peking University , Beijing , China
| | - Tao Huang
- e School of Basic Medical Sciences , Peking University , Beijing , China
| | - Yuan Li
- f Medical Center for Human Reproduction, Beijing Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Teng Ma
- g Department of Cellular and Molecular Biology , Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute , Beijing , China.,h Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Mo Li
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| |
Collapse
|
132
|
Jackson EK, Mi E, Ritov VB, Gillespie DG. Extracellular Ubiquitin(1-76) and Ubiquitin(1-74) Regulate Cardiac Fibroblast Proliferation. Hypertension 2019; 72:909-917. [PMID: 30354710 DOI: 10.1161/hypertensionaha.118.11666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SDF-1α (stromal cell-derived factor-1α) is a CXCR4-receptor agonist and DPP4 (dipeptidyl peptidase 4) substrate. SDF-1α, particularly when combined with sitagliptin to block the metabolism of SDF-1α by DPP4, stimulates proliferation of cardiac fibroblasts via the CXCR4 receptor; this effect is greater in cells from spontaneously hypertensive rats versus Wistar-Kyoto normotensive rats. Emerging evidence indicates that ubiquitin(1-76) exists in plasma and is a potent CXCR4-receptor agonist. Therefore, we hypothesized that ubiquitin(1-76), similar to SDF-1α, should increase proliferation of cardiac fibroblasts. Contrary to our working hypothesis, ubiquitin(1-76) did not stimulate cardiac fibroblast proliferation, yet unexpectedly antagonized the proproliferative effects of SDF-1α combined with sitagliptin. In this regard, ubiquitin(1-76) was more potent in spontaneously hypertensive versus Wistar-Kyoto cells. In the presence of 6bk (selective inhibitor of insulin-degrading enzyme [IDE]; an enzyme known to convert ubiquitin(1-76) to ubiquitin(1-74)), ubiquitin(1-76) no longer antagonized the proproliferative effects of SDF-1α/sitagliptin. Ubiquitin(1-74) also antagonized the proproliferative effects of SDF-1α/sitagliptin, and this effect of ubiquitin(1-74) was not blocked by 6bk and was >10-fold more potent compared with ubiquitin(1-76). Neither ubiquitin(1-76) nor ubiquitin(1-74) inhibited the proproliferative effects of the non-CXCR4 receptor agonist neuropeptide Y (activates Y1 receptors). Cardiac fibroblasts expressed IDE mRNA, protein, and activity and converted ubiquitin(1-76) to ubiquitin(1-74). Spontaneously hypertensive fibroblasts expressed greater IDE activity. Extracellular ubiquitin(1-76) blocks the proproliferative effects of SDF-1α/sitagliptin via its conversion by IDE to ubiquitin(1-74), a potent CXCR4 antagonist. Thus, IDE inhibitors, particularly when combined with DPP4 inhibitors or hypertension, could increase the risk of cardiac fibrosis.
Collapse
Affiliation(s)
- Edwin K Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Eric Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Vladimir B Ritov
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Delbert G Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
133
|
Role of deubiquitinases in DNA damage response. DNA Repair (Amst) 2019; 76:89-98. [PMID: 30831436 DOI: 10.1016/j.dnarep.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.
Collapse
|
134
|
Fu H, Yang Y, Wang X, Wang H, Xu Y. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins. BMC Bioinformatics 2019; 20:86. [PMID: 30777029 PMCID: PMC6379983 DOI: 10.1186/s12859-019-2677-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Protein ubiquitination occurs when the ubiquitin protein binds to a target protein residue of lysine (K), and it is an important regulator of many cellular functions, such as signal transduction, cell division, and immune reactions, in eukaryotes. Experimental and clinical studies have shown that ubiquitination plays a key role in several human diseases, and recent advances in proteomic technology have spurred interest in identifying ubiquitination sites. However, most current computing tools for predicting target sites are based on small-scale data and shallow machine learning algorithms. Results As more experimentally validated ubiquitination sites emerge, we need to design a predictor that can identify lysine ubiquitination sites in large-scale proteome data. In this work, we propose a deep learning predictor, DeepUbi, based on convolutional neural networks. Four different features are adopted from the sequences and physicochemical properties. In a 10-fold cross validation, DeepUbi obtains an AUC (area under the Receiver Operating Characteristic curve) of 0.9, and the accuracy, sensitivity and specificity exceeded 85%. The more comprehensive indicator, MCC, reaches 0.78. We also develop a software package that can be freely downloaded from https://github.com/Sunmile/DeepUbi. Conclusion Our results show that DeepUbi has excellent performance in predicting ubiquitination based on large data. Electronic supplementary material The online version of this article (10.1186/s12859-019-2677-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongli Fu
- Department of Information and Computing Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingxi Yang
- Department of Information and Computing Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaobo Wang
- Department of Information and Computing Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hui Wang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Xu
- Department of Information and Computing Science, University of Science and Technology Beijing, Beijing, 100083, China. .,Beijing Key Laboratory for Magneto-photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
135
|
Han HG, Moon HW, Jeon YJ. ISG15 in cancer: Beyond ubiquitin-like protein. Cancer Lett 2018; 438:52-62. [DOI: 10.1016/j.canlet.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
|
136
|
He F, Wang R, Li J, Bao L, Xu D, Zhao X. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture. BMC SYSTEMS BIOLOGY 2018; 12:109. [PMID: 30463553 PMCID: PMC6249717 DOI: 10.1186/s12918-018-0628-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ubiquitination, which is also called "lysine ubiquitination", occurs when an ubiquitin is attached to lysine (K) residues in targeting proteins. As one of the most important post translational modifications (PTMs), it plays the significant role not only in protein degradation, but also in other cellular functions. Thus, systematic anatomy of the ubiquitination proteome is an appealing and challenging research topic. The existing methods for identifying protein ubiquitination sites can be divided into two kinds: mass spectrometry and computational methods. Mass spectrometry-based experimental methods can discover ubiquitination sites from eukaryotes, but are time-consuming and expensive. Therefore, it is priority to develop computational approaches that can effectively and accurately identify protein ubiquitination sites. RESULTS The existing computational methods usually require feature engineering, which may lead to redundancy and biased representations. While deep learning is able to excavate underlying characteristics from large-scale training data via multiple-layer networks and non-linear mapping operations. In this paper, we proposed a deep architecture within multiple modalities to identify the ubiquitination sites. First, according to prior knowledge and biological knowledge, we encoded protein sequence fragments around candidate ubiquitination sites into three modalities, namely raw protein sequence fragments, physico-chemical properties and sequence profiles, and designed different deep network layers to extract the hidden representations from them. Then, the generative deep representations corresponding to three modalities were merged to build the final model. We performed our algorithm on the available largest scale protein ubiquitination sites database PLMD, and achieved 66.4% specificity, 66.7% sensitivity, 66.43% accuracy, and 0.221 MCC value. A number of comparative experiments also indicated that our multimodal deep architecture outperformed several popular protein ubiquitination site prediction tools. CONCLUSION The results of comparative experiments validated the effectiveness of our deep network and also displayed that our method outperformed several popular protein ubiquitination site prediction tools. The source codes of our proposed method are available at https://github.com/jiagenlee/deepUbiquitylation .
Collapse
Affiliation(s)
- Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China.,Institution of Computational Biology, Northeast Normal University, Changchun, 130117, China
| | - Rui Wang
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China
| | - Jiagen Li
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China
| | - Lingling Bao
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Xiaowei Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China. .,Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
137
|
Terse VL, Gosavi S. The Sensitivity of Computational Protein Folding to Contact Map Perturbations: The Case of Ubiquitin Folding and Function. J Phys Chem B 2018; 122:11497-11507. [PMID: 30234303 DOI: 10.1021/acs.jpcb.8b07409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin is a small model protein, commonly used in protein folding experiments and simulations. We simulated ubiquitin using a well-tested structure-based model coarse-grained to a Cα level (Cα-SBM) and found that the simulated folding route did not agree with the experimentally observed one. Simulating the Cα-SBM with a cutoff contact map, instead of a screened contact map, switched the folding route with the new route matching the experimental route. Thus, the simulated folding of ubiquitin is sensitive to contact map definition. The screened contact map, which is used in folding simulations because it captures protein folding cooperativity, removes contacts in which the atoms in contact are occluded by a third atom and is less sensitive to the value of the cutoff distance in well-packed regions of the protein. In sparsely packed regions, the larger cutoff distance creates bridging contacts between atoms which are separated by voids. Such contacts do not seem to affect the folding of most proteins, including those of the ubiquitin fold. However, the surface of ubiquitin has several protruding functional side chains which naturally create bridging contacts. Together, our results show that subtle structural features of a protein that may not be apparent by mere observation can be identified by comparing folding simulations of SBMs in which these features are differently encoded. When such structural features are preserved for functional reasons, differences in computational folding can be leveraged to identify functional features. Notably, such features are accessible to a gradation of SBMs even in commonly studied proteins such as ubiquitin.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| |
Collapse
|
138
|
Abstract
In this issue of Cell Chemical Biology,De Cesare et al. (2018) report the development of a high-throughput assay that measures E2/E3 enzyme activity by MALDI-TOF mass spectrometry and apply this to screen for small molecule E3 inhibitors. This assay potentially accelerates the drug discovery for the ubiquitin ligation pathway.
Collapse
Affiliation(s)
- Bianca D M van Tol
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Paul P Geurink
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
139
|
Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 2018; 25:67. [PMID: 30176860 PMCID: PMC6122628 DOI: 10.1186/s12929-018-0470-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
Ubiquitination modulates a large repertoire of cellular functions and thus, dysregulation of the ubiquitin system results in multiple human diseases, including cancer. Ubiquitination requires an E3 ligase, which is responsible for substrate recognition and conferring specificity to ubiquitination. HUWE1 is a multifaceted HECT domain-containing ubiquitin E3 ligase, which catalyzes both mono-ubiquitination and K6-, K48- and K63-linked poly-ubiquitination of its substrates. Many of the substrates of HUWE1 play a crucial role in maintaining the homeostasis of cellular development. Not surprisingly, dysregulation of HUWE1 is associated with tumorigenesis and metastasis. HUWE1 is frequently overexpressed in solid tumors, but can be downregulated in brain tumors, suggesting that HUWE1 may possess differing cell-specific functions depending on the downstream targets of HUWE1. This review introduces some important discoveries of the HUWE1 substrates, including those controlling proliferation and differentiation, apoptosis, DNA repair, and responses to stress. In addition, we review the signaling pathways HUWE1 participates in and obstacles to the identification of HUWE1 substrates. We also discuss up-to-date potential therapeutic designs using small molecules or ubiquitin variants (UbV) against the HUWE1 activity. These molecular advances provide a translational platform for future bench-to-bed studies. HUWE1 is a critical ubiquitination modulator during the tumor progression and may serve as a possible therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan.
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, 500, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan. .,Institute of New Drug Development, Taichung, 40402, Taiwan. .,Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Departmet of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
140
|
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 2018; 145:145/16/dev164038. [PMID: 30166318 PMCID: PMC6124540 DOI: 10.1242/dev.164038] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level. Summary: New markers for specific cell types in the developing human kidney are identified and computational approaches infer developmental trajectories and interrogate the complex network of signaling pathways and cellular transitions.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Kokoruda
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristina Cebrián
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
141
|
Alva N, Panisello-Roselló A, Flores M, Roselló-Catafau J, Carbonell T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J Gastroenterol 2018; 24:3521-3530. [PMID: 30131658 PMCID: PMC6102496 DOI: 10.3748/wjg.v24.i31.3521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury (IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.
Collapse
Affiliation(s)
- Norma Alva
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Marta Flores
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
142
|
Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol 2018; 28:926-940. [PMID: 30107971 DOI: 10.1016/j.tcb.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Manipulation of host protein post-translational modifications (PTMs) is used by various pathogens to interfere with host cell functions. Among these modifications, ubiquitin (UBI) and ubiquitin-like proteins (UBLs) constitute key targets because they are regulators of pathways essential for the host cell. In particular, these PTM modifiers control pathways that have been described as crucial for infection such as pathogen entry, replication, propagation, or detection by the host. Although bacterial pathogens lack eucaryotic-like UBI or UBL systems, many of them produce proteins that specifically interfere with these host PTMs during infection. In this review we discuss the different mechanisms used by bacteria to interfere with host UBI and the two UBLs, SUMO and NEDD8.
Collapse
|
143
|
Kavyani S, Dadvar M, Modarress H, Amjad-Iranagh S. Molecular Perspective Mechanism for Drug Loading on Carbon Nanotube–Dendrimer: A Coarse-Grained Molecular Dynamics Study. J Phys Chem B 2018; 122:7956-7969. [PMID: 30067904 DOI: 10.1021/acs.jpcb.8b04434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sajjad Kavyani
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Mitra Dadvar
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| |
Collapse
|
144
|
Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:65-110. [PMID: 30712675 DOI: 10.1016/bs.ircmb.2018.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitination is a prevalent post-translation modification system that is involved in almost all aspects of eukaryotic biology. It involves the attachment of ubiquitin, a small, highly conserved protein to selected substrates. The most notable function of ubiquitin is the targeting of modified proteins to the multi-proteolytic 26S proteasome complex for degradation. The ubiquitin proteasome system (UPS) regulates the abundance of numerous enzymes, structural and regulatory proteins ensuring proper cellular function. Plants utilize the UPS to facilitate cellular changes required to respond to and tolerate adverse growth conditions. In this review, the regulatory role of the UPS in responses to abiotic stress is discussed, particularly the function of ubiquitin-dependent degradation in the suppression, activation and attenuation or termination of stress signaling.
Collapse
|
145
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
146
|
Ubiquitin System. Int J Mol Sci 2018; 19:ijms19041080. [PMID: 29617326 PMCID: PMC5979459 DOI: 10.3390/ijms19041080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
|
147
|
Kivinen N. The role of autophagy in age-related macular degeneration. Acta Ophthalmol 2018; 96 Suppl A110:1-50. [PMID: 29633521 DOI: 10.1111/aos.13753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niko Kivinen
- Department of Ophthalmology; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
148
|
Neuronal Proteomic Analysis of the Ubiquitinated Substrates of the Disease-Linked E3 Ligases Parkin and Ube3a. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3180413. [PMID: 29693004 PMCID: PMC5859835 DOI: 10.1155/2018/3180413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Both Parkin and UBE3A are E3 ubiquitin ligases whose mutations result in severe brain dysfunction. Several of their substrates have been identified using cell culture models in combination with proteasome inhibitors, but not in more physiological settings. We recently developed the bioUb strategy to isolate ubiquitinated proteins in flies and have now identified by mass spectrometry analysis the neuronal proteins differentially ubiquitinated by those ligases. This is an example of how flies can be used to provide biological material in order to reveal steady state substrates of disease causing genes. Collectively our results provide new leads to the possible physiological functions of the activity of those two disease causing E3 ligases. Particularly, in the case of Parkin the novelty of our data originates from the experimental setup, which is not overtly biased by acute mitochondrial depolarisation. In the case of UBE3A, it is the first time that a nonbiased screen for its neuronal substrates has been reported.
Collapse
|
149
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
150
|
Otero-Mato JM, Montes-Campos H, Calvelo M, García-Fandiño R, Gallego LJ, Piñeiro Á, Varela LM. GADDLE Maps: General Algorithm for Discrete Object Deformations Based on Local Exchange Maps. J Chem Theory Comput 2018; 14:466-478. [DOI: 10.1021/acs.jctc.7b00861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J. Manuel Otero-Mato
- Nanomaterials,
Photonics and Soft Matter Group, Departamento de Física de
Partículas y Departamento de Física Aplicada, Facultade
de Física, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Hadrián Montes-Campos
- Nanomaterials,
Photonics and Soft Matter Group, Departamento de Física de
Partículas y Departamento de Física Aplicada, Facultade
de Física, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Department
of Organic Chemistry, Center for Research in Biological Chemistry
and Molecular Materials, University of Santiago de Compostela, Campus
Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- CIQUP,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo alegre, 687, P-4169-007 Porto, Portugal
| | - Luis J. Gallego
- Nanomaterials,
Photonics and Soft Matter Group, Departamento de Física de
Partículas y Departamento de Física Aplicada, Facultade
de Física, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Soft
Matter and Molecular Biophysics Group, Departamento de Física
Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Luis M. Varela
- Nanomaterials,
Photonics and Soft Matter Group, Departamento de Física de
Partículas y Departamento de Física Aplicada, Facultade
de Física, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| |
Collapse
|