101
|
Kujawa M, Ebner H, Leitner C, Hallberg BM, Prongjit M, Sucharitakul J, Ludwig R, Rudsander U, Peterbauer C, Chaiyen P, Haltrich D, Divne C. Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase. J Biol Chem 2006; 281:35104-15. [PMID: 16984920 DOI: 10.1074/jbc.m604718200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyranose 2-oxidase (P2Ox) participates in fungal lignin degradation by producing the H2O2 needed for lignin-degrading peroxidases. The enzyme oxidizes cellulose- and hemicellulose-derived aldopyranoses at C2 preferentially, but also on C3, to the corresponding ketoaldoses. To investigate the structural determinants of catalysis, covalent flavinylation, substrate binding, and regioselectivity, wild-type and mutant P2Ox enzymes were produced and characterized biochemically and structurally. Removal of the histidyl-FAD linkage resulted in a catalytically competent enzyme containing tightly, but noncovalently bound FAD. This mutant (H167A) is characterized by a 5-fold lower kcat, and a 35-mV lower redox potential, although no significant structural changes were seen in its crystal structure. In previous structures of P2Ox, the substrate loop (residues 452-457) covering the active site has been either disordered or in a conformation incompatible with carbohydrate binding. We present here the crystal structure of H167A in complex with a slow substrate, 2-fluoro-2-deoxy-D-glucose. Based on the details of 2-fluoro-2-deoxy-D-glucose binding in position for oxidation at C3, we also outline a probable binding mode for D-glucose positioned for regioselective oxidation at C2. The tentative determinant for discriminating between the two binding modes is the position of the O6 hydroxyl group, which in the C2-oxidation mode can make favorable interactions with Asp452 in the substrate loop and, possibly, a nearby arginine residue (Arg472). We also substantiate our hypothesis with steady-state kinetics data for the alanine replacements of Asp452 and Arg472 as well as the double alanine 452/472 mutant.
Collapse
Affiliation(s)
- Magdalena Kujawa
- School of Biotechnology, Royal Institute of Technology, Albanova University Center, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ. The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:751-60. [PMID: 16923016 DOI: 10.1111/j.1365-313x.2006.02826.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In mammals, the electron transfer flavoprotein (ETF) is a heterodimeric protein composed of two subunits, alpha and beta, that is responsible for the oxidation of at least nine mitochondrial matrix flavoprotein dehydrogenases. Electrons accepted by ETF are further transferred to the main respiratory chain via the ETF ubiquinone oxide reductase (ETFQO). Sequence analysis of the unique Arabidopsis homologues of two subunits of ETF revealed their high similarity to both subunits of the mammalian ETF. Yeast two-hybrid experiments showed that the Arabidopsis ETFalpha and ETFbeta can form a heteromeric protein. Isolation and characterization of two independent T-DNA insertional Arabidopsis mutants of the ETFbeta gene revealed accelerated senescence and early death compared to wild-type during extended darkness. Furthermore in contrast to wild-type, the etfb mutants demonstrated a significant accumulation of several amino acids, isovaleryl CoA and phytanoyl CoA during dark-induced carbohydrate deprivation. These phenotypic characteristics of etfb mutants are broadly similar to those that we observed previously in Arabidopsis etfqo mutants, suggesting functional association between ETF and ETFQO in Arabidopsis, and confirming the essential roles of the ETF/ETFQO electron transfer complex in the catabolism of leucine and involvement in the chlorophyll degradation pathway activated during dark-induced carbohydrate deprivation.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | |
Collapse
|
103
|
Schiff M, Froissart R, Olsen RKJ, Acquaviva C, Vianey-Saban C. Electron transfer flavoprotein deficiency: functional and molecular aspects. Mol Genet Metab 2006; 88:153-8. [PMID: 16510302 DOI: 10.1016/j.ymgme.2006.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/15/2006] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta- (28kDa) subunits encoded by the ETFA and ETFB genes, respectively. In the present study, we have analysed tissue samples from 16 unrelated patients with ETF deficiency, and we report the results of ETF activity, Western blot analysis and mutation analysis. The ETF assay provides a reliable diagnostic tool to confirm ETF deficiency in patients suspected to suffer from MADD. Activity ranged from less than 1 to 16% of controls with the most severely affected patients disclosing the lowest activity values. The majority of patients had mutations in the ETFA gene while only two of them harboured mutations in the ETFB gene. Nine novel disease-causing ETF mutations are reported.
Collapse
Affiliation(s)
- Manuel Schiff
- Centre de Référence Maladies Héréditaires du Métabolisme, Service de Biochimie Pédiatrique, Hôpital Debrousse, Lyon, France.
| | | | | | | | | |
Collapse
|
104
|
Toogood HS, van Thiel A, Scrutton NS, Leys D. Stabilization of Non-productive Conformations Underpins Rapid Electron Transfer to Electron-transferring Flavoprotein. J Biol Chem 2005; 280:30361-6. [PMID: 15975918 DOI: 10.1074/jbc.m505562200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7RH, Leicester United Kingdom
| | | | | | | |
Collapse
|
105
|
Shi W, Mersfelder J, Hille R. The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein. J Biol Chem 2005; 280:20239-46. [PMID: 15760891 DOI: 10.1074/jbc.m500582200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210-1218, USA
| | | | | |
Collapse
|
106
|
Fitzpatrick PF, Orville AM, Nagpal A, Valley MP. Nitroalkane oxidase, a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase. Arch Biochem Biophys 2005; 433:157-65. [PMID: 15581574 DOI: 10.1016/j.abb.2004.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/20/2004] [Indexed: 11/21/2022]
Abstract
While several flavoproteins will oxidize nitroalkanes in addition to their physiological substrates, nitroalkane oxidase (NAO) is the only one which does not require the anionic nitroalkane. This, in addition to the induction of NAO by nitroethane seen in Fusarium oxysporum, suggests that oxidation of a nitroaliphatic species is the physiological role of the enzyme. Mechanistic studies of the reaction with nitroethane as substrate have established many of the details of the enzymatic reaction. The enzyme is unique in being the only flavoprotein to date for which a carbanion is definitively established as an intermediate in catalysis. Recent structural analyses show that NAO is homologous to the acyl-CoA dehydrogenase and acyl-CoA oxidase families of enzymes. In NAO, the glutamate which acts as the active site base in the latter enzymes is replaced by an aspartate.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843-2128, USA.
| | | | | | | |
Collapse
|
107
|
Kanski J, Behring A, Pelling J, Schöneich C. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 2004; 288:H371-81. [PMID: 15345482 DOI: 10.1152/ajpheart.01030.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteomic techniques were used to identify cardiac proteins from whole heart homogenate and heart mitochondria of Fisher 344/Brown Norway F1 rats, which suffer protein nitration as a consequence of biological aging. Soluble proteins from young (5 mo old) and old (26 mo old) animals were separated by one- and two-dimensional gel electrophoresis. One- and two-dimensional Western blots with an anti-nitrotyrosine antibody show an age-related increase in the immunoresponse of a few specific proteins, which were identified by nanoelectrospray ionization-tandem mass spectrometry (NSI-MS/MS). Complementary proteins were immunoprecipitated with an immobilized anti-nitrotyrosine antibody followed by NSI-MS/MS analysis. A total of 48 proteins were putatively identified. Among the identified proteins were alpha-enolase, alpha-aldolase, desmin, aconitate hydratase, methylmalonate semialdehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA acetyltransferase, GAPDH, malate dehydrogenase, creatine kinase, electron-transfer flavoprotein, manganese-superoxide dismutase, F1-ATPase, and the voltage-dependent anion channel. Some contaminating blood proteins including transferrin and fibrinogen beta-chain precursor showed increased levels of nitration as well. MS/MS analysis located nitration at Y105 of the electron-transfer flavoprotein. Among the identified proteins, there are important enzymes responsible for energy production and metabolism as well as proteins involved in the structural integrity of the cells. Our results are consistent with age-dependent increased oxidative stress and with free radical-dependent damage of proteins. Possibly the oxidative modifications of the identified proteins contribute to the age-dependent degeneration and functional decline of heart proteins.
Collapse
Affiliation(s)
- Jaroslaw Kanski
- University of Kansas, Department of Pharmaceutical Chemistry, 2099 Constant Ave., Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
108
|
Parker AR. A single arginine residue is required for the interaction of the electron transferring flavoprotein (ETF) with three of its dehydrogenase partners. Mol Cell Biochem 2004; 254:91-100. [PMID: 14674686 DOI: 10.1023/a:1027349303797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.
Collapse
Affiliation(s)
- Antony R Parker
- Department of Biochemistry, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
109
|
Toogood HS, van Thiel A, Basran J, Sutcliffe MJ, Scrutton NS, Leys D. Extensive Domain Motion and Electron Transfer in the Human Electron Transferring Flavoprotein·Medium Chain Acyl-CoA Dehydrogenase Complex. J Biol Chem 2004; 279:32904-12. [PMID: 15159392 DOI: 10.1074/jbc.m404884200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
110
|
Abstract
Acyl-CoA dehydrogenases constitute a family of flavoproteins that catalyze the alpha,beta-dehydrogenation of fatty acid acyl-CoA conjugates. While they differ widely in their specificity, they share the same basic chemical mechanism of alpha,beta-dehydrogenation. Medium chain acyl-CoA dehydrogenase is probably the best-studied member of the class and serves as a model for the study of catalytic mechanisms. Based on medium chain acyl-CoA dehydrogenase we discuss the main factors that bring about catalysis, promote specificity and determine the selective transfer of electrons to electron transferring flavoprotein. The mechanism of alpha,beta-dehydrogenation is viewed as a process in which the substrate alphaC-H and betaC-H bonds are ruptured concertedly, the first hydrogen being removed by the active center base Glu376-COO- as an H+, the second being transferred as a hydride to the flavin N(5) position. Hereby the pKa of the substrate alphaC-H is lowered from > 20 to approximately 8 by the effect of specific hydrogen bonds. Concomitantly, the pKa of Glu376-COO- is also raised to 8-9 due to the decrease in polarity brought about by substrate binding. The kinetic sequence of medium chain acyl-CoA dehydrogenase is rather complex and involves several intermediates. A prominent one is the molecular complex of reduced enzyme with the enoyl-CoA product that is characterized by an intense charge transfer absorption and serves as the point of transfer of electrons to the electron transferring flavoprotein. These views are also discussed in the context of the accompanying paper on the three-dimensional properties of acyl-CoA dehydrogenases.
Collapse
Affiliation(s)
- Sandro Ghisla
- Department of Biology, University of Konstanz, Germany.
| | | |
Collapse
|
111
|
Kim JJP, Miura R. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:483-93. [PMID: 14728675 DOI: 10.1046/j.1432-1033.2003.03948.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present in mitochondria and peroxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect to the catalytic mechanism and its broad chain length specificity. Comparing the structures of four other acyl-CoA dehydrogenases provides further insights into the structural basis for the substrate specificity of each of these enzymes. In addition, the structure of peroxisomal acyl-CoA oxidase II from rat liver is compared to that of medium chain acyl-CoA dehydrogenase, and the structural basis for their different oxidative half reactions is discussed.
Collapse
Affiliation(s)
- Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
112
|
Parker AR. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue. J Enzyme Inhib Med Chem 2003; 18:453-62. [PMID: 14692513 DOI: 10.1080/1475636031000138741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.
Collapse
Affiliation(s)
- Antony R Parker
- Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
113
|
Maneli MH, Corrigall AV, Klump HH, Davids LM, Kirsch RE, Meissner PN. Kinetic and physical characterisation of recombinant wild-type and mutant human protoporphyrinogen oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1650:10-21. [PMID: 12922165 DOI: 10.1016/s1570-9639(03)00186-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of various protoporphyrinogen oxidase (PPOX) mutations responsible for variegate porphyria (VP), the roles of the arginine-59 residue and the glycines in the conserved flavin binding site, in catalysis and/or cofactor binding, were examined. Wild-type recombinant human PPOX and a selection of mutants were generated, expressed, purified and partially characterised. All mutants had reduced PPOX activity to varying degrees. However, the activity data did not correlate with the ability/inability to bind flavin. The positive charge at arginine-59 appears to be directly involved in catalysis and not in flavin-cofactor binding alone. The K(m)s for the arginine-59 mutants suggested a substrate-binding problem. T(1/2) indicated that arginine-59 is required for the integrity of the active site. The dominant alpha-helical content was decreased in the mutants. The degree of alpha-helix did not correlate linearly with T(1/2) nor T(m) values, supporting the suggestion that arginine-59 is important for catalysis at the active site. Examination of the conserved dinucleotide-binding sequence showed that substitution of glycine in codon 14 was less disruptive than substitutions in codons 9 and 11. Ultraviolet melting curves generally showed a two-state transition suggesting formation of a multi-domain structure. All mutants studied were more resistant to thermal denaturation compared to wild type, except for R168C.
Collapse
Affiliation(s)
- Mbulelo H Maneli
- Lennox Eales Porphyria Laboratories, MRC/UCT Liver Research Centre, Department of Medicine, University of Cape Town Medical School, K-floor, Old GSH Main Building, Observatory 7925, South Africa
| | | | | | | | | | | |
Collapse
|
114
|
Sato K, Nishina Y, Shiga K, Tanaka F. Hydrogen-bonding dynamics of free flavins in benzene and FAD in electron-transferring flavoprotein upon excitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2003; 70:67-73. [PMID: 12849696 DOI: 10.1016/s1011-1344(03)00056-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamic natures of two hydrogen-bonding model systems, riboflavin tetrabutylate (RFTB)-trichloroacetic acid (TCA) and RFTB-phenol in benzene, and of electron-transferring flavoprotein (ETF) from pig kidney upon excitation of flavins was investigated by means of steady state and time-resolved fluorescence spectroscopy. In both model systems fluorescence intensities of RFTB decreased as TCA or phenol was added. The spectral characteristics of ETF under steady state excitation were quite similar to those of the RFTB-TCA system, but not to those of the RFTB-phenol system. The observed fluorescence decay curves of ETF fit well with the calculated decay curves with two lifetime components, as in the model systems. Averaged lifetime was 0.9 ns. The time-resolved fluorescence spectrum of ETF shifted toward longer wavelength with time after pulsed excitation, which was also observed in the RFTB-TCA system. In the RFTB-phenol system the emission spectrum did not shift at all with time. These results reveal that the dynamic nature of ETF can be ascribed to aliphatic hydrogen-bonding(s) of the isoalloxazine ring with surrounding amino acid(s). From the fluorescence characteristics of ETF in comparison with the model systems, human ETF and other flavoproteins, it was suggested that ETF from pig kidney does not contain Tyr-16 in the beta subunit, unlike human ETF.
Collapse
Affiliation(s)
- Kyousuke Sato
- Department of Physiology, Kumamoto University Medical School, Honjo, Kumamoto 860-0816, Japan
| | | | | | | |
Collapse
|
115
|
Leys D, Basran J, Talfournier F, Sutcliffe MJ, Scrutton NS. Extensive conformational sampling in a ternary electron transfer complex. Nat Struct Mol Biol 2003; 10:219-25. [PMID: 12567183 DOI: 10.1038/nsb894] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Accepted: 12/19/2002] [Indexed: 11/09/2022]
Abstract
Here we report the crystal structures of a ternary electron transfer complex showing extensive motion at the protein interface. This physiological complex comprises the iron-sulfur flavoprotein trimethylamine dehydrogenase and electron transferring flavoprotein (ETF) from Methylophilus methylotrophus. In addition, we report the crystal structure of free ETF. In the complex, electron density for the FAD domain of ETF is absent, indicating high mobility. Positions for the FAD domain are revealed by molecular dynamics simulation, consistent with crystal structures and kinetic data. A dual interaction of ETF with trimethylamine dehydrogenase provides for dynamical motion at the protein interface: one site acts as an anchor, thereby allowing the other site to sample a large range of interactions, some compatible with rapid electron transfer. This study establishes the role of conformational sampling in multi-domain redox systems, providing insight into electron transfer between ETFs and structurally distinct redox partners.
Collapse
Affiliation(s)
- David Leys
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | |
Collapse
|
116
|
Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Martin Meltzer, Daut J. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 2003; 547:387-93. [PMID: 12562916 PMCID: PMC2342646 DOI: 10.1113/jphysiol.2002.037044] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
5-Hydroxydecanoate (5-HD) inhibits ischaemic and pharmacological preconditioning of the heart. Since 5-HD is thought to inhibit specifically the putative mitochondrial ATP-sensitive K+ (KATP) channel, this channel has been inferred to be a mediator of preconditioning. However, it has recently been shown that 5-HD is a substrate for acyl-CoA synthetase, the mitochondrial enzyme which 'activates' fatty acids. Here, we tested whether activated 5-HD, 5-hydroxydecanoyl-CoA (5-HD-CoA), is a substrate for medium-chain acyl-CoA dehydrogenase (MCAD), the committed step of the mitochondrial beta-oxidation pathway. Using a molecular model, we predicted that the hydroxyl group on the acyl tail of 5-HD-CoA would not sterically hinder the active site of MCAD. Indeed, we found that 5-HD-CoA was a substrate for purified human liver MCAD with a Km of 12.8 +/- 0.6 microM and a kcat of 14.1 s-1. For comparison, with decanoyl-CoA (Km approximately 3 microM) as substrate, kcat was 6.4 s-1. 5-HD-CoA was also a substrate for purified pig kidney MCAD. We next tested whether the reaction product, 5-hydroxydecenoyl-CoA (5-HD-enoyl-CoA), was a substrate for enoyl-CoA hydratase, the second enzyme of the beta-oxidation pathway. Similar to decenoyl-CoA, purified 5-HD-enoyl-CoA was also a substrate for the hydratase reaction. In conclusion, we have shown that 5-HD is metabolised at least as far as the third enzyme of the beta-oxidation pathway. Our results open the possibility that beta-oxidation of 5-HD or metabolic intermediates of 5-HD may be responsible for the inhibitory effects of 5-HD on preconditioning of the heart.
Collapse
Affiliation(s)
| | - K V Gopalan
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - Rachel A Lareau
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - D K Srivastava
- Department of Biochemistry and Molecular Biology, North Dakota State UniversityFargo, ND 58105, USA
| | - von Martin Meltzer
- Fachbereich Chemie, Universität MarburgHans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
117
|
Affiliation(s)
- Patrick Aloy
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
118
|
Purevjav E, Kimura M, Takusa Y, Ohura T, Tsuchiya M, Hara N, Fukao T, Yamaguchi S. Molecular study of electron transfer flavoprotein alpha-subunit deficiency in two Japanese children with different phenotypes of glutaric acidemia type II. Eur J Clin Invest 2002; 32:707-12. [PMID: 12486872 DOI: 10.1046/j.1365-2362.2002.01045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Electron transfer flavoprotein is a mitochondrial matrix protein composed of alpha- and beta-subunits (ETF alpha and ETF beta, respectively). This protein transfers electrons between several mitochondrial dehydrogenases and the main respiratory chain via ETF dehydrogenase (ETF-DH). Defects in ETF or ETF-DH cause glutaric acidemias type II (GAII). MATERIALS AND METHODS We investigated the molecular basis of ETF alpha deficiency in two Japanese children with different clinical phenotypes using expression study. RESULTS Patient 1 had the severe form of GAII, a compound heterozygote of two mutations: 799G to A (alpha G267R) and nonsense 7C to T (alpha R3X). Patient 2 had the mild form and carried two heterozygous mutations: 764G to T (alpha G255V) and 478delG (frameshift). Both patients had one each of missense mutations in one allele; the others were either nonsense or truncated. Restriction enzyme digestion assay using genomic DNAs from 100 healthy Japanese revealed that these mutations were all novel. No signal for ETF alpha was detected by immunoblotting in cases of missense mutants, while wild-type cDNA resulted in expression of ETF alpha protein. Transfection with wild-type ETF alpha cDNA into cultured cells from both patients elevated incorporation of radioisotope-labelled fatty acids. CONCLUSION These four mutations were pathogenic for GAII and missense mutations, alpha G255V and alpha G267R were considered anecdotal for mild and severe forms, respectively.
Collapse
Affiliation(s)
- E Purevjav
- Department of Pediatric, Shimane Medical University, Izumo, Shimane, Japan
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Aravind L, Anantharaman V, Koonin EV. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Proteins 2002; 48:1-14. [PMID: 12012333 DOI: 10.1002/prot.10064] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein sequence and structure comparisons show that the catalytic domains of Class I aminoacyl-tRNA synthetases, a related family of nucleotidyltransferases involved primarily in coenzyme biosynthesis, nucleotide-binding domains related to the UspA protein (USPA domains), photolyases, electron transport flavoproteins, and PP-loop-containing ATPases together comprise a distinct class of alpha/beta domains designated the HUP domain after HIGH-signature proteins, UspA, and PP-ATPase. Several lines of evidence are presented to support the monophyly of the HUP domains, to the exclusion of other three-layered alpha/beta folds with the generic "Rossmann-like" topology. Cladistic analysis, with patterns of structural and sequence similarity used as discrete characters, identified three major evolutionary lineages within the HUP domain class: the PP-ATPases; the HIGH superfamily, which includes class I aaRS and related nucleotidyltransferases containing the HIGH signature in their nucleotide-binding loop; and a previously unrecognized USPA-like group, which includes USPA domains, electron transport flavoproteins, and photolyases. Examination of the patterns of phyletic distribution of distinct families within these three major lineages suggests that the Last Universal Common Ancestor of all modern life forms encoded 15-18 distinct alpha/beta ATPases and nucleotide-binding proteins of the HUP class. This points to an extensive radiation of HUP domains before the last universal common ancestor (LUCA), during which the multiple class I aminoacyl-tRNA synthetases emerged only at a late stage. Thus, substantial evolutionary diversification of protein domains occurred well before the modern version of the protein-dependent translation machinery was established, i.e., still in the RNA world.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
120
|
Simkovic M, Degala GD, Eaton SS, Frerman FE. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein. Biochem J 2002; 364:659-67. [PMID: 12049629 PMCID: PMC1222614 DOI: 10.1042/bj20020042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulphur flavoprotein and a component of an electron-transfer system that links 10 different mitochondrial flavoprotein dehydrogenases to the mitochondrial bc1 complex via electron transfer flavoprotein (ETF) and ubiquinone. ETF-QO is an integral membrane protein, and the primary sequences of human and porcine ETF-QO were deduced from the sequences of the cloned cDNAs. We have expressed human ETF-QO in Sf9 insect cells using a baculovirus vector. The cDNA encoding the entire protein, including the mitochondrial targeting sequence, was present in the vector. We isolated a membrane-bound form of the enzyme that has a molecular mass identical with that of the mature porcine protein as determined by SDS/PAGE and has an N-terminal sequence that is identical with that predicted for the mature holoenzyme. These data suggest that the heterologously expressed ETF-QO is targeted to mitochondria and processed to the mature, catalytically active form. The detergent-solubilized protein was purified by ion-exchange and hydroxyapatite chromatography. Absorption and EPR spectroscopy and redox titrations are consistent with the presence of flavin and iron-sulphur centres that are very similar to those in the equivalent porcine and bovine proteins. Additionally, the redox potentials of the two prosthetic groups appear similar to those of the other eukaryotic ETF-QO proteins. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues, a ubiquinone analogue, and with human wild-type ETF and a Paracoccus-human chimaeric ETF as varied substrates. The results demonstrate that this expression system provides sufficient amounts of human ETF-QO to enable crystallization and mechanistic investigations of the iron-sulphur flavoprotein.
Collapse
Affiliation(s)
- Martin Simkovic
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
121
|
Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 2002; 75:616-58. [PMID: 11916749 DOI: 10.1093/ajcn/75.4.616] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As many as one-third of mutations in a gene result in the corresponding enzyme having an increased Michaelis constant, or K(m), (decreased binding affinity) for a coenzyme, resulting in a lower rate of reaction. About 50 human genetic dis-eases due to defective enzymes can be remedied or ameliorated by the administration of high doses of the vitamin component of the corresponding coenzyme, which at least partially restores enzymatic activity. Several single-nucleotide polymorphisms, in which the variant amino acid reduces coenzyme binding and thus enzymatic activity, are likely to be remediable by raising cellular concentrations of the cofactor through high-dose vitamin therapy. Some examples include the alanine-to-valine substitution at codon 222 (Ala222-->Val) [DNA: C-to-T substitution at nucleo-tide 677 (677C-->T)] in methylenetetrahydrofolate reductase (NADPH) and the cofactor FAD (in relation to cardiovascular disease, migraines, and rages), the Pro187-->Ser (DNA: 609C-->T) mutation in NAD(P):quinone oxidoreductase 1 [NAD(P)H dehy-drogenase (quinone)] and FAD (in relation to cancer), the Ala44-->Gly (DNA: 131C-->G) mutation in glucose-6-phosphate 1-dehydrogenase and NADP (in relation to favism and hemolytic anemia), and the Glu487-->Lys mutation (present in one-half of Asians) in aldehyde dehydrogenase (NAD + ) and NAD (in relation to alcohol intolerance, Alzheimer disease, and cancer).
Collapse
Affiliation(s)
- Bruce N Ames
- Department of Molecular and Cellular Biology, University of California, Berkeley, USA.
| | | | | |
Collapse
|
122
|
Jones M, Talfournier F, Bobrov A, Grossmann JG, Vekshin N, Sutcliffe MJ, Scrutton NS. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J Biol Chem 2002; 277:8457-65. [PMID: 11756429 DOI: 10.1074/jbc.m111105200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.
Collapse
Affiliation(s)
- Matthew Jones
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
123
|
Fritz G, Roth A, Schiffer A, Büchert T, Bourenkov G, Bartunik HD, Huber H, Stetter KO, Kroneck PMH, Ermler U. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc Natl Acad Sci U S A 2002; 99:1836-41. [PMID: 11842205 PMCID: PMC122280 DOI: 10.1073/pnas.042664399] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Accepted: 12/12/2001] [Indexed: 11/18/2022] Open
Abstract
The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the reduction of APS to sulfite and AMP. The structures of APS reductase from the hyperthermophilic Archaeoglobus fulgidus in the two-electron reduced state and with sulfite bound to FAD are reported at 1.6- and 2.5- resolution, respectively. The FAD-sulfite adduct was detected after soaking the crystals with APS. This finding and the architecture of the active site strongly suggest that catalysis involves a nucleophilic attack of the N5 atom of reduced FAD on the sulfur atom of APS. In view of the high degree of similarity between APS reductase and fumarate reductase especially with regard to the FAD-binding alpha-subunit, it is proposed that both subunits originate from a common ancestor resembling archaeal APS reductase. The two electrons required for APS reduction are transferred via two [4Fe-4S] clusters from the surface of the protein to FAD. The exceptionally large difference in reduction potential of these clusters (-60 and -500 mV) can be explained by interactions of the clusters with the protein matrix.
Collapse
Affiliation(s)
- Günter Fritz
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Fach M665, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
|
125
|
Chohan KK, Jones M, Grossmann JG, Frerman FE, Scrutton NS, Sutcliffe MJ. Protein dynamics enhance electronic coupling in electron transfer complexes. J Biol Chem 2001; 276:34142-7. [PMID: 11429403 DOI: 10.1074/jbc.m101341200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron-transferring flavoproteins (ETFs) from human and Paracoccus denitrificans have been analyzed by small angle x-ray scattering, showing that neither molecule exists in a rigid conformation in solution. Both ETFs sample a range of conformations corresponding to a large rotation of domain II with respect to domains I and III. A model of the human ETF.medium chain acyl-CoA dehydrogenase complex, consistent with x-ray scattering data, indicates that optimal electron transfer requires domain II of ETF to rotate by approximately 30 to 50 degrees toward domain I relative to its position in the x-ray structure. Domain motion establishes a new "robust engineering principle" for electron transfer complexes, tolerating multiple configurations of the complex while retaining efficient electron transfer.
Collapse
Affiliation(s)
- K K Chohan
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p-cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein 'pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands.
Collapse
Affiliation(s)
- O Dym
- University of California, Los Angeles-DOE Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
127
|
Talfournier F, Munro AW, Basran J, Sutcliffe MJ, Daff S, Chapman SK, Scrutton NS. alpha Arg-237 in Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein affords approximately 200-millivolt stabilization of the FAD anionic semiquinone and a kinetic block on full reduction to the dihydroquinone. J Biol Chem 2001; 276:20190-6. [PMID: 11285259 DOI: 10.1074/jbc.m010853200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.
Collapse
Affiliation(s)
- F Talfournier
- Departments of Biochemistry and Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
128
|
Hoard HM, Benson LM, Vockley J, Naylor S. Microelectrospray ionization analysis of noncovalent interactions within the electron transferring flavoprotein. Biochem Biophys Res Commun 2001; 282:297-305. [PMID: 11264007 DOI: 10.1006/bbrc.2001.4537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cofactor associations within the electron transferring flavoprotein (ETF) were studied in real time using microelectrospray ionization-mass spectrometry (muESI-MS). Initial analysis of porcine (pETF) and human ETF (hETF) revealed only the holoprotein. When muESI-MS source energies were increased, both pETF and hETF readily lost AMP. Analysis of hETF and pETF in methanol revealed intact alpha- and beta-subunits, and beta-subunit with AMP. The pETF also contained beta-subunit with FAD and beta-subunit with both cofactors. In contrast to crystal structure predictions, AMP dissociates more readily than FAD, and the pETF beta-subunit has an intimate association with FAD. This work demonstrates the complementarity of muESI-MS with NMR X-ray and optical spectroscopy in the analysis of noncovalent complexes.
Collapse
Affiliation(s)
- H M Hoard
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905
| | | | | | | |
Collapse
|
129
|
Scrutton NS, Sutcliffe MJ. Trimethylamine dehydrogenase and electron transferring flavoprotein. Subcell Biochem 2001; 35:145-81. [PMID: 11192721 DOI: 10.1007/0-306-46828-x_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- N S Scrutton
- Departments of Biochemistry and Chemistry, University of Leicester LE1 7RH, UK
| | | |
Collapse
|
130
|
Busquets C, Merinero B, Christensen E, Gelpí JL, Campistol J, Pineda M, Fernández-Alvarez E, Prats JM, Sans A, Arteaga R, Martí M, Campos J, Martínez-Pardo M, Martínez-Bermejo A, Ruiz-Falcó ML, Vaquerizo J, Orozco M, Ugarte M, Coll MJ, Ribes A. Glutaryl-CoA dehydrogenase deficiency in Spain: evidence of two groups of patients, genetically, and biochemically distinct. Pediatr Res 2000; 48:315-22. [PMID: 10960496 DOI: 10.1203/00006450-200009000-00009] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutaryl-CoA dehydrogenase (GCDH) deficiency causes glutaric aciduria type I (GA I), an inborn error of metabolism that is characterized clinically by dystonia and dyskinesia and pathologically by neural degeneration of the caudate and putamen. Studies of metabolite excretion allowed us to categorize 43 GA I Spanish patients into two groups: group 1 (26 patients), those presenting with high excretion of both glutarate and 3-hydroxyglutarate, and group 2 (17 patients), those who might not be detected by routine urine organic acid analysis because glutarate might be normal and 3-hydroxyglutarate only slightly higher than controls. Single-strand conformation polymorphism (SSCP) screening and sequence analysis of the 11 exons and the corresponding intron boundaries of the GCDH gene allowed us to identify 13 novel and 10 previously described mutations. The most frequent mutations in group 1 were A293T and R402W with an allele frequency of 30% and 28%, respectively. These two mutations were also found in group 2, but always in heterozygosity, in particular in combination with mutations V400M or R227P. Interestingly, mutations V400M and R227P were only found in group 2, and at least one of these mutations was found in 11 of 15 unrelated alleles, accounting together for 53% of the mutant alleles in group 2. Therefore, it seems clear that two genetically and biochemically distinct groups of patients exist. The severity of the clinical phenotype seems to be closely linked to the development of encephalopathic crises rather than to residual enzyme activity or genotype. Comparison of GCDH protein with other acyl-CoA dehydrogenases (whose x-ray crystal structure has been determined) reveals that most of the mutations identified in GCDH protein seem to affect folding and tetramerization, as has been described for a number of mutations affecting mitochondrial beta-oxidation acyl-CoA dehydrogenases.
Collapse
Affiliation(s)
- C Busquets
- Institut de Bioquímica Clinica, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Basran J, Chohan KK, Sutcliffe MJ, Scrutton NS. Differential coupling through Val-344 and Tyr-442 of trimethylamine dehydrogenase in electron transfer reactions with ferricenium ions and electron transferring flavoprotein. Biochemistry 2000; 39:9188-200. [PMID: 10924112 DOI: 10.1021/bi0006868] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modeling studies of the trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH-ETF) electron transfer complex have suggested potential roles for Val-344 and Tyr-442, found on the surface of TMADH, in electronic coupling between the 4Fe-4S center of TMADH and the FAD of ETF. The importance of these residues in electron transfer, both to ETF and to the artificial electron acceptor, ferricenium (Fc(+)), has been studied by site-directed mutagenesis and stopped-flow spectroscopy. Reduction of the 6-(S)-cysteinyl FMN in TMADH is not affected by mutation of either Tyr-442 or Val-344 to a variety of alternate side chains, although there are modest changes in the rate of internal electron transfer from the 6-(S)-cysteinyl FMN to the 4Fe-4S center. The kinetics of electron transfer from the 4Fe-4S center to Fc(+) are sensitive to mutations at position 344. The introduction of smaller side chains (Ala-344, Cys-344, and Gly-344) leads to enhanced rates of electron transfer, and likely reflects shortened electron transfer "pathways" from the 4Fe-4S center to Fc(+). The introduction of larger side chains (Ile-344 and Tyr-344) reduces substantially the rate of electron transfer to Fc(+). Electron transfer to ETF is not affected, to any large extent, by mutation of Val-344. In contrast, mutation of Tyr-442 to Phe, Leu, Cys, and Gly leads to major reductions in the rate of electron transfer to ETF, but not to Fc(+). The data indicate that electron transfer to Fc(+) is via the shortest pathway from the 4Fe-4S center of TMADH to the surface of the enzyme. Val-344 is located at the end of this pathway at the bottom of a small groove on the surface of TMADH, and Fc(+) can penetrate this groove to facilitate good electronic coupling with the 4Fe-4S center. With ETF as an electron acceptor, the observed rate of electron transfer is substantially reduced on mutation of Tyr-442, but not Val-344. We conclude that the flavin of ETF does not penetrate fully the groove on the surface of TMADH, and that electron transfer from the 4Fe-4S center to ETF may involve a longer pathway involving Tyr-442. Mutation of Tyr-442 likely disrupts electron transfer by perturbing the interaction geometry of TMADH and ETF in the productive electron transfer complex, leading to less efficient coupling between the redox centers.
Collapse
Affiliation(s)
- J Basran
- Department of Biochemistry, University of Leicester, UK
| | | | | | | |
Collapse
|
132
|
Jones M, Basran J, Sutcliffe MJ, Günter Grossmann J, Scrutton NS. X-ray scattering studies of Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein. Evidence for multiple conformational states and an induced fit mechanism for assembly with trimethylamine dehydrogenase. J Biol Chem 2000; 275:21349-54. [PMID: 10766748 DOI: 10.1074/jbc.m001564200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small angle x-ray solution scattering has been used to generate a low resolution, model-independent molecular envelope structure for electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)). Analysis of both the oxidized and 1-electron-reduced (anionic flavin semiquinone) forms of the protein revealed that the solution structures of the protein are similar in both oxidation states. Comparison of the molecular envelope of ETF from the x-ray scattering data with previously determined structural models of the protein suggests that ETF samples a range of conformations in solution. These conformations correspond to a rotation of domain II with respect to domains I and III about two flexible "hinge" sequences that are unique to M. methylotrophus ETF. The x-ray scattering data are consistent with previous models concerning the interaction of M. methylotrophus ETF with its physiological redox partner, trimethylamine dehydrogenase. Our data reveal that an "induced fit" mechanism accounts for the assembly of the trimethylamine dehydrogenase-ETF electron transfer complex, consistent with spectroscopic and modeling studies of the assembly process.
Collapse
Affiliation(s)
- M Jones
- Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | | | | | | | | |
Collapse
|
133
|
Jang MH, Scrutton NS, Hille R. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex. J Biol Chem 2000; 275:12546-52. [PMID: 10777543 DOI: 10.1074/jbc.275.17.12546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.
Collapse
Affiliation(s)
- M H Jang
- Department of Medical Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
134
|
Denessiouk KA, Johnson MS. When fold is not important: A common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000215)38:3<310::aid-prot7>3.0.co;2-t] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
135
|
Parker A, Engel PC. Preliminary evidence for the existence of specific functional assemblies between enzymes of the beta-oxidation pathway and the respiratory chain. Biochem J 2000; 345 Pt 3:429-35. [PMID: 10642498 PMCID: PMC1220774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The electron-transferring flavoprotein (ETF) has been detected in two large soluble-protein complexes partially purified from sonicated porcine liver mitochondria. Size-exclusion chromatography and sucrose-density ultracentrifugation suggested molecular masses in the region of 390 to 420 kDa for the two complexes. Activities of medium-chain acyl-CoA dehydrogenase, sarcosine dehydrogenase and ETF:ubiquinone oxidoreductase were also detected. No evidence of oxidative-phosphorylation properties was obtained. Treatment with antimycin A inhibited the activity of both complexes. Pyridine haemochromogens, prepared from the partially purified species, show the presence of cytochrome proteins. The possible composition of these complexes and their relationship to the electron transport chain are discussed.
Collapse
Affiliation(s)
- A Parker
- Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
136
|
Parker A, Engel PC. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF). JOURNAL OF ENZYME INHIBITION 1999; 14:381-90. [PMID: 10488248 DOI: 10.3109/14756369909030330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.
Collapse
Affiliation(s)
- A Parker
- Department of Biochemistry, University College Dublin, Ireland.
| | | |
Collapse
|
137
|
Weber CH, Park YS, Sanker S, Kent C, Ludwig ML. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis. Structure 1999; 7:1113-24. [PMID: 10508782 DOI: 10.1016/s0969-2126(99)80178-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates is carried out by cytidylyltransferases, which utilize CTP to form activated CDP-alcohols or CMP-acid sugars plus inorganic pyrophosphate. Several cytidylyltransferases are related and constitute a conserved family of enzymes. The eukaryotic members of the family are complex enzymes with multiple regulatory regions or repeated catalytic domains, whereas the bacterial enzyme, CTP:glycerol-3-phosphate cytidylyltransferase (GCT), contains only the catalytic domain. Thus, GCT provides an excellent model for the study of catalysis by the eukaryotic cytidylyltransferases. RESULTS The crystal structure of GCT from Bacillus subtilis has been determined by multiwavelength anomalous diffraction using a mercury derivative and refined to 2.0 A resolution (R(factor) 0.196; R(free) 0.255). GCT is a homodimer; each monomer comprises an alpha/beta fold with a central 3-2-1-4-5 parallel beta sheet. Additional helices and loops extending from the alpha/beta core form a bowl that binds substrates. CTP, bound at each active site of the homodimer, interacts with the conserved (14)HXGH and (113)RTXGISTT motifs. The dimer interface incorporates part of a third motif, (63)RYVDEVI, and includes hydrophobic residues adjoining the HXGH sequence. CONCLUSIONS Structure superpositions relate GCT to the catalytic domains from class I aminoacyl-tRNA synthetases, and thus expand the tRNA synthetase family of folds to include the catalytic domains of the family of cytidylyltransferases. GCT and aminoacyl-tRNA synthetases catalyze analogous reactions, bind nucleotides in similar U-shaped conformations, and depend on histidines from analogous HXGH motifs for activity. The structural and other similarities support proposals that GCT, like the synthetases, catalyzes nucleotidyl transfer by stabilizing a pentavalent transition state at the alpha-phosphate of CTP.
Collapse
Affiliation(s)
- C H Weber
- Biophysics Research Division Department of Biological Chemistry University of Michigan Pathology Department University of Michigan Medical School Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
138
|
Dwyer TM, Zhang L, Muller M, Marrugo F, Frerman F. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:139-52. [PMID: 10446367 DOI: 10.1016/s0167-4838(99)00139-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arg249 in the large (alpha) subunit of human electron transfer flavoprotein (ETF) heterodimer is absolutely conserved throughout the ETF superfamily. The guanidinium group of alphaArg249 is within van der Waals contact distance and lies perpendicular to the xylene subnucleus of the flavin ring, near the region proposed to be involved in electron transfer with medium chain acyl-CoA dehydrogenase. The backbone amide hydrogen of alphaArg249 is within hydrogen bonding distance of the carbonyl oxygen at the flavin C(2). alphaArg249 may modulate the potentials of the two flavin redox couples by hydrogen bonding the carbonyl oxygen at C(2) and by providing delocalized positive charge to neutralize the anionic semiquinone and anionic hydroquinone of the flavin. The potentials of the oxidized/semiquinone and semiquinone/hydroquinone couples decrease in an alphaR249K mutant ETF generated by site directed mutagenesis and expression in Escherichia coli, without major alterations of the flavin environment as judged by spectral criteria. The steady state turnover of medium chain acyl-CoA dehydrogenase and glutaryl-CoA dehydrogenase decrease greater than 90% as a result of the alphaR249Ks mutation. In contrast, the steady state turnover of short chain acyl-CoA dehydrogenase was decreased about 38% when alphaR249K ETF was the electron acceptor. Stopped flow absorbance measurements of the oxidation of reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA product complex by wild type human ETF at 3 degrees C are biphasic (t(1/2)=12 ms and 122 ms). The rate of oxidation of this reduced binary complex of the dehydrogenase by the alphaR249K mutant ETF is extremely slow and could not be reasonably estimated. alphaAsp253 is proposed to function with alphaArg249 in the electron transfer pathway from medium chain acyl-CoA dehydrogenase to ETF. The steady state kinetic constants of the dehydrogenase were not altered when ETF containing an alphaD253A mutant was the substrate. However, t(1/2) of the rapid phase of oxidation of the reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA charge transfer complex almost doubled. betaTyr16 lies on a loop near the C(8) methyl group, and is also near the proposed site for interflavin electron transfer with medium chain acyl-CoA dehydrogenase. The tyrosine residue makes van der Waals contact with the C(8) methyl group of the flavin in human ETF and Paracoccus denitrificans ETF (as betaTyr13) and lies at a 30 degrees C angle with the plane of the flavin. Human betaTyr16 was substituted with leucine and alanine residues to investigate the role of this residue in the modulation of the flavin redox potentials and in electron transfer to ETF. In betaY16L ETF, the potentials of the flavin were slightly reduced, and steady state kinetic constants were modestly altered. Substitution of an alanine residue for betaTyr16 yields an ETF with potentials very similar to the wild type but with steady state kinetic properties similar to betaY16L ETF. It is unlikely that the beta methyl group of the alanine residue interacts with the flavin C(8) methyl. Neither substitution of betaTyr16 had a large effect on the fast phase of ETF reduction by medium chain acyl-CoA dehydrogenase.
Collapse
Affiliation(s)
- T M Dwyer
- Department of Pediatrics and the Program in Cellular and Developmental Biology, The University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
139
|
Bross P, Pedersen P, Winter V, Nyholm M, Johansen BN, Olsen RK, Corydon MJ, Andresen BS, Eiberg H, Kolvraa S, Gregersen N. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation. Mol Genet Metab 1999; 67:138-47. [PMID: 10356313 DOI: 10.1006/mgme.1999.2856] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, whereas the two variants of the beta-M/T154 polymorphism did not differ. We wished to test the hypothesis that these polymorphisms might constitute susceptibility factors and therefore determined their allele and genotype frequencies in (i) control individuals, (ii) medium-chain acyl-CoA dehydrogenase-deficient patients homozygous for the K304E mutation (MCAD E304), (iii) a group of patients with elevated urinary excretion of ethylmalonic acid (EMA) possibly due to decreased short-chain acyl-CoA dehydrogenase activity, and (iv) in patients with proven deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD). No significant overrepresentations or underrepresentations were found in the first two patient groups, suggesting that the polymorphisms studied are not significant susceptibility factors in either the MCAD E304 or the EMA patient group. However, in the VLCAD deficient patients the alpha-T171 variant (decreased thermal stability) was significantly overrepresented. Subgrouping of the VLCAD patients into three phenotypic classes (severe childhood, mild childhood, and adult presentation) revealed that the overrepresentation of the alpha-T171 variant was significant only in patients with mild childhood presentation. This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity.
Collapse
Affiliation(s)
- P Bross
- Research Unit for Molecular Medicine, Arhus University Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Roberts DL, Salazar D, Fulmer JP, Frerman FE, Kim JJ. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain. Biochemistry 1999; 38:1977-89. [PMID: 10026281 DOI: 10.1021/bi9820917] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of electron transfer flavoprotein (ETF) from Paracoccus denitrificans was determined and refined to an R-factor of 19.3% at 2.6 A resolution. The overall fold is identical to that of the human enzyme, with the exception of a single loop region. Like the human structure, the structure of the P. denitrificans ETF is comprised of three distinct domains, two contributed by the alpha-subunit and the third from the beta-subunit. Close analysis of the structure reveals that the loop containing betaI63 is in part responsible for conferring the high specificity of AMP binding by the ETF protein. Using the sequence and structures of the human and P. denitrificans enzymes as models, a detailed sequence alignment has been constructed for several members of the ETF family, including sequences derived for the putative FixA and FixB proteins. From this alignment, it is evident that in all members of the ETF family the residues located in the immediate vicinity of the FAD cofactor are identical, with the exception of the substitution of serine and leucine residues in the W3A1 ETF protein for the human residues alphaT266 and betaY16, respectively. Mapping of ionic differences between the human and P. denitrificans ETF onto the structure identifies a surface that is electrostatically very similar between the two proteins, thus supporting a previous docking model between human ETF and pig medium-chain acyl-CoA dehydrogenase (MCAD). Analysis of the ionic strength dependence of the electron transfer reaction between either human or P. denitrificans ETF and MCAD demonstrates that the human ETF functions optimally at low ( approximately 10 mequiv) ionic strength, while P. denitrificans ETF is a better electron acceptor at higher (>75 mequiv) ionic strength. This suggests that the electrostatic surface potential of the two proteins is very different and is consistent with the difference in isoelectric points between the proteins. Analysis of the electrostatic potentials of the human and P. denitrificans ETFs reveals that the P. denitrificans ETF is more negatively charged. This excess negative charge may contribute to the difference in redox potentials between the two ETF flavoproteins and suggests an explanation for the opposing ionic strength dependencies for the reaction of MCAD with the two ETFs. Furthermore, by analysis of a model of the previously described human-P. denitrificans chimeric ETF protein, it is possible to identify one region of ETF that participates in docking with ETF-ubiquinone oxidoreductase, the physiological electron acceptor for ETF.
Collapse
Affiliation(s)
- D L Roberts
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | |
Collapse
|
141
|
Zarembinski TI, Hung LW, Mueller-Dieckmann HJ, Kim KK, Yokota H, Kim R, Kim SH. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci U S A 1998; 95:15189-93. [PMID: 9860944 PMCID: PMC28018 DOI: 10.1073/pnas.95.26.15189] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms' predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-A resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.
Collapse
Affiliation(s)
- T I Zarembinski
- Physical Biosciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
O'Neill H, Mayhew SG, Butler G. Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii. Expression and characterization of the recombinant protein. J Biol Chem 1998; 273:21015-24. [PMID: 9694853 DOI: 10.1074/jbc.273.33.21015] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes that encode the two different subunits of the novel electron-transferring flavoprotein (ETF) from Megasphaera elsdenii were identified by screening a partial genomic DNA library with a probe that was generated by amplification of genomic sequences using the polymerase chain reaction. The cloned genes are arranged in tandem with the coding sequence for the beta-subunit in the position 5' to the alpha-subunit coding sequence. Amino acid sequence analysis of the two subunits revealed that there are two possible dinucleotide-binding sites on the alpha-subunit and one on the beta-subunit. Comparison of M. elsdenii ETF amino acid sequence to other ETFs and ETF-like proteins indicates that while homology occurs with the mitochondrial ETF and bacterial ETFs, the greatest similarity is with the putative ETFs from clostridia and with fixAB gene products from nitrogen-fixing bacteria. The recombinant ETF was isolated from extracts of Escherichia coli. It is a heterodimer with subunits identical in size to the native protein. The isolated enzyme contains approximately 1 mol of FAD, but like the native protein it binds additional flavin to give a total of about 2 mol of FAD/dimer. It serves as an electron donor to butyryl-CoA dehydrogenase, and it also has NADH dehydrogenase activity.
Collapse
Affiliation(s)
- H O'Neill
- Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
143
|
|
144
|
Salazar D, Zhang L, deGala GD, Frerman FE. Expression and characterization of two pathogenic mutations in human electron transfer flavoprotein. J Biol Chem 1997; 272:26425-33. [PMID: 9334218 DOI: 10.1074/jbc.272.42.26425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Defects in electron transfer flavoprotein (ETF) or its electron acceptor, electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), cause the human inherited metabolic disease glutaric acidemia type II. In this disease, electron transfer from nine primary flavoprotein dehydrogenases to the main respiratory chain is impaired. Among these dehydrogenases are the four chain length-specific flavoprotein dehydrogenases of fatty acid beta-oxidation. In this investigation, two mutations in the alpha subunit that have been identified in patients were expressed in Escherichia coli. Of the two mutant alleles, alphaT266M and alphaG116R, the former is the most frequent mutation found in patients with ETF deficiency. The crystal structure of human ETF shows that alphaG116 lies in a hydrophobic pocket, under a contact residue of the alpha/beta subunit interface, and that the hydroxyl hydrogen of alphaT266 is hydrogen-bonded to N(5) of the FAD; the amide backbone hydrogen of alphaT266 is hydrogen-bonded to C(4)-O of the flavin prosthetic group (Roberts, D. L., Frerman, F. E. and Kim, J-J. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14355-14360). Stable expression of the alphaG116R ETF required coexpression of the chaperonins, GroEL and GroES. alphaG116R ETF folds into a conformation different from the wild type, and is catalytically inactive in crude extracts. It is unstable and could not be extensively purified. The alphaT266M ETF was purified and characterized after stabilization to proteolysis in crude extracts. Although the global structure of this mutant protein is unchanged, its flavin environment is altered as indicated by absorption and circular dichroism spectroscopy and the kinetics of flavin release from the oxidized and reduced protein. The loss of the hydrogen bond at N(5) of the flavin and the altered flavin binding increase the thermodynamic stability of the flavin semiquinone by 10-fold relative to the semiquinone of wild type ETF. The mutation has relatively little effect on the reductive half-reaction of ETF catalyzed by sarcosine and medium chain acyl-CoA dehydrogenases which reduce the flavin to the semiquinone. However, kcat/Km of ETF-QO in a coupled acyl-CoA:ubiquinone reductase assay with oxidized alphaT266M ETF as substrate is reduced 33-fold; this decrease is due in largest part to a decrease in the rate of disproportionation of the alphaT266M ETF semiquinone catalyzed by ETF-QO.
Collapse
Affiliation(s)
- D Salazar
- Program in Cellular and Developmental Biology and the Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|