101
|
Wang X, Morgan DM, Wang G, Mozier NM. Residual DNA analysis in biologics development: Review of measurement and quantitation technologies and future directions. Biotechnol Bioeng 2011; 109:307-17. [DOI: 10.1002/bit.23343] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/09/2011] [Accepted: 09/19/2011] [Indexed: 01/09/2023]
|
102
|
Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod 2011; 26:3401-12. [PMID: 21989093 DOI: 10.1093/humrep/der329] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.
Collapse
Affiliation(s)
- Stephen A Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
103
|
Morozkin ES, Loseva EM, Karamysheva TV, Babenko VN, Laktionov PP, Vlassov VV, Rubtsov NB. A method for generating selective DNA probes for the analysis of C-negative regions in human chromosomes. Cytogenet Genome Res 2011; 135:1-11. [PMID: 21811056 DOI: 10.1159/000330124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2011] [Indexed: 12/14/2022] Open
Abstract
Linker-adapter polymerase chain reaction (LA-PCR) is among the most efficient techniques for whole genome DNA amplification. The key stage in LA-PCR is the hydrolysis of a DNA sample with restriction endonucleases, and the choice of a restriction endonuclease (or several endonucleases) determines the composition of DNA probes generated in LA-PCR. Computer analysis of the localization of the restriction sites in human genome has allowed us to propose an efficient technique for generating DNA probes by LA-PCR using the restriction endonucleases HaeIII and RsaI. In silico hydrolysis of human genomic DNA with endonucleases HaeIII and RsaI demonstrate that 100- to 1,000-bp DNA fragments are more abundant in the gene-rich regions. Applying in situ hybridization to metaphase chromosomes, we demonstrated that the produced DNA probes predominantly hybridized to the C-negative chromosomal regions, whereas the FISH signal was almost absent in the C-positive regions. The described protocol for generating DNA probes may be successfully used in subsequent cytogenetic analysis of the C-negative chromosomal regions.
Collapse
Affiliation(s)
- E S Morozkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk. morozkin @ niboch.nsc.ru
| | | | | | | | | | | | | |
Collapse
|
104
|
d'Alençon E, Nègre N, Stanojcic S, Alassoeur B, Gimenez S, Léger A, Abd-Alla A, Juliant S, Fournier P. Characterization of a CENP-B homolog in the holocentric Lepidoptera Spodoptera frugiperda. Gene 2011; 485:91-101. [PMID: 21712078 DOI: 10.1016/j.gene.2011.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/16/2011] [Accepted: 06/07/2011] [Indexed: 02/09/2023]
Abstract
The discovery of an homolog of the human centromeric protein B, CENP-B, in an EST database of the holocentric insect species Spodoptera frugiperda prompted us to further characterize that gene because i) CENP-B has not been described in invertebrates yet ii) it should be a milestone in the molecular characterization of the holocentric centromere of Lepidoptera. Like its human counterpart, the Sf CENP-B protein is related to the transposase of the pogo transposable element (TE) of D. melanogaster. In this paper, we show evidences that the lepidopteran cenpB gene has evolved from domestication of a transposase. Furthermore, the Sf CENP-B nuclear location and its ability to bind to a retrotransposon derived sequence in vivo argue in favor of a functional homology to CENP-B proteins.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- UMR1333 INRA, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We have identified two new active hAT transposons, AeBuster1, from the mosquito Aedes aegypti and TcBuster from the red flour beetle Tribolium castaneum. Activity of both transposons is illustrated by excision and transposition assays performed in Drosophila melanogaster and Ae. aegypti and by in vitro strand transfer assays. These two active insect transposons are more closely related to the Buster sequences identified in humans than they are to the previously identified active hAT transposons, Ac, Tam3, Tol2, hobo, and Hermes. We therefore reexamined the structural and functional relationships of hAT and hAT-like transposase sequences extracted from genome databases and found that the hAT superfamily is divided into at least two families. This division is supported by a difference in target-site selections generated by active transposons of each family. We name these families the Ac and Buster families after the first identified transposon or transposon-like sequence in each. We find that the recently discovered SPIN transposons of mammals are located within the family of Buster elements.
Collapse
|
106
|
Wu SF, Zhang H, Hammoud SS, Potok M, Nix DA, Jones DA, Cairns BR. DNA methylation profiling in zebrafish. Methods Cell Biol 2011; 104:327-39. [PMID: 21924171 DOI: 10.1016/b978-0-12-374814-0.00018-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation on cytosine in vertebrates such as zebrafish serves to silence gene expression by interfering with the binding of certain transcription factors and through the recruitment of repressive chromatin machinery. Cytosine DNA methylation is chemically stable and heritable through the germline - but also reversible through many modes, making it a useful and dynamic epigenetic modification. Virtually all of the enzymes and factors involved in the deposition, binding, and removal of cytosine methylation are conserved in zebrafish, and therefore the organism an excellent model for understanding the use of DNA methylation in the control of gene regulation and other processes. Here, we discuss the main approaches to quantifying DNA methylation levels genome-wide in zebrafish: one is an established method for revealing regional methylation (methylated DNA immunoprecipitation (MeDIP)), and the other is an emerging method that reveals DNA methylation at base-pair resolution (shotgun bisulphite sequencing). We also introduce some of the analytical methods that are useful for identifying regions of hypo- or hyper-methylation, and ways to identify differentially methylated regions.
Collapse
Affiliation(s)
- Shan-Fu Wu
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 2010; 38:e199. [PMID: 20880995 PMCID: PMC3001096 DOI: 10.1093/nar/gkq862] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives.
Collapse
Affiliation(s)
- Yujun Han
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
108
|
Han MJ, Shen YH, Gao YH, Chen LY, Xiang ZH, Zhang Z. Burst expansion, distribution and diversification of MITEs in the silkworm genome. BMC Genomics 2010; 11:520. [PMID: 20875122 PMCID: PMC2997013 DOI: 10.1186/1471-2164-11-520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/27/2010] [Indexed: 01/31/2023] Open
Abstract
Background Miniature inverted-repeat transposable elements (MITEs) are widespread in plants and animals. Although silkworm (Bombyx mori) has a large amount of and a variety of transposable elements, the genome-wide information of the silkworm MITEs is unknown. Results We used structure-based and homology approaches to search for MITEs in the silkworm genome. We identified 17 MITE families with a total of 5785 members, accounting for ~0.4% of the genome. 7 of 17 MITE families are completely novel based on the nucleotide composition of target site duplication (TSD) and/or terminal inverted repeats (TIR). Silkworm MITEs were widely and nonrandom distributed in the genome. One family named BmMITE-2 might experience a recent burst expansion. Network and diversity analyses for each family revealed different diversification patterns of the silkworm MITEs, reflecting the signatures of genome-shocks that silkworm experienced. Most silkworm MITEs preferentially inserted into or near genes and BmMITE-11 that encodes a germline-restricted small RNA might silence its the closest genes in silkworm ovary through a small RNA pathway. Conclusions Silkworm harbors 17 MITE families. The silkworm MITEs preferred to reside in or near genes and one MITE might be involved in gene silence. Our results emphasize the exceptional role of MITEs in transcriptional regulation of genes and have general implications to understand interaction between MITEs and their host genome.
Collapse
Affiliation(s)
- Min-Jin Han
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein-encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major cocirculating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates by using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence dated back to 1854 (1807 to 1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates in terms of receptor preferences, plaque phenotypes, growth characteristics, and cell tropism. This is the first report describing the resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including a phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy for the development of vaccines.
Collapse
|
110
|
Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity (Edinb) 2010; 105:92-104. [PMID: 20442734 DOI: 10.1038/hdy.2010.53] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retrotransposable elements comprise around 50% of the mammalian genome. Their activity represents a constant threat to the host and has prompted the development of adaptive control mechanisms to protect genome architecture and function. To ensure their propagation, retrotransposons have to mobilize in cells destined for the next generation. Accordingly, these elements are particularly well suited to transcriptional networks associated with pluripotent and germinal states in mammals. The relaxation of epigenetic control that occurs in the early developing germline constitutes a dangerous window in which retrotransposons can escape from host restraint and massively expand. What could be observed as risky behavior may turn out to be an insidious strategy developed by germ cells to sense retrotransposons and hold them back in check. Herein, we review recent insights that have provided a detailed picture of the defense mechanisms that concur toward retrotransposon silencing in mammalian genomes, and in particular in the germline. In this lineage, retrotransposons are hit at multiple stages of their life cycle, through transcriptional repression, RNA degradation and translational control. An organized cross-talk between PIWI-interacting small RNAs (piRNAs) and various nuclear and cytoplasmic accessories provides this potent and multi-layered response to retrotransposon unleashing in early germ cells.
Collapse
|
111
|
Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 2010; 21:1753-62. [PMID: 20357003 PMCID: PMC2869380 DOI: 10.1091/mbc.e09-12-1079] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study suggests that a TPB2 piggyBac transposase has evolved to facilitate heterochromatin assembly and carry out the final DNA excision step of programmed DNA deletion in Tetrahymena thermophila. TPB2 appears to have gone through a domestication process to become a host gene and be maintained in the macronuclear genome. Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5′ protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
112
|
Miller WJ, Capy P. Applying mobile genetic elements for genome analysis and evolution. Mol Biotechnol 2010; 33:161-74. [PMID: 16757803 DOI: 10.1385/mb:33:2:161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host genomes, these parasitc DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus during evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical "toolbox," essential for studying a diverse spectrum of biological questions. In this review, we aim to summarize both the evolutionary impact of TEs on genome evolution and their valuable and diverse methodological applications as molecular tools.
Collapse
Affiliation(s)
- Wolfgang J Miller
- Laboratories of Genome Dynamics, Center of Anatomy and Cell Biology, Medical University of Vienna, Waehringerstr. 10, 1090 Vienna, Austria.
| | | |
Collapse
|
113
|
Hancock CN, Zhang F, Wessler SR. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob DNA 2010; 1:5. [PMID: 20226077 PMCID: PMC2836001 DOI: 10.1186/1759-8753-1-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 02/01/2010] [Indexed: 12/25/2022] Open
Abstract
Background PIF/Harbinger is the most recently discovered DNA transposon superfamily and is now known to populate genomes from fungi to plants to animals. Mobilization of superfamily members requires two separate element-encoded proteins (ORF1 and TPase). Members of this superfamily also mobilize Tourist-like miniature inverted repeat transposable elements (MITEs), which are the most abundant transposable elements associated with the genes of plants, especially the cereal grasses. The phylogenetic analysis of many plant genomes indicates that MITEs can amplify rapidly from one or a few elements to hundreds or thousands. The most active DNA transposon identified to date in plants or animals is mPing, a rice Tourist-like MITE that is a deletion derivative of the autonomous Ping element. Ping and the closely related Pong are the only known naturally active PIF/Harbinger elements. Some rice strains accumulate ~40 new mPing insertions per plant per generation. In this study we report the development of a yeast transposition assay as a first step in deciphering the mechanism underlying the amplification of Tourist-MITEs. Results The ORF1 and TPase proteins encoded by Ping and Pong have been shown to mobilize mPing in rice and in transgenic Arabidopsis. Initial tests of the native proteins in a yeast assay resulted in very low transposition. Significantly higher activities were obtained by mutation of a putative nuclear export signal (NES) in the TPase that increased the amount of TPase in the nucleus. When introduced into Arabidopsis, the NES mutant protein also catalyzed higher frequencies of mPing excision from the gfp reporter gene. Our yeast assay retains key features of excision and insertion of mPing including precise excision, extended insertion sequence preference, and a requirement for two proteins that can come from either Ping or Pong or both elements. Conclusions The yeast transposition assay provides a robust platform for analysis of the mechanism underlying transposition catalyzed by the two proteins of PIF/Harbinger elements. It recapitulates all of the features of excision and reinsertion of mPing as seen in plant systems. Furthermore, a mutation of a putative NES in the TPase increased transposition both in yeast and plants.
Collapse
Affiliation(s)
- C Nathan Hancock
- Plant Biology Department, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
114
|
Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 2009; 38:1515-30. [PMID: 20008508 PMCID: PMC2836564 DOI: 10.1093/nar/gkp1134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.
Collapse
Affiliation(s)
- Asaf Levy
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
115
|
Motl JA, Chalker DL. Subtraction by addition: domesticated transposases in programmed DNA elimination. Genes Dev 2009; 23:2455-60. [PMID: 19884252 DOI: 10.1101/gad.1864609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ciliate Paramecium tetraurelia must eliminate approximately 60,000 short sequences from its genome to generate uninterrupted coding sequences in its somatic macronucleus. In this issue of Genes & Development, Baudry and colleagues (pp. 2478-2483) identify the protein that excises these noncoding sequences: a domesticated piggyBac transposase that has been adapted to remove what are likely the remnants of transposon insertions. This new study reveals how addition of a transposase to small RNA-directed silencing machinery can guide major genome reorganization.
Collapse
Affiliation(s)
- Jason A Motl
- Biology Department, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
116
|
Sperb F, Schuck DC, Rodrigues JJS. Occurrence and abundance of a mariner-like element in freshwater and terrestrial planarians (Platyhelminthes, Tricladida) from southern Brazil. Genet Mol Biol 2009; 32:731-9. [PMID: 21637447 PMCID: PMC3036899 DOI: 10.1590/s1415-47572009005000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 04/04/2009] [Indexed: 11/22/2022] Open
Abstract
Transposable elements are DNA sequences present in all the large phylogenetic groups, both capable of changing position within the genome and constituting a significant part of eukaryotic genomes. The mariner family of transposons is one of the few which occurs in a wide variety of taxonomic groups, including freshwater planarians. Nevertheless, so far only five planarian species have been reported to carry mariner-like elements (MLEs), although several different species have been investigated. Regarding the number of copies of MLEs, Girardia tigrina is the only planarian species in which this has been evaluated, with an estimation of 8,000 copies of the element per haploid genome. Preliminary results obtained in our laboratory demonstrated that MLE is found in a large number of different species of planarians, including terrestrial. With this in mind, the aim was to evaluate the occurrence and estimate the number of MLE copies in different planarian species collected in south Brazil. Twenty-eight individuals from 15 planarian species were analyzed. By using PCR and the hybridization of nucleic acids, it was found that MLE was present in all the analyzed species, the number of copies being high, probably over 103 per haploid genome.
Collapse
Affiliation(s)
- Fernanda Sperb
- Laboratório de Biologia Molecular, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS Brazil
| | | | | |
Collapse
|
117
|
Zerjal T, Joets J, Alix K, Grandbastien MA, Tenaillon MI. Contrasting evolutionary patterns and target specificities among three Tourist-like MITE families in the maize genome. PLANT MOLECULAR BIOLOGY 2009; 71:99-114. [PMID: 19533380 DOI: 10.1007/s11103-009-9511-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 05/31/2009] [Indexed: 05/16/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are short, non autonomous DNA elements that are widespread and abundant in plant genomes. The high sequence and size conservation observed in many MITE families suggest that they have spread recently throughout their respective host genomes. Here we present a maize genome wide analysis of three Tourist-like MITE families, mPIF, and two previously uncharacterized families, ZmV1 and Zead8. We undertook a bioinformatic analysis of MITE insertion sites, developed methyl-sensitive transposon display (M-STD) assays to estimate the associated level of CpG methylation at MITE flanking regions, and conducted a population genetics approach to investigate MITE patterns of expansion. Our results reveal that the three MITE families insert into genomic regions that present specific molecular features: they are preferentially AT rich, present low level of cytosine methylation as compared to the LTR retrotransposon Grande, and target site duplications are flanked by large and conserved palindromic sequences. Moreover, the analysis of MITE distances from predicted genes shows that 73% of 263 copies are inserted at less than 5 kb from the nearest predicted gene, and copies from Zead8 family are significantly more abundant upstream of genes. By employing a population genetic approach we identified contrasting patterns of expansion among the three MITE families. All elements seem to have inserted roughly 1 million years ago but ZmV1 and Zead8 families present evidences for activity of several master copies within the last 0.4 Mya.
Collapse
Affiliation(s)
- Tatiana Zerjal
- Centre National de la Recherche Scientifique, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
118
|
Bao W, Jurka MG, Kapitonov VV, Jurka J. New superfamilies of eukaryotic DNA transposons and their internal divisions. Mol Biol Evol 2009; 26:983-93. [PMID: 19174482 PMCID: PMC2727372 DOI: 10.1093/molbev/msp013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 12/23/2022] Open
Abstract
Despite their enormous diversity and abundance, all currently known eukaryotic DNA transposons belong to only 15 superfamilies. Here, we report two new superfamilies of DNA transposons, named Sola and Zator. Sola transposons encode DDD-transposases (transposase, TPase) and are flanked by 4-bp target site duplications (TSD). Elements from the Sola superfamily are distributed in a variety of species including bacteria, protists, plants, and metazoans. They can be divided into three distinct groups of elements named Sola1, Sola2, and Sola3. The elements from each group have extremely low sequence identity to each other, different termini, and different target site preferences. However, all three groups belong to a single superfamily based on significant PSI-Blast identities between their TPases. The DDD TPase sequences encoded by Sola transposons are not similar to any known TPases. The second superfamily named Zator is characterized by 3-bp TSD. The Zator superfamily is relatively rare in eukaryotic species, and it evolved from a bacterial transposon encoding a TPase belonging to the "transposase 36" family (Pfam07592). These transposons are named TP36 elements (abbreviated from transposase 36).
Collapse
Affiliation(s)
- Weidong Bao
- Genetic Information Research Institute, Mountain View, CA, USA
| | | | | | | |
Collapse
|
119
|
The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity (Edinb) 2009; 102:533-41. [PMID: 19277056 DOI: 10.1038/hdy.2009.17] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic genomes contain a large proportion of repetitive DNA sequences, mostly transposable elements (TEs) and tandem repeats. These repetitive sequences often colonize specific chromosomal (Y or W chromosomes, B chromosomes) or subchromosomal (telomeres, centromeres) niches. Sex chromosomes, especially non-recombining regions of the Y chromosome, are subject to different evolutionary forces compared with autosomes. In non-recombining regions of the Y chromosome repetitive DNA sequences are accumulated, representing a dominant and early process forming the Y chromosome, probably before genes start to degenerate. Here we review the occurrence and role of repetitive DNA in Y chromosome evolution in various species with a focus on dioecious plants. We also discuss the potential link between recombination and transposition in shaping genomes.
Collapse
|
120
|
Bartholomeeusen K, Christ F, Hendrix J, Rain JC, Emiliani S, Benarous R, Debyser Z, Gijsbers R, De Rijck J. Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. J Biol Chem 2009; 284:11467-77. [PMID: 19244240 DOI: 10.1074/jbc.m807781200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 33, Flanders, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
122
|
Difference in number of loci of swine leukocyte antigen classical class I genes among haplotypes. Genomics 2008; 93:261-73. [PMID: 18996466 DOI: 10.1016/j.ygeno.2008.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/03/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
The structure of the entire genomic region of swine leukocyte antigen (SLA)-the porcine major histocompatibility complex--was recently elucidated in a particular haplotype named Hp-1.0 (H01). However, it has been suggested that there are differences in the number of loci of SLA genes, particularly classical class I genes, among haplotypes. To clarify the between-haplotype copy number variance in genes of the SLA region, we sequenced the genomic region carrying SLA classical class I genes on two different haplotypes, revealing increments of up to six in the number of classical class I genes in a single haplotype. All of the SLA-1(-like) (SLA-1 and newly designated SLA-12) and SLA-3 genes detected in the haplotypes thus analyzed were transcribed in the individual. The process by which duplication of SLA classical class I genes was likely to have occurred was interpreted from an analysis of repetitive sequences adjacent to the duplicated class I genes.
Collapse
|
123
|
Liu GY, Xiong YZ. Molecular characterization and expression profile of a novel porcine gene differentially expressed in the muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. Mol Biol 2008. [DOI: 10.1134/s0026893308040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
124
|
Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton PE. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput Biol 2008; 3:e137. [PMID: 17630829 PMCID: PMC1914374 DOI: 10.1371/journal.pcbi.0030137] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/31/2007] [Indexed: 01/30/2023] Open
Abstract
The constant bombardment of mammalian genomes by transposable elements (TEs) has resulted in TEs comprising at least 45% of the human genome. Because of their great age and abundance, TEs are important in comparative phylogenomics. However, estimates of TE age were previously based on divergence from derived consensus sequences or phylogenetic analysis, which can be unreliable, especially for older more diverged elements. Therefore, a novel genome-wide analysis of TE organization and fragmentation was performed to estimate TE age independently of sequence composition and divergence or the assumption of a constant molecular clock. Analysis of TEs in the human genome revealed ∼600,000 examples where TEs have transposed into and fragmented other TEs, covering >40% of all TEs or ∼542 Mbp of genomic sequence. The relative age of these TEs over evolutionary time is implicit in their organization, because newer TEs have necessarily transposed into older TEs that were already present. A matrix of the number of times that each TE has transposed into every other TE was constructed, and a novel objective function was developed that derived the chronological order and relative ages of human TEs spanning >100 million years. This method has been used to infer the relative ages across all four major TE classes, including the oldest, most diverged elements. Analysis of DNA transposons over the history of the human genome has revealed the early activity of some MER2 transposons, and the relatively recent activity of MER1 transposons during primate lineages. The TEs from six additional mammalian genomes were defragmented and analyzed. Pairwise comparison of the independent chronological orders of TEs in these mammalian genomes revealed species phylogeny, the fact that transposons shared between genomes are older than species-specific transposons, and a subset of TEs that were potentially active during periods of speciation. Transposable elements (TEs) are interspersed repetitive DNA families that are capable of copying themselves from place to place; they have literally infested our genome over evolutionary time, and now comprise as much as 45% of our total DNA. Because of their great age and abundance, TEs are important in evolutionary genomics. However, estimates of their age based on DNA sequence composition have been unreliable, especially for older more diverged elements. Therefore, a novel method to estimate the age of TEs was developed based on the fact that as TEs spread throughout the genome, they inserted into and fragmented older TEs that were already present. Therefore, the age of TEs can be revealed by how often they have been fragmented over evolutionary time. We performed a genome-wide defragmention of TEs, and developed a novel objective function to derive the chronological order of TEs spanning >100 million years. This method has been used to infer the relative ages of TEs from seven sequenced mammalian genomes across all four major TE classes, including the oldest, most diverged elements. This age estimate is independent of TE sequence composition or divergence and does not rely on the assumption of a constant molecular clock. This study provides a novel analysis of the evolutionary history of some of the most abundant and ancient repetitive DNA elements in mammalian genomes, which is important for understanding the dynamic forces that shape our genomes during evolution.
Collapse
Affiliation(s)
- Joti Giordano
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yongchao Ge
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
- Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, Massachusetts, United States of America
| | - György Abrusán
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gary Benson
- Departments of Computer Science and Biology, Boston University, Boston, Massachusetts, United States of America
| | - Peter E Warburton
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
125
|
A recently active miniature inverted-repeat transposable element, Chunjie, inserted into an operon without disturbing the operon structure in Geobacter uraniireducens Rf4. Genetics 2008; 179:2291-7. [PMID: 18660544 DOI: 10.1534/genetics.108.089995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are short DNA transposons with terminal inverted repeat (TIR) signals and have been extensively studied in plants and other eukaryotes. But little is known about them in eubacteria. We identified a novel and recently active MITE, Chunjie, when studying the recent duplication of an operon consisting of ABC transporters and a phosphate uptake regulator in the chromosome of Geobacter uraniireducens Rf4. Chunjie resembles the other known MITEs in many aspects, e.g., having TIR signals and direct repeats, small in size, noncoding, able to fold into a stable secondary structure, and typically inserted into A + T-rich regions. At least one case of recent transposition was observed, i.e., the insertion of Chunjie into one copy of the aforementioned operon. As far as we know, this is the first report that the insertion of a MITE does not disrupt the operon structure.
Collapse
|
126
|
The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Funct Integr Genomics 2008; 9:97-108. [PMID: 18633654 DOI: 10.1007/s10142-008-0091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 06/08/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
Abstract
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.
Collapse
|
127
|
Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming. Leukemia 2008; 22:1503-18. [PMID: 18548105 DOI: 10.1038/leu.2008.141] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During embryonic development and adult life, the plasticity and reversibility of modifications that affect the chromatin structure is important in the expression of genes involved in cell fate decisions and the maintenance of cell-differentiated state. Epigenetic changes in DNA and chromatin, which must occur to allow the accessibility of transcriptional factors at specific DNA-binding sites, are regarded as emerging major players for embryonic and hematopoietic stem cell (HSC) development and lineage differentiation. Epigenetic deregulation of gene expression, whether it be in conjunction with chromosomal alterations and gene mutations or not, is a newly recognized mechanism that leads to several diseases, including leukemia. The reversibility of epigenetic modifications makes DNA and chromatin changes attractive targets for therapeutic intervention. Here we review some of the epigenetic mechanisms that regulate gene expression in pluripotent embryonic and multipotent HSCs but may be deregulated in leukemia, and the clinical approaches designed to target the chromatin structure in leukemic cells.
Collapse
|
128
|
The Tol1 element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans. Heredity (Edinb) 2008; 101:222-7. [PMID: 18506201 DOI: 10.1038/hdy.2008.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tol1 is a DNA-based transposable element residing in the genome of the medaka fish Oryzias latipes, and has been proven to be transposed in various vertebrate species, including mammals. This element belongs to the hAT (hobo/Activator/Tam3) transposable element family, whose members are distributed in a wide range of organisms. It is thus possible that Tol1 is mobile in organisms other than vertebrates. We here show that transposition of this element occurs in the nematode Caenorhabditis elegans. A donor plasmid containing a Tol1 element and a helper plasmid carrying the transposase gene were delivered into gonad cells and, after several generations of culturing, were recovered from worms. PCR analysis of the donor plasmid, using primers that encompassed the Tol1 element, revealed excision of the Tol1 portion from the plasmid. Analysis of genomic DNA of the worms by the inverse PCR method provided evidence that Tol1 had been integrated into the C. elegans chromosomes. Vertebrates and C. elegans are phylogenetically distantly related organisms in that the former are deuterostomes and the latter a protostome animal. Our results indicate (1) the transposition reaction of the Tol1 element requires, besides the transposase, no factors from host cells, or (2) the host factors, even if required, are those that are common to protostomes and deuterostomes. The results also have significance for the development of a gene transfer vector and other biotechnology tools for C. elegans.
Collapse
|
129
|
Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 2008; 9:411-2; author reply 414. [PMID: 18421312 DOI: 10.1038/nrg2165-c1] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
130
|
Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA (NEW YORK, N.Y.) 2008; 14:814-21. [PMID: 18367716 PMCID: PMC2327354 DOI: 10.1261/rna.916708] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 02/15/2008] [Indexed: 05/18/2023]
Abstract
We recently proposed a specific model whereby miRNAs encoded from short nonautonomous DNA-type TEs known as MITEs evolved from corresponding ancestral full-length (autonomous) elements that originally encoded short interfering (siRNAs). Our miRNA-origins model predicts that evolutionary intermediates may exist as TEs that encode both siRNAs and miRNAs, and we analyzed Arabidopsis thaliana and Oryza sativa (rice) genomic sequence and expression data to test this prediction. We found a number of examples of individual plant TE insertions that encode both siRNAs and miRNAs. We show evidence that these dual coding TEs can be expressed as readthrough transcripts from the intronic regions of spliced RNA messages. These TE transcripts can fold to form the hairpin (stem-loop) structures characteristic of miRNA genes along with longer double-stranded RNA regions that typically are processed as siRNAs. Taken together with a recent study showing Drosha independent processing of miRNAs from Drosophila introns, our results indicate that ancestral miRNAs could have evolved from TEs prior to the full elaboration of the miRNA biogenesis pathway. Later, as the specific miRNA biogenesis pathway evolved, and numerous other expressed inverted repeat regions came to be recognized by the miRNA processing endonucleases, the host gene-related regulatory functions of miRNAs emerged. In this way, host genomes were afforded an additional level of regulatory complexity as a by-product of TE defense mechanisms. The siRNA-to-miRNA evolutionary transition is representative of a number of other regulatory mechanisms that evolved to silence TEs and were later co-opted to serve as regulators of host gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant
- MicroRNAs/chemistry
- MicroRNAs/genetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oryza/genetics
- Plants/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | |
Collapse
|
131
|
Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA (NEW YORK, N.Y.) 2008. [PMID: 18367716 DOI: 10.1261/rna.916708.ferred] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We recently proposed a specific model whereby miRNAs encoded from short nonautonomous DNA-type TEs known as MITEs evolved from corresponding ancestral full-length (autonomous) elements that originally encoded short interfering (siRNAs). Our miRNA-origins model predicts that evolutionary intermediates may exist as TEs that encode both siRNAs and miRNAs, and we analyzed Arabidopsis thaliana and Oryza sativa (rice) genomic sequence and expression data to test this prediction. We found a number of examples of individual plant TE insertions that encode both siRNAs and miRNAs. We show evidence that these dual coding TEs can be expressed as readthrough transcripts from the intronic regions of spliced RNA messages. These TE transcripts can fold to form the hairpin (stem-loop) structures characteristic of miRNA genes along with longer double-stranded RNA regions that typically are processed as siRNAs. Taken together with a recent study showing Drosha independent processing of miRNAs from Drosophila introns, our results indicate that ancestral miRNAs could have evolved from TEs prior to the full elaboration of the miRNA biogenesis pathway. Later, as the specific miRNA biogenesis pathway evolved, and numerous other expressed inverted repeat regions came to be recognized by the miRNA processing endonucleases, the host gene-related regulatory functions of miRNAs emerged. In this way, host genomes were afforded an additional level of regulatory complexity as a by-product of TE defense mechanisms. The siRNA-to-miRNA evolutionary transition is representative of a number of other regulatory mechanisms that evolved to silence TEs and were later co-opted to serve as regulators of host gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant
- MicroRNAs/chemistry
- MicroRNAs/genetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oryza/genetics
- Plants/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | |
Collapse
|
132
|
An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 2008; 4:e1000031. [PMID: 18369450 PMCID: PMC2268245 DOI: 10.1371/journal.pgen.1000031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. For reasons that are still unclear, genetic defects in DNA repair can cause diseases that resemble aspects of premature ageing (“segmental progerias”). Cockayne syndrome (CS) is a particularly devastating progeria most commonly caused by mutations in the CSB chromatin remodeling gene. About 43 million years ago, before humans diverged from marmosets, one of the last PiggyBac transposable elements to invade the human lineage landed within intron 5 of the 21 exon CSB gene. As a result, the CSB locus now encodes two equally abundant proteins generated by alternative mRNA splicing: the original full length CSB protein, and a novel CSB-PiggyBac fusion protein in which the N-terminus of CSB is fused to the complete PiggyBac transposase. Conservation of the CSB-PiggyBac fusion protein since marmoset suggests that it is normally beneficial, demonstrating once again that “selfish” transposable elements can be exploited or “domesticated” by the host. More importantly, almost all CSB mutations that cause CS continue to make the CSB-PiggyBac fusion protein, whereas a mutation that compromises both does not cause CS. Thus the fusion protein which is beneficial in the presence of functional CSB may be harmful in its absence. This may help clarify the cause of CS and other progerias.
Collapse
|
133
|
Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 2008; 18:717-28. [PMID: 18340040 DOI: 10.1101/gr.071886.107] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA transposons, or class 2 transposable elements, have successfully propagated in a wide variety of genomes. However, it is widely believed that DNA transposon activity has ceased in mammalian genomes for at least the last 40 million years. We recently reported evidence for the relatively recent activity of hAT and Helitron elements, two distinct groups of DNA transposons, in the lineage of the vespertilionid bat Myotis lucifugus. Here, we describe seven additional families that have also been recently active in the bat lineage. Early vespertilionid genome evolution was dominated by the activity of Helitrons, mariner-like and Tc2-like elements. This was followed by the colonization of Tc1-like elements, and by a more recent explosion of hAT-like elements. Finally, and most recently, piggyBac-like elements have amplified within the Myotis genome and our results indicate that one of these families is probably still expanding in natural populations. Together, these data suggest that there has been tremendous recent activity of various DNA transposons in the bat lineage that far exceeds those previously reported for any mammalian lineage. The diverse and recent populations of DNA transposons in genus Myotis will provide an unprecedented opportunity to study the impact of this class of elements on mammalian genome evolution and to better understand what makes some species more susceptible to invasion by genomic parasites than others.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Weil C, Martienssen R. Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev 2008; 18:188-92. [PMID: 18339541 DOI: 10.1016/j.gde.2008.01.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
Abstract
Transposons replicate, increase in copy number and persist in nature by moving, but insertion into genes is generally mutagenic. There is thus a strong selection for transposons that can achieve a balance between their own replication and minimal damage to their host. Epigenetic regulation proves to be a widespread way to achieve this balance, quieting transposition on the one hand, yet reversible on the other. As our understanding of epigenetics improves, the subtleties and the scope of how transposons can affect gene expression, both directly and indirectly, are becoming clearer.
Collapse
Affiliation(s)
- Cliff Weil
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
135
|
Abstract
Mechanisms involved in eroding fitness of evolving Y chromosomes have been the focus of much theoretical and empirical work. Evolving Y chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are nonautonomous DNA transposons, often inserted in introns and untranslated regions of genes. Thus, if they invade Y-linked genes and selection against their insertion is ineffective, they could contribute to genetic degeneration of evolving Y chromosomes. Here, we examine the population dynamics of active MITEs in the young Y chromosomes of the plant Silene latifolia and compare their distribution with those in recombining genomic regions. To isolate active MITEs, we developed a straightforward approach on the basis of the assumption that recent transposon insertions or excisions create singleton or low-frequency size polymorphisms that can be detected in alleles from natural populations. Transposon display was then used to infer the distribution of MITE insertion frequencies. The overall frequency spectrum showed an excess of singleton and low-frequency insertions, which suggests that these elements are readily removed from recombining chromosomes. In contrast, insertions on the Y chromosomes were present at high frequencies. Their potential contribution to Y degeneration is discussed.
Collapse
|
136
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
137
|
Zhou F, Tran T, Xu Y. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria. Biochem Biophys Res Commun 2008; 365:790-4. [DOI: 10.1016/j.bbrc.2007.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022]
|
138
|
Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241-59. [PMID: 17506661 DOI: 10.1146/annurev.genom.8.080706.092416] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA.
| | | | | | | |
Collapse
|
139
|
Cam HP, Noma KI, Ebina H, Levin HL, Grewal SIS. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 2007; 451:431-6. [PMID: 18094683 DOI: 10.1038/nature06499] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 11/22/2007] [Indexed: 12/23/2022]
Abstract
Transposable elements and their remnants constitute a substantial fraction of eukaryotic genomes. Host genomes have evolved defence mechanisms, including chromatin modifications and RNA interference, to regulate transposable elements. Here we describe a genome surveillance mechanism for retrotransposons by transposase-derived centromeric protein CENP-B homologues of the fission yeast Schizosaccharomyces pombe. CENP-B homologues of S. pombe localize at and recruit histone deacetylases to silence Tf2 retrotransposons. CENP-Bs also repress solo long terminal repeats (LTRs) and LTR-associated genes. Tf2 elements are clustered into 'Tf' bodies, the organization of which depends on CENP-Bs that display discrete nuclear structures. Furthermore, CENP-Bs prevent an 'extinct' Tf1 retrotransposon from re-entering the host genome by blocking its recombination with extant Tf2, and silence and immobilize a Tf1 integrant that becomes sequestered into Tf bodies. Our results reveal a probable ancient retrotransposon surveillance pathway important for host genome integrity, and highlight potential conflicts between DNA transposons and retrotransposons, major transposable elements believed to have greatly moulded the evolution of genomes.
Collapse
Affiliation(s)
- Hugh P Cam
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
140
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
141
|
Casola C, Hucks D, Feschotte C. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 2007; 25:29-41. [PMID: 17940212 DOI: 10.1093/molbev/msm221] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian centromere-associated protein B (CENP-B) shares significant sequence similarity with 3 proteins in fission yeast (Abp1, Cbh1, and Cbh2) that also bind centromeres and have essential function for chromosome segregation and centromeric heterochromatin formation. Each of these proteins displays extensive sequence similarity with pogo-like transposases, which have been previously identified in the genomes of various insects and vertebrates, in the protozoan Entamoeba and in plants. Based on this distribution, it has been proposed that the mammalian and fission yeast centromeric proteins are derived from "domesticated" pogo-like transposons. Here we took advantage of the vast amount of sequence information that has become recently available for a wide range of fungal and animal species to investigate the origin of the mammalian CENP-B and yeast CENP-B-like genes. A highly conserved ortholog of CENP-B was detected in 31 species of mammals, including opossum and platypus, but was absent from all nonmammalian species represented in the databases. Similarly, no ortholog of the fission yeast centromeric proteins was identified in any of the various fungal genomes currently available. In contrast, we discovered a plethora of novel pogo-like transposons in diverse invertebrates and vertebrates and in several filamentous fungi. Phylogenetic analysis revealed that the mammalian and fission yeast CENP-B proteins fall into 2 distinct monophyletic clades, each of which includes a different set of pogo-like transposons. These results are most parsimoniously explained by independent domestication events of pogo-like transposases into centromeric proteins in the mammalian and fission yeast lineages, a case of "convergent domestication." These findings highlight the propensity of transposases to give rise to new host proteins and the potential of transposons as sources of genetic innovation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Biology, University of Texas, Arlington, USA
| | | | | |
Collapse
|
142
|
Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol Cell Biol 2007; 27:8824-33. [PMID: 17938204 DOI: 10.1128/mcb.00498-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Sleeping Beauty (SB) transposon represents an important vehicle for in vivo gene delivery because it can efficiently and stably integrate into mammalian genomes. In this report, we examined transposon expression in human cells using a novel nonselective fluorescence-activated cell sorter-based method and discovered that SB integrates approximately 20 times more frequently than previously reported within systems that were dependent on transgene expression and likely subject to postintegrative gene silencing. Over time, phenotypic analysis of clonal integrants demonstrated that SB undergoes additional postintegrative gene silencing, which varied based on the promoter used for transgene expression. Molecular and biochemical studies suggested that transposon silencing was influenced by DNA methylation and histone deacetylation because both 5-aza-2'-deoxycytidine and trichostatin A partially rescued transgene silencing in clonal cell lines. Collectively, these data reveal the existence of a multicomponent postintegrative gene silencing network that efficiently targets invading transposon sequences for transcriptional silencing in mammalian cells.
Collapse
|
143
|
Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 2007; 38:1-31. [PMID: 17949725 DOI: 10.1016/j.ijpara.2007.07.018] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/18/2022]
Abstract
Comparative genomics of parasitic protists and their free-living relatives are profoundly impacting our understanding of the regulatory systems involved in transcription and chromatin dynamics. While some parts of these systems are highly conserved, other parts are rapidly evolving, thereby providing the molecular basis for the variety in the regulatory adaptations of eukaryotes. The gross number of specific transcription factors and chromatin proteins are positively correlated with proteome size in eukaryotes. However, the individual types of specific transcription factors show an enormous variety across different eukaryotic lineages. The dominant families of specific transcription factors even differ between sister lineages, and have been shaped by gene loss and lineage-specific expansions. Recognition of this principle has helped in identifying the hitherto unknown, major specific transcription factors of several parasites, such as apicomplexans, Entamoeba histolytica, Trichomonas vaginalis, Phytophthora and ciliates. Comparative analysis of predicted chromatin proteins from protists allows reconstruction of the early evolutionary history of histone and DNA modification, nucleosome assembly and chromatin-remodeling systems. Many key catalytic, peptide-binding and DNA-binding domains in these systems ultimately had bacterial precursors, but were put together into distinctive regulatory complexes that are unique to the eukaryotes. In the case of histone methylases, histone demethylases and SWI2/SNF2 ATPases, proliferation of paralogous families followed by acquisition of novel domain architectures, seem to have played a major role in producing a diverse set of enzymes that create and respond to an epigenetic code of modified histones. The diversification of histone acetylases and DNA methylases appears to have proceeded via repeated emergence of new versions, most probably via transfers from bacteria to different eukaryotic lineages, again resulting in lineage-specific diversity in epigenetic signals. Even though the key histone modifications are universal to eukaryotes, domain architectures of proteins binding post-translationally modified-histones vary considerably across eukaryotes. This indicates that the histone code might be "interpreted" differently from model organisms in parasitic protists and their relatives. The complexity of domain architectures of chromatin proteins appears to have increased during eukaryotic evolution. Thus, Trichomonas, Giardia, Naegleria and kinetoplastids have relatively simple domain architectures, whereas apicomplexans and oomycetes have more complex architectures. RNA-dependent post-transcriptional silencing systems, which interact with chromatin-level regulatory systems, show considerable variability across parasitic protists, with complete loss in many apicomplexans and partial loss in Trichomonas vaginalis. This evolutionary synthesis offers a robust scaffold for future investigation of transcription and chromatin structure in parasitic protists.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
144
|
Han Y, Korban SS. Spring: a novel family of miniature inverted-repeat transposable elements is associated with genes in apple. Genomics 2007; 90:195-200. [PMID: 17513085 DOI: 10.1016/j.ygeno.2007.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/14/2007] [Accepted: 04/16/2007] [Indexed: 11/18/2022]
Abstract
The apple, Malusxdomestica Borkh., belongs to the family Rosaceae and subfamily Maloideae and has a genome size of approximately 750 Mb. In this study, a novel family of transposable elements, designated Spring, has been identified in the apple genome. The four Spring elements, Spring-1 to Spring-4, share all the classic features of miniature inverted-repeat transposable elements (MITEs), including small size (approximately 148 bp), no coding potential, A/T richness, insertion bias toward noncoding regions, terminal inverted repeats (TIRs), target site duplications, and potential for forming secondary structures. Evidence of previous mobility of Spring-4 is demonstrated by sequence alignment of genes encoding 1-aminocyclopropane-1-carboxylic acid synthase from both apple and a related member of the Maloideae subfamily, pear. The Spring elements are flanked by either 8- or 9-bp direct repeats, and they differ significantly in size compared to other previously reported MITEs in plants. The TIRs of these Spring elements are not found in any other previously reported plant genes or transposons, except for apple. The possible role of Spring elements in the apple genome is discussed.
Collapse
Affiliation(s)
- Yuepeng Han
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
145
|
Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 2007; 17:992-1004. [PMID: 17495012 PMCID: PMC1899126 DOI: 10.1101/gr.6070707] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genome of the gray short-tailed opossum Monodelphis domestica is notable for its large size ( approximately 3.6 Gb). We characterized nearly 500 families of interspersed repeats from the Monodelphis. They cover approximately 52% of the genome, higher than in any other amniotic lineage studied to date, and may account for the unusually large genome size. In comparison to other mammals, Monodelphis is significantly rich in non-LTR retrotransposons from the LINE-1, CR1, and RTE families, with >29% of the genome sequence comprised of copies of these elements. Monodelphis has at least four families of RTE, and we report support for horizontal transfer of this non-LTR retrotransposon. In addition to short interspersed elements (SINEs) mobilized by L1, we found several families of SINEs that appear to use RTE elements for mobilization. In contrast to L1-mobilized SINEs, the RTE-mobilized SINEs in Monodelphis appear to shift from G+C-rich to G+C-low regions with time. Endogenous retroviruses have colonized approximately 10% of the opossum genome. We found that their density is enhanced in centromeric and/or telomeric regions of most Monodelphis chromosomes. We identified 83 new families of ancient repeats that are highly conserved across amniotic lineages, including 14 LINE-derived repeats; and a novel SINE element, MER131, that may have been exapted as a highly conserved functional noncoding RNA, and whose emergence dates back to approximately 300 million years ago. Many of these conserved repeats are also present in human, and are highly over-represented in predicted cis-regulatory modules. Seventy-six of the 83 families are present in chicken in addition to mammals.
Collapse
Affiliation(s)
- Andrew J. Gentles
- Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305, USA
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| | - Matthew J. Wakefield
- ARC Centre for Kangaroo Genomics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Oleksiy Kohany
- Genetic Information Research Institute, Mountain View, California 94043, USA
| | - Wanjun Gu
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| |
Collapse
|
146
|
Volff JN. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 2007; 28:913-22. [PMID: 16937363 DOI: 10.1002/bies.20452] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autonomous transposable elements, generally considered as junk and selfish, encode transposition proteins that can bind, copy, break, join or degrade nucleic acids as well as process or interact with other proteins. Such a repertoire of activities might be of interest for the host cell. There is indeed substantial evidence that mobile DNA can serve as a dynamic reservoir for new cellular functions. Transposable element genes encoding transposase, integrase, reverse transcriptase as well as structural and envelope proteins have been repeatedly recruited by their host during evolution in most eukaryotic lineages. Such domesticated sequences protect us against infections, are necessary for our reproduction, allow the replication of our chromosomes and control cell proliferation and death; others are essential for plant development. Many new candidates for domesticated sequences have been revealed by sequencing projects. Their functional analysis will uncover new aspects of evolutionary alchemy, the turning of junk into gold within genomes.
Collapse
Affiliation(s)
- Jean-Nicolas Volff
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
147
|
Pace JK, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 2007; 17:422-32. [PMID: 17339369 PMCID: PMC1832089 DOI: 10.1101/gr.5826307] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Class 2, or DNA transposons, make up approximately 3% of the human genome, yet the evolutionary history of these elements has been largely overlooked and remains poorly understood. Here we carried out the first comprehensive analysis of the activity of human DNA transposons over the course of primate evolution using three independent computational methods. First, we conducted an exhaustive search for human DNA transposons nested within L1 and Alu elements known to be primate specific. Second, we assessed the presence/absence of 794 human DNA transposons at orthologous positions in 10 mammalian species using sequence data generated by The ENCODE Project. These two approaches, which do not rely upon sequence divergence, allowed us to classify DNA transposons into three different categories: anthropoid specific (40-63 My), primate specific (64-80 My), and eutherian wide (81-150 My). Finally, we used this data to calculate the substitution rates of DNA transposons for each category and refine the age of each family based on the average percent divergence of individual copies to their consensus. Based on these combined methods, we can confidently estimate that at least 40 human DNA transposon families, representing approximately 98,000 elements ( approximately 33 Mb) in the human genome, have been active in the primate lineage. There was a cessation in the transpositional activity of DNA transposons during the later phase of the primate radiation, with no evidence of elements younger than approximately 37 My. This data points to intense activity of DNA transposons during the mammalian radiation and early primate evolution, followed, apparently, by their mass extinction in an anthropoid primate ancestor.
Collapse
Affiliation(s)
- John K. Pace
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Cédric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
- Corresponding author.E-mail ; fax (817) 272-2855
| |
Collapse
|
148
|
Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007; 23:183-91. [PMID: 17331616 DOI: 10.1016/j.tig.2007.02.006] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 01/15/2007] [Accepted: 02/12/2007] [Indexed: 01/20/2023]
Abstract
Although a large proportion (44%) of the human genome is occupied by transposons and transposon-like repetitive elements, only a small proportion (<0.05%) of these elements remain active today. Recent evidence indicates that approximately 35-40 subfamilies of Alu, L1 and SVA elements (and possibly HERV-K elements) remain actively mobile in the human genome. These active transposons are of great interest because they continue to produce genetic diversity in human populations and also cause human diseases by integrating into genes. In this review, we examine these active human transposons and explore mechanistic factors that influence their mobilization.
Collapse
Affiliation(s)
- Ryan E Mills
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
149
|
Piriyapongsa J, Jordan IK. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2007; 2:e203. [PMID: 17301878 PMCID: PMC1784062 DOI: 10.1371/journal.pone.0000203] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/21/2007] [Indexed: 12/26/2022] Open
Abstract
While hundreds of novel microRNA (miRNA) genes have been discovered in the last few years alone, the origin and evolution of these non-coding regulatory sequences remain largely obscure. In this report, we demonstrate that members of a recently discovered family of human miRNA genes, hsa-mir-548, are derived from Made1 transposable elements. Made1 elements are short miniature inverted-repeat transposable elements (MITEs), which consist of two 37 base pair (bp) terminal inverted repeats that flank 6 bp of internal sequence. Thus, Made1 elements are nearly perfect palindromes, and when expressed as RNA they form highly stable hairpin loops. Apparently, these Made1-related structures are recognized by the RNA interference enzymatic machinery and processed to form 22 bp mature miRNA sequences. Consistent with their origin from MITEs, hsa-mir-548 genes are primate-specific and have many potential paralogs in the human genome. There are more than 3,500 putative hsa-mir-548 target genes; analysis of their expression profiles and functional affinities suggests cancer-related regulatory roles for hsa-mir-548. Taken together, the characteristics of Made1 elements, and MITEs in general, point to a specific mechanism for the generation of numerous small regulatory RNAs and target sites throughout the genome. The evolutionary lineage-specific nature of MITEs could also provide for the generation of novel regulatory phenotypes related to species diversification. Finally, we propose that MITEs may represent an evolutionary link between siRNAs and miRNAs.
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - I. King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
150
|
Dufresne M, Hua-Van A, El Wahab HA, Ben M'Barek S, Vasnier C, Teysset L, Kema GHJ, Daboussi MJ. Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics 2006; 175:441-52. [PMID: 17179071 PMCID: PMC1775018 DOI: 10.1534/genetics.106.064360] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mimp1 element previously identified in the ascomycete fungus Fusarium oxysporum has hallmarks of miniature inverted-repeat transposable elements (MITEs): short size, terminal inverted repeats (TIRs), structural homogeneity, and a stable secondary structure. Since mimp1 has no coding capacity, its mobilization requires a transposase-encoding element. On the basis of the similarity of TIRs and target-site preference with the autonomous Tc1-like element impala, together with a correlated distribution of both elements among the Fusarium genus, we investigated the ability of mimp1 to jump upon expression of the impala transposase provided in trans. Under these conditions, we present evidence that mimp1 transposes by a cut-and-paste mechanism into TA dinucleotides, which are duplicated upon insertion. Our results also show that mimp1 reinserts very frequently in genic regions for at least one-third of the cases. We also show that the mimp1/impala double-component system is fully functional in the heterologous species F. graminearum, allowing the development of a highly efficient tool for gene tagging in filamentous fungi.
Collapse
Affiliation(s)
- Marie Dufresne
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621, F-91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|