101
|
Ghosh S, Salot S, Sengupta S, Navalkar A, Ghosh D, Jacob R, Das S, Kumar R, Jha NN, Sahay S, Mehra S, Mohite GM, Ghosh SK, Kombrabail M, Krishnamoorthy G, Chaudhari P, Maji SK. p53 amyloid formation leading to its loss of function: implications in cancer pathogenesis. Cell Death Differ 2017; 24. [PMID: 28644435 PMCID: PMC5596421 DOI: 10.1038/cdd.2017.105] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcriptional regulator p53 has an essential role in tumor suppression. Almost 50% of human cancers are associated with the loss of p53 functions, where p53 often accumulates in the nucleus as well as in cytoplasm. Although it has been previously suggested that amyloid formation could be a cause of p53 loss-of-function in subset of tumors, the characterization of these amyloids and its structure-function relationship is not yet established. In the current study, we provide several evidences for the presence of p53 amyloid formation (in human and animal cancer tissues); along with its isolation from human cancer tissues and the biophysical characterization of these tissue-derived fibrils. Using amyloid seed of p53 fragment (P8, p53(250-257)), we show that p53 amyloid formation in cells not only leads to its functional inactivation but also transforms it into an oncoprotein. The in vitro studies further show that cancer-associated mutation destabilizes the fold of p53 core domain and also accelerates the aggregation and amyloid formation by this protein. Furthermore, we also show evidence of prion-like cell-to-cell transmission of different p53 amyloid species including full-length p53, which is induced by internalized P8 fibrils. The present study suggests that p53 amyloid formation could be one of the possible cause of p53 loss of function and therefore, inhibiting p53 amyloidogenesis could restore p53 tumor suppressor functions.
Collapse
Affiliation(s)
- Saikat Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shimul Salot
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Reeba Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Narendra Nath Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ganesh M Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Mamata Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Guruswamy Krishnamoorthy
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biotechnology, Anna University, Chennai, India
| | - Pradip Chaudhari
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. Tel: +91 22 25767774; Fax: +91 2225767760, E-mail:
| |
Collapse
|
102
|
Spatial distribution of disease-associated variants in three-dimensional structures of protein complexes. Oncogenesis 2017; 6:e380. [PMID: 28945216 PMCID: PMC5623905 DOI: 10.1038/oncsis.2017.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/26/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Next-generation sequencing enables simultaneous analysis of hundreds of human genomes
associated with a particular phenotype, for example, a disease. These genomes
naturally contain a lot of sequence variation that ranges from single-nucleotide
variants (SNVs) to large-scale structural rearrangements. In order to establish a
functional connection between genotype and disease-associated phenotypes, one needs
to distinguish disease drivers from neutral passenger variants. Functional annotation
based on experimental assays is feasible only for a limited number of candidate
mutations. Thus alternative computational tools are needed. A possible approach to
annotating mutations functionally is to consider their spatial location relative to
functionally relevant sites in three-dimensional (3D) structures of the harboring
proteins. This is impeded by the lack of available protein 3D structures.
Complementing experimentally resolved structures with reliable computational models
is an attractive alternative. We developed a structure-based approach to
characterizing comprehensive sets of non-synonymous single-nucleotide variants
(nsSNVs): associated with cancer, non-cancer diseases and putatively functionally
neutral. We searched experimentally resolved protein 3D structures for potential
homology-modeling templates for proteins harboring corresponding mutations. We found
such templates for all proteins with disease-associated nsSNVs, and 51 and 66%
of proteins carrying common polymorphisms and annotated benign variants. Many
mutations caused by nsSNVs can be found in protein–protein,
protein–nucleic acid or protein–ligand complexes. Correction for the
number of available templates per protein reveals that protein–protein
interaction interfaces are not enriched in either cancer nsSNVs, or nsSNVs associated
with non-cancer diseases. Whereas cancer-associated mutations are enriched in
DNA-binding proteins, they are rarely located directly in DNA-interacting interfaces.
In contrast, mutations associated with non-cancer diseases are in general rare in
DNA-binding proteins, but enriched in DNA-interacting interfaces in these proteins.
All disease-associated nsSNVs are overrepresented in ligand-binding pockets, and
nsSNVs associated with non-cancer diseases are additionally enriched in protein core,
where they probably affect overall protein stability.
Collapse
|
103
|
Solomon H, Bräuning B, Fainer I, Ben-Nissan G, Rabani S, Goldfinger N, Moscovitz O, Shakked Z, Rotter V, Sharon M. Post-translational regulation of p53 function through 20S proteasome-mediated cleavage. Cell Death Differ 2017; 24:2187-2198. [PMID: 28885617 DOI: 10.1038/cdd.2017.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Δ40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Δ40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Δ40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Δ40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Δ40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Δ40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.
Collapse
Affiliation(s)
- Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bastian Bräuning
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stav Rabani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Moscovitz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
104
|
Rasquinha JA, Bej A, Dutta S, Mukherjee S. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2017; 56:4962-4971. [PMID: 28836764 DOI: 10.1021/acs.biochem.7b00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations in p53's DNA binding domain (p53DBD) are associated with 50% of all cancers, making it an essential system to investigate and understand the genesis and progression of cancer. In this work, we studied the changes in the structure and dynamics of wild type p53DBD in comparison with two of its "hot-spot" DNA-contact mutants, R248Q and R273H, by analysis of backbone amide chemical shift perturbations and 15N spin relaxation measurements. The results of amide chemical shift changes indicated significantly more perturbations in the R273H mutant than in wild type and R248Q p53DBD. Analysis of 15N spin relaxation rates and the resulting nuclear magnetic resonance order parameters suggests that for most parts, the R248Q mutant exhibits limited conformational flexibility and is similar to the wild type protein. In contrast, R273H showed significant backbone dynamics extending up to its β-sandwich scaffold in addition to motions along the DNA binding interface. Furthermore, comparison of rotational correlation times between the mutants suggests that the R273H mutant, with a higher correlation time, forms an enlarged structural fold in comparison to the R248Q mutant and wild type p53DBD. Finally, we identify three regions in these proteins that show conformational flexibility to varying degrees, which suggests that the R273H mutant, in addition to being a DNA-contact mutation, exhibits properties of a conformational mutant.
Collapse
Affiliation(s)
- Juhi A Rasquinha
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology , Kolkata, West Bengal 700032, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology , Kolkata, West Bengal 700032, India
| | - Shraboni Dutta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology , Kolkata, West Bengal 700032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology , Kolkata, West Bengal 700032, India
| |
Collapse
|
105
|
Regad L, Chéron JB, Triki D, Senac C, Flatters D, Camproux AC. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight. PLoS One 2017; 12:e0182972. [PMID: 28817602 PMCID: PMC5560695 DOI: 10.1371/journal.pone.0182972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022] Open
Abstract
Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.
Collapse
Affiliation(s)
- Leslie Regad
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: anne-claude.camproux@univ-paris-diderot (ACC); (LR)
| | - Jean-Baptiste Chéron
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut de Chimie de Nice, UMR-CNRS 7272, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| | - Dhoha Triki
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Senac
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
| | - Delphine Flatters
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne-Claude Camproux
- Molécules thérapeutiques in silico (MTi), INSERM UMR-S973, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: anne-claude.camproux@univ-paris-diderot (ACC); (LR)
| |
Collapse
|
106
|
Malaney P, Uversky VN, Davé V. PTEN proteoforms in biology and disease. Cell Mol Life Sci 2017; 74:2783-2794. [PMID: 28289760 PMCID: PMC11107534 DOI: 10.1007/s00018-017-2500-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33612, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., Saint Petersburg, Russia, 194064
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
107
|
Signorelli S, Cannistraro S, Bizzarri AR. Structural Characterization of the Intrinsically Disordered Protein p53 Using Raman Spectroscopy. APPLIED SPECTROSCOPY 2017; 71:823-832. [PMID: 27340212 DOI: 10.1177/0003702816651891] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The intrinsically disordered protein p53 has attracted a strong interest for its important role in genome safeguarding and potential therapeutic applications. However, its disordered character makes difficult a full characterization of p53 structural architecture. A deep knowledge of p53 structural motifs could significantly help the understanding of its functional properties, in connection with its complex binding network. We have applied Raman spectroscopy to investigate the structural composition and the conformational heterogeneity of both full-length p53 and its DNA binding domain (DBD), in different solvent environments. In particular, a careful analysis of the Amide I Raman band, which is highly sensitive to protein secondary structure elements such as α-helices, β-sheets and random coils, has revealed the presence of extended random coils in p53 and predominant β-sheet regions in its DBD. In addition, this analysis has allowed us to explore the ensemble of interchanging conformations in both p53 and its DBD, highlighting a higher conformational heterogeneity in p53 than in its DBD. Furthermore, by applying a principal components analysis, we have identified the principal spectral markers in both p53 and DBD samples. The combination of the two approaches could be insightful for the study of intrinsically disordered proteins, by offering increased versatility and wide application as a label-free, real-time and non-invasive detection method.
Collapse
Affiliation(s)
- Sara Signorelli
- 1 Biophysics and Nanoscience Centre, Università della Tuscia, Italy
- 2 Department of Science, University Roma Tre, Italy
| | | | | |
Collapse
|
108
|
Kovachev PS, Banerjee D, Rangel LP, Eriksson J, Pedrote MM, Martins-Dinis MMDC, Edwards K, Cordeiro Y, Silva JL, Sanyal S. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. J Biol Chem 2017; 292:9345-9357. [PMID: 28420731 DOI: 10.1074/jbc.m116.762096] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein.
Collapse
Affiliation(s)
- Petar Stefanov Kovachev
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Debapriya Banerjee
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jonny Eriksson
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Murilo M Pedrote
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Maria D C Martins-Dinis
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Katarina Edwards
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Suparna Sanyal
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden,
| |
Collapse
|
109
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
110
|
Abstract
Protein aggregation is involved in many diseases. Often, a unique aggregation-prone sequence polymerizes to form regular fibrils. Many oncogenic mutants of the tumor suppressor p53 rapidly aggregate but form amorphous fibrils. A peptide surrounding Ile254 is proposed to be the aggregation-driving sequence in cells. We identified several different aggregating sites from limited proteolysis of harvested aggregates and effects of mutations on kinetics and products of aggregation. We present a model whereby the amorphous nature of the aggregates results from multisite branching of polymerization after slow unfolding of the protein, which may be a common feature of aggregation of large proteins. Greatly lowering the aggregation propensity of any one single site, including the site of Ile254, by mutation did not inhibit aggregation in vitro because aggregation could still occur via the other sites. Inhibition of an individual site is, accordingly, potentially unable to prevent aggregation in vivo. However, cancer cells are specifically killed by peptides designed to inhibit the Ile254 sequence and further aggregation-driving sequences that we have found. Consistent with our proposed mechanism of aggregation, we found that such peptides did not inhibit aggregation of mutant p53 in vitro. The cytotoxicity was not eliminated by knockdown of p53 in 2D cancer cell cultures. The peptides caused rapid cell death, much faster than usually expected for p53-mediated transcription-dependent apoptosis. There may also be non-p53 targets for those peptides in cancer cells, such as p63, or the peptides may alter other interactions of partly denatured p53 with receptors.
Collapse
|
111
|
McCarthy C, Carrea A, Diambra L. Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics 2017; 18:227. [PMID: 28288557 PMCID: PMC5347174 DOI: 10.1186/s12864-017-3609-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background For a long time synonymous single nucleotide polymorphisms were considered as silent mutations. However, nowadays it is well known that they can affect protein conformation and function, leading to altered disease susceptibilities, differential prognosis and/or drug responses, among other clinically relevant genetic traits. This occurs through different mechanisms: by disrupting the splicing signals of precursor mRNAs, affecting regulatory binding-sites of transcription factors and miRNAs, or by modifying the secondary structure of mRNAs. Results In this paper we considered 22 human genetic diseases or traits, linked to 35 synonymous single nucleotide polymorphisms in 27 different genes. We performed a local sequence context analysis in terms of the ribosomal pause propensity affected by synonymous single nucleotide polymorphisms. We found that synonymous mutations related to the above mentioned mechanisms presented small pause propensity changes, whereas synonymous mutations that were not related to those mechanisms presented large pause propensity changes. On the other hand, we did not observe large variations in the codon usage of codons associated with these mutations. Furthermore, we showed that the changes in the pause propensity associated with benign sSNPs are significantly lower than the pause propensity changes related to sSNPs associated to diseases. Conclusions These results suggest that the genetic diseases or traits related to synonymous mutations with large pause propensity changes, could be the consequence of another mechanism underlying non-silent synonymous mutations. Namely, alternative protein configuration related, in turn, to alterations in the ribosome-mediated translational attenuation program encoded by pairs of consecutive codons, not codons. These findings shed light on the latter mechanism based on the perturbation of the co-translational folding process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3609-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina McCarthy
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina.,Departamento de Informática y Tecnología, Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Alejandra Carrea
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina.,CONICET, Buenos Aires, Argentina
| | - Luis Diambra
- Centro Regional de Estudio Génomicos, Universidad Nacional de La Plata, Boulevard 120, La Plata, Argentina. .,CONICET, Buenos Aires, Argentina.
| |
Collapse
|
112
|
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24:357-370. [PMID: 27886165 PMCID: PMC5299715 DOI: 10.1038/cdd.2016.133] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
113
|
Shamalov K, Levy SN, Horovitz-Fried M, Cohen CJ. The mutational status of p53 can influence its recognition by human T-cells. Oncoimmunology 2017; 6:e1285990. [PMID: 28507791 PMCID: PMC5414872 DOI: 10.1080/2162402x.2017.1285990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022] Open
Abstract
p53 was reported to be an attractive immunotherapy target because it is mutated in approximately half of human cancers, resulting in its inactivation and often accumulation in tumor cells. Peptides derived from p53 are presented by class I MHC molecules and may act as tumor-associated epitopes which could be targeted by p53-specific T cells. Interestingly, it was recently shown that there is a lack of significant correlation between p53 expression levels in tumors and their recognition by p53-TCR transduced T cells. To better understand the influence of the mutational status of p53 on its presentation by the MHC system and on T cell antitumor reactivity, we generated several mutant p53 constructs and expressed them in HLA-A2+/p53- cells. Upon co-culture with p53-specific T cells, we measured the specific recognition of p53-expressing target cells by means of cytokine secretion, marker upregulation and cytotoxicity, and in parallel determined p53 expression levels by intracellular staining. We also examined the relevance of antigen presentation components on p53 recognition and the impact of mutant p53 expression on cell-cycle dynamics. Our results show that selected p53 mutations altering protein stability can modulate p53 presentation to T cells, leading to a differential immune reactivity inversely correlated with measured p53 protein levels. Thus, p53 may behave differently than other classical tumor antigens and its mutational status should therefore be taken into account when elaborating immunotherapy treatments of cancer patients targeting p53.
Collapse
Affiliation(s)
- Katerina Shamalov
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shlomo N. Levy
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Miryam Horovitz-Fried
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J. Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
114
|
Kehrloesser S, Osterburg C, Tuppi M, Schäfer B, Vousden KH, Dötsch V. Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family. Cell Death Differ 2016; 23:1952-1960. [PMID: 27447112 PMCID: PMC5136486 DOI: 10.1038/cdd.2016.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
The high percentage of p53 missense mutations found in cancer has been attributed to mutant acquired oncogenic gain of functions. Different aspects of these tumour-promoting functions are caused by repression of the transcriptional activity of p53 family members p63 and p73. A subset of frequently occurring p53 mutations results in thermodynamic destabilisation of the DNA-binding domain (DBD) rendering this domain highly unstable. These conformational mutants (such as p53R175H) have been suggested to directly bind to p63 and p73 via a co-aggregation mechanism mediated by their DBDs. Although the DBDs of p63 and p73 are in fact not sufficient for the interaction as shown previously, we demonstrate here that the transactivation inhibitory (TI) domains within the α-isoform-specific C termini of p63 and p73 are essential for binding to p53R175H. Hence, the closed dimeric conformation of inactive TAp63α that renders the TI domain inaccessible prevents efficient interaction. We further show that binding to p53R175H correlates with an intrinsic aggregation propensity of the tetrameric α-isoforms conferred by an openly accessible TI domain again supporting interaction via a co-aggregation mechanism.
Collapse
Affiliation(s)
- Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
115
|
Abstract
TP53 is the most commonly mutated gene in cancer, with over half of all human cancers harboring a mutation in the gene. The p53 protein is a transcription factor that functions as a tumor suppressor, and a subset of its numerous roles include the arrest of proliferation, promotion of DNA repair, and induction of apoptosis in cells with severe DNA damage or stress. The vast majority of p53 mutations are single amino acid substitutions within the DNA binding domain, which either directly impede the protein's ability to bind DNA or destabilize the structure, resulting in misfolding. These missense mutant proteins are found at high levels due to loss of the MDM2 mediated regulation, and consequently serve as potential drug targets. Numerous pharmacological approaches have been investigated to restore wild type p53 function to these mutants (so-called reactivating mutant p53) with some entering in clinical trials while most have failed in early development. Recently, the field of cancer drug development has produced a number of new compounds that continue to advance this field, each with a different mechanism of action. Here we sought to review these compounds and approaches to reactivating mutant p53. Given the large number of patients with missense mutant p53 mutations, reactivating mutant p53 remains a highly sought after goal in developmental therapeutics.
Collapse
Affiliation(s)
- Samuel Kogan
- Rutgers Robert Wood Johnson Medical School, Piscataway Township, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Darren Carpizo
- Rutgers Robert Wood Johnson Medical School, Piscataway Township, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Surgery, Division of Surgical Oncology, Rutgers Robert Wood Johnson Medical School, Piscataway Township, NJ, USA
| |
Collapse
|
116
|
Roberts JH, Liu F, Karnuta JM, Fitzgerald MC. Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome. J Proteome Res 2016; 15:4731-4741. [PMID: 27806573 DOI: 10.1021/acs.jproteome.6b00927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Described here is the application of thermodynamic stability measurements to study age-related differences in the folding and stability of proteins in a rodent model of aging. Thermodynamic stability profiles were generated for 809 proteins in brain cell lysates from mice, aged 6 (n = 7) and 18 months (n = 9) using the Stability of Proteins from Rates of Oxidation (SPROX) technique. The biological variability of the protein stability measurements was low and within the experimental error of SPROX. A total of 83 protein hits were detected with age-related stability differences in the brain samples. Remarkably, the large majority of the brain protein hits were destabilized in the old mice, and the hits were enriched in proteins that have slow turnover rates (p < 0.07). Furthermore, 70% of the hits have been previously linked to aging or age-related diseases. These results help validate the use of thermodynamic stability measurements to capture relevant age-related proteomic changes and establish a new biophysical link between these proteins and aging.
Collapse
Affiliation(s)
- Julia H Roberts
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Fang Liu
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jaret M Karnuta
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
117
|
Menéndez CA, Accordino SR, Gerbino DC, Appignanesi GA. Hydrogen Bond Dynamic Propensity Studies for Protein Binding and Drug Design. PLoS One 2016; 11:e0165767. [PMID: 27792778 PMCID: PMC5085089 DOI: 10.1371/journal.pone.0165767] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/17/2016] [Indexed: 12/04/2022] Open
Abstract
We study the dynamic propensity of the backbone hydrogen bonds of the protein MDM2 (the natural regulator of the tumor suppressor p53) in order to determine its binding properties. This approach is fostered by the observation that certain backbone hydrogen bonds at the p53-binding site exhibit a dynamical propensity in simulations that differs markedly form their state-value (that is, formed/not formed) in the PDB structure of the apo protein. To this end, we conduct a series of hydrogen bond propensity calculations in different contexts: 1) computational alanine-scanning studies of the MDM2-p53 interface; 2) the formation of the complex of MDM2 with the disruptive small molecule Nutlin-3a (dissecting the contribution of the different molecular fragments) and 3) the binding of a series of small molecules (drugs) with different affinities for MDM2. Thus, the relevance of the hydrogen bond propensity analysis for protein binding studies and as a useful tool to complement existing methods for drug design and optimization will be made evident.
Collapse
Affiliation(s)
- Cintia A. Menéndez
- INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sebastián R. Accordino
- INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Darío C. Gerbino
- INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Gustavo A. Appignanesi
- INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
118
|
Lebedev I, Nemajerova A, Foda ZH, Kornaj M, Tong M, Moll UM, Seeliger MA. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. J Mol Biol 2016; 428:4154-4167. [PMID: 27515399 PMCID: PMC5453312 DOI: 10.1016/j.jmb.2016.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Tissue necrosis as a consequence of ischemia-reperfusion injury and oxidative damage is a leading cause of permanent disability and death worldwide. The complete mechanism by which cells undergo necrosis upon oxidative stress is not understood. In response to an oxidative insult, wild-type p53 has been implicated as a central regulatory component of the mitochondrial permeability transition (mPT), triggering necrosis. This process is associated with cellular stabilization and translocation of p53 into the mitochondrial matrix. Here, we probe the mechanism by which p53 activates the key mPT regulator cyclophilin D (CypD). We explore the involvement of Trap1, an Hsp90-related mitochondrial matrix protein and a member of the mitochondrial unfolded protein response, and its ability to suppress mPT in a p53-dependent manner. Our study finds that catalytically active CypD causes strong aggregation of wild-type p53 protein (both full-length and isolated DNA-binding domain) into amyloid-type fibrils in vitro. The responsible CypD residues for this activity were mapped by NMR to the active site amino acids R55, F60, F113, and W121. The data also present a new proline isomerization assay for CypD by monitoring the aggregation of p53 as an indicator of CypD activity. Moreover, we find that the inhibition of Trap1 by the mitochondria-specific HSP90 ATPase antagonist Gamitrinib strongly sensitizes primary mouse embryonic fibroblasts to mPT and permeability transition pore opening in a p53- and CypD-dependent manner. We propose a mechanism by which the influx of unfolded p53 into the mitochondrial matrix in response to oxidative stress indirectly activates the normally inhibited CypD by displacing it from Trap1 complexes. This activates CypD's isomerase activity. Liberated CypD then isomerizes multiple proteins including p53 (causing p53 aggregation) and the structural components of the mPTP pore, inducing pore opening. This working model can now be tested in the future.
Collapse
Affiliation(s)
- Ivan Lebedev
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachariah H Foda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maja Kornaj
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Tong
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
119
|
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP, Silva JL. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023614. [PMID: 27549118 DOI: 10.1101/cshperspect.a023614] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prion diseases are disorders that share several characteristics that are typical of many neurodegenerative diseases. Recently, several studies have extended the prion concept to pathological aggregation in malignant tumors involving misfolded p53, a tumor-suppressor protein. The aggregation of p53 and its coaggregation with p53 family members, p63 and p73, have been shown. Certain p53 mutants exert a dominant-negative regulatory effect on wild-type (WT) p53. The basis for this dominant-negative effect is that amyloid-like mutant p53 converts WT p53 into an aggregated species, leading to a gain-of-function (GoF) phenotype and the loss of its tumor-suppressor function. Recently, it was shown that p53 aggregates can be internalized by cells and can coaggregate with endogenous p53, corroborating the prion-like properties of p53 aggregates. The prion-like behavior of oncogenic p53 mutants provides an explanation for its dominant-negative and GoF properties, including the high metastatic potential of cancer cells carrying p53 mutations. The inhibition of p53 aggregation appears to represent a promising target for therapeutic intervention in patients with malignant tumors.
Collapse
Affiliation(s)
- Danielly C F Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
| | - Guilherme A P de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elio A Cino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Iaci N Soares
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luciana P Rangel
- Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
120
|
G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53. Sci Rep 2016; 6:32626. [PMID: 27601274 PMCID: PMC5013524 DOI: 10.1038/srep32626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022] Open
Abstract
p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S.
Collapse
|
121
|
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry 2016; 55:4885-908. [PMID: 27505032 DOI: 10.1021/acs.biochem.6b00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.
Collapse
Affiliation(s)
- Wendy A Lea
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | | | - Wesley McGinn-Straub
- fortéBIO (a division of Pall Life Sciences) , Menlo Park, California 94025, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Joshua R Burns
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Karen R Khar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - John Karanicolas
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
122
|
Arlt C, Götze M, Ihling CH, Hage C, Schäfer M, Sinz A. Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker. Anal Chem 2016; 88:7930-7. [DOI: 10.1021/acs.analchem.5b04853] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Arlt
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Michael Götze
- Institute
of Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str.
3, D-06120 Halle
(Saale), Germany
| | - Christian H. Ihling
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Christoph Hage
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| | - Mathias Schäfer
- Institute
for Organic Chemistry, Department of Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany
| | - Andrea Sinz
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-St. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
123
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
124
|
Solution structure and binding specificity of the p63 DNA binding domain. Sci Rep 2016; 6:26707. [PMID: 27225672 PMCID: PMC4880913 DOI: 10.1038/srep26707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023] Open
Abstract
p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.
Collapse
|
125
|
Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proc Natl Acad Sci U S A 2016; 113:E2558-63. [PMID: 27114532 DOI: 10.1073/pnas.1603838113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MDMX oncoprotein is an important regulator of tumor suppressor p53 activity during embryonic development. Despite sequence homology to the ubiquitin E3 ligase MDM2, MDMX depletion activates p53 without significant increase in p53 level, implicating a degradation-independent mechanism. We present evidence that MDMX inhibits the sequence-specific DNA binding activity of p53. This function requires the cooperation between MDMX and CK1α, and phosphorylation of S289 on MDMX. Depletion of MDMX or CK1α increases p53 DNA binding without stabilization of p53. A proteolytic fragment release assay revealed that in the MDMX-p53 complex, the MDMX acidic domain and RING domain interact stably with the p53 DNA binding domain. These interactions are referred to as secondary interactions because they only occur after the canonical-specific binding between the MDMX and p53 N termini, but exhibit significant binding stability in the mature complex. CK1α cooperates with MDMX to inhibit p53 DNA binding by further stabilizing the MDMX acidic domain and p53 core domain interaction. These results suggest that secondary intermolecular interaction is important in p53 regulation by MDMX, which may represent a common phenomenon in complexes containing multidomain proteins.
Collapse
|
126
|
pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants. Sci Rep 2016; 6:23836. [PMID: 27030015 PMCID: PMC4814907 DOI: 10.1038/srep23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4th_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4th_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities.
Collapse
|
127
|
Frum RA, Love IM, Damle PK, Mukhopadhyay ND, Palit Deb S, Deb S, Grossman SR. Constitutive Activation of DNA Damage Checkpoint Signaling Contributes to Mutant p53 Accumulation via Modulation of p53 Ubiquitination. Mol Cancer Res 2016; 14:423-36. [PMID: 26965143 DOI: 10.1158/1541-7786.mcr-15-0363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Many mutant p53 proteins exhibit an abnormally long half-life and overall increased abundance compared with wild-type p53 in tumors, contributing to mutant p53's gain-of-function oncogenic properties. Here, a novel mechanism is revealed for the maintenance of mutant p53 abundance in cancer that is dependent on DNA damage checkpoint activation. High-level mutant p53 expression in lung cancer cells was associated with preferential p53 monoubiquitination versus polyubiquitination, suggesting a role for the ubiquitin/proteasome system in regulation of mutant p53 abundance in cancer cells. Interestingly, mutant p53 ubiquitination status was regulated by ataxia-telangectasia mutated (ATM) activation and downstream phosphorylation of mutant p53 (serine 15), both in resting and in genotoxin-treated lung cancer cells. Specifically, either inhibition of ATM with caffeine or mutation of p53 (serine 15 to alanine) restored MDM2-dependent polyubiquitination of otherwise monoubiquitinated mutant p53. Caffeine treatment rescued MDM2-dependent proteasome degradation of mutant p53 in cells exhibiting active DNA damage signaling, and ATM knockdown phenocopied the caffeine effect. Importantly, in cells analyzed individually by flow cytometry, p53 levels were highest in cells exhibiting the greatest levels of DNA damage response, and interference with DNA damage signaling preferentially decreased the relative percentage of cells in a population with the highest levels of mutant p53. These data demonstrate that active DNA damage signaling contributes to high levels of mutant p53 via modulation of ubiquitin/proteasome activity toward p53. IMPLICATION The ability of DNA damage checkpoint signaling to mediate accumulation of mutant p53 suggests that targeting this signaling pathway may provide therapeutic gain. Mol Cancer Res; 14(5); 423-36. ©2016 AACR.
Collapse
Affiliation(s)
- Rebecca A Frum
- Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Ian M Love
- Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Priyadarshan K Damle
- Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Swati Palit Deb
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Sumitra Deb
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Steven R Grossman
- Division of Hematology, Oncology, and Palliative Care, Virginia Commonwealth University, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
128
|
Dissecting protein architecture with communication blocks and communicating segment pairs. BMC Bioinformatics 2016; 17 Suppl 2:13. [PMID: 26823083 PMCID: PMC4959365 DOI: 10.1186/s12859-015-0855-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins adapt to environmental conditions by changing their shape and motions. Characterising protein conformational dynamics is increasingly recognised as necessary to understand how proteins function. Given a conformational ensemble, computational tools are needed to extract in a systematic way pertinent and comprehensive biological information. RESULTS Here, we present a method, Communication Mapping (COMMA), to decipher the dynamical architecture of a protein. The method first extracts residue-based dynamic properties from all-atom molecular dynamics simulations. Then, it integrates them in a graph theoretic framework, where it identifies groups of residues or protein regions that mediate short- and long-range communication. COMMA introduces original concepts to contrast the different roles played by these regions, namely communication blocks and communicating segment pairs, and evaluates the connections and communication strengths between them. We show the utility and capabilities of COMMA by applying it to three archetypal proteins, namely protein A, the tyrosine kinase KIT and the tumour suppressor p53. CONCLUSION Our method permits to compare in a direct way the dynamical behaviour either of proteins with different characteristics or of the same protein in different conditions. It is useful to identify residues playing a key role in protein allosteric regulation and to explain the effects of deleterious mutations in a mechanistic way. COMMA is a fully automated tool with broad applicability. It is freely available to the community at www.lcqb.upmc.fr/COMMA .
Collapse
|
129
|
Singh MI, Jain V. Molecular Dissection of the Homotrimeric Sliding Clamp of T4 Phage: Two Domains of a Subunit Display Asymmetric Characteristics. Biochemistry 2016; 55:588-96. [DOI: 10.1021/acs.biochem.5b01204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manika Indrajit Singh
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Vikas Jain
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| |
Collapse
|
130
|
Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A, Tiourin E, Soriaga AB, Lu J, Jiang L, Faull KF, Pellegrini M, Memarzadeh S, Eisenberg DS. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell 2016; 29:90-103. [PMID: 26748848 PMCID: PMC4733364 DOI: 10.1016/j.ccell.2015.12.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/24/2015] [Accepted: 12/09/2015] [Indexed: 01/19/2023]
Abstract
Half of all human cancers lose p53 function by missense mutations, with an unknown fraction of these containing p53 in a self-aggregated amyloid-like state. Here we show that a cell-penetrating peptide, ReACp53, designed to inhibit p53 amyloid formation, rescues p53 function in cancer cell lines and in organoids derived from high-grade serous ovarian carcinomas (HGSOC), an aggressive cancer characterized by ubiquitous p53 mutations. Rescued p53 behaves similarly to its wild-type counterpart in regulating target genes, reducing cell proliferation and increasing cell death. Intraperitoneal administration decreases tumor proliferation and shrinks xenografts in vivo. Our data show the effectiveness of targeting a specific aggregation defect of p53 and its potential applicability to HGSOCs.
Collapse
Affiliation(s)
- Alice Soragni
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | - Deanna M Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lisa M Johnson
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | - Anne G Lindgren
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anh Thai-Quynh Nguyen
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | - Ekaterina Tiourin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Angela B Soriaga
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | - Jing Lu
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lin Jiang
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angles, Los Angeles, CA 90095, USA; The VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA.
| | - David S Eisenberg
- Departments of Biological Chemistry and Chemistry and Biochemistry, UCLA-DOE Institute, HHMI, 611 South Charles E. Young Drive, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
131
|
Bhattacharya S, Hanpude P, Maiti TK. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: A new insight in enzymatic inactivation. Sci Rep 2015; 5:18462. [PMID: 26680512 PMCID: PMC4683529 DOI: 10.1038/srep18462] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
BRCA1 associated protein 1 (BAP1) is a nuclear deubiquitinase that regulates tumor suppressor activity and widely involves many cellular processes ranging from cell cycle regulation to gluconeogenesis. Impairment of enzymatic activity and nuclear localization induce abnormal cell proliferation. It is considered to be an important driver gene, which undergoes frequent mutations in several cancers. However the role of mutation and oncogenic gain of function of BAP1 are poorly understood. Here, we investigated cellular localization, enzymatic activity and structural changes for four missense mutants of the catalytic domain of BAP1, which are prevalent in different types of cancer. These mutations triggered cytoplasmic/perinuclear accumulation in BAP1 deficient cells, which has been observed in proteins that undergo aggregation in cellular condition. Amyloidogenic activity of mutant BAP1 was revealed from its reactivity towards anti oligomeric antibody in HEK293T cells. We have also noted structural destabilization in the catalytic domain mutants, which eventually produced beta amyloid structure as indicated in atomic force microscopy study. The cancer associated mutants up-regulate heat shock response and activates transcription of genes normally co-repressed by BAP1. Overall, our results unambiguously demonstrate that structural destabilization and subsequent aggregation abrogate its cellular mechanism leading to adverse outcome.
Collapse
Affiliation(s)
- Sushmita Bhattacharya
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA
| | - Pranita Hanpude
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA.,Department of Biotechnology, Manipal University, Karnataka, 576104, INDIA
| | - Tushar Kanti Maiti
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA
| |
Collapse
|
132
|
Rohani L, Morton DJ, Wang XQ, Chaudhary J. Relative Stability of Wild-Type and Mutant p53 Core Domain: A Molecular Dynamic Study. J Comput Biol 2015; 23:80-89. [PMID: 26675082 DOI: 10.1089/cmb.2015.0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The p53 protein is a stress response protein that functions primarily as a tetrameric transcription factor. A tumor suppressor p53 binds to a specific DNA sequence and transactivates target genes, leading to cell cycle apoptosis. Encoded by the human gene TP53, p53 is a stress response protein that functions primarily as a tetrameric transcription factor. This gene regulates a large number of genes in response to a variety of cellular functions, including oncogene activation and DNA damage. Mutations in p53 are common in human cancer types. Herein we mutate a wild-type p53, 1TSR with four of its mutated proteins. The energy for the wild-type and mutated proteins is calculated by using molecular dynamics simulations along with simulated annealing. Our results show significant differences in energy between hotspot mutations and the wild type. Based on the findings, we investigate the correlation between molar masses of the target residue and the relative energy with respect to the wild type. Our results indicate that the relative energy changes play a pivotal role in bioactivity, in conformity with observations in the rate of mutation in biology.
Collapse
Affiliation(s)
- Leyla Rohani
- 1 Department of Physics and Center for Functional Nanoscale Materials, Clark Atlanta University , Atlanta, Georgia
| | - Derrick J Morton
- 2 Department of Biology, Center for Cancer Research and Therapeutics Development, Clark Atlanta University , Atlanta, Georgia
| | - Xiao-Qian Wang
- 1 Department of Physics and Center for Functional Nanoscale Materials, Clark Atlanta University , Atlanta, Georgia
| | - Jaideep Chaudhary
- 2 Department of Biology, Center for Cancer Research and Therapeutics Development, Clark Atlanta University , Atlanta, Georgia
| |
Collapse
|
133
|
Miletta MC, Eblé A, Janner M, Parween S, Pandey AV, Flück CE, Mullis PE. IGHD II: A Novel GH-1 Gene Mutation (GH-L76P) Severely Affects GH Folding, Stability, and Secretion. J Clin Endocrinol Metab 2015; 100:E1575-83. [PMID: 26485222 DOI: 10.1210/jc.2015-3265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrée Eblé
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Marco Janner
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Primus-E Mullis
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
134
|
Koulgi S, Achalere A, Sonavane U, Joshi R. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations. PLoS One 2015; 10:e0143065. [PMID: 26579714 PMCID: PMC4651507 DOI: 10.1371/journal.pone.0143065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
The tp53 gene is found to be mutated in 50% of all the cancers. The p53 protein, a product of tp53 gene, is a multi-domain protein. It consists of a core DNA binding domain (DBD) which is responsible for its binding and transcription of downstream target genes. The mutations in p53 protein are responsible for creating cancerous conditions and are found to be occurring at a high frequency in the DBD region of p53. Some of these mutations are also known to be temperature sensitive (ts) in nature. They are known to exhibit partial or strong binding with DNA in the temperature range (298–306 K). Whereas, at 310 K and above they show complete loss in binding. We have analyzed the changes in binding and conformational behavior at 300 K and 310 K for three of the ts-mutants viz., V143A, R249S and R175H. QM-MM simulations have been performed on the wild type and the above mentioned ts-mutants for 30 ns each. The optimal estimate of free energy of binding for a particular number of interface hydrogen bonds was calculated using the maximum likelihood method as described by Chodera et. al (2007). This parameter has been observed to be able to mimic the binding affinity of the p53 ts-mutants at 300 K and 310 K. Thus the correlation between MM-GBSA free energy of binding and hydrogen bonds formed by the interface residues between p53 and DNA has revealed the temperature dependent nature of these mutants. The role of main chain dihedrals was obtained by performing dihedral principal component analysis (PCA). This analysis, suggests that the conformational variations in the main chain dihedrals (ϕ and ψ) of the p53 ts-mutants may have caused reduction in the overall stability of the protein. The solvent exposure of the side chains of the interface residues were found to hamper the binding of the p53 to the DNA. Solvent Accessible Surface Area (SASA) also proved to be a crucial property in distinguishing the conformers obtained at 300 K and 310 K for the three ts-mutants from the wild type at 300 K.
Collapse
Affiliation(s)
- Shruti Koulgi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Archana Achalere
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
| | - Rajendra Joshi
- Bioinformatics Group, Center for Development of Advanced Computing (C-DAC), S.P.Pune University Campus, Pune, India
- * E-mail:
| |
Collapse
|
135
|
Mutations in the KDM5C ARID Domain and Their Plausible Association with Syndromic Claes-Jensen-Type Disease. Int J Mol Sci 2015; 16:27270-87. [PMID: 26580603 PMCID: PMC4661880 DOI: 10.3390/ijms161126022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in KDM5C gene are linked to X-linked mental retardation, the syndromic Claes-Jensen-type disease. This study focuses on non-synonymous mutations in the KDM5C ARID domain and evaluates the effects of two disease-associated missense mutations (A77T and D87G) and three not-yet-classified missense mutations (R108W, N142S, and R179H). We predict the ARID domain’s folding and binding free energy changes due to mutations, and also study the effects of mutations on protein dynamics. Our computational results indicate that A77T and D87G mutants have minimal effect on the KDM5C ARID domain stability and DNA binding. In parallel, the change in the free energy unfolding caused by the mutants A77T and D87G were experimentally measured by urea-induced unfolding experiments and were shown to be similar to the in silico predictions. The evolutionary conservation analysis shows that the disease-associated mutations are located in a highly-conserved part of the ARID structure (N-terminal domain), indicating their importance for the KDM5C function. N-terminal residues’ high conservation suggests that either the ARID domain utilizes the N-terminal to interact with other KDM5C domains or the N-terminal is involved in some yet unknown function. The analysis indicates that, among the non-classified mutations, R108W is possibly a disease-associated mutation, while N142S and R179H are probably harmless.
Collapse
|
136
|
Ng JWK, Lama D, Lukman S, Lane DP, Verma CS, Sim AYL. R248Q mutation--Beyond p53-DNA binding. Proteins 2015; 83:2240-50. [PMID: 26442703 DOI: 10.1002/prot.24940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023]
Abstract
R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants.
Collapse
Affiliation(s)
- Jeremy W K Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.,Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Republic of Singapore
| | - Dilraj Lama
- Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Republic of Singapore
| | - Suryani Lukman
- Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Republic of Singapore.,Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology, and Research, Abu Dhabi, UAE
| | - David P Lane
- p53 Laboratory, Agency for Science, Technology, and Research, Singapore, Republic of Singapore
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.,Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Adelene Y L Sim
- Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore, Republic of Singapore
| |
Collapse
|
137
|
Kucukkal TG, Yang Y, Uvarov O, Cao W, Alexov E. Impact of Rett Syndrome Mutations on MeCP2 MBD Stability. Biochemistry 2015; 54:6357-68. [PMID: 26418480 PMCID: PMC9871983 DOI: 10.1021/acs.biochem.5b00790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rett syndrome causing missense mutations in the methyl-CpG-binding domain (MBD) of methyl CpG-binding protein 2 (MeCP2) were investigated both in silico and in vitro to reveal their effect on protein stability. It is demonstrated that the vast majority of frequently occurring mutations in the human population indeed alter the MBD folding free energy by a fraction of a kcal/mol up to more than 1 kcal/mol. While the absolute magnitude of the change of the free energy is small, the effect on the MBD functionality may be substantial since the folding free energy of MBD is about 2 kcal/mol only. Thus, it is emphasized that the effect of mutations on protein integrity should be evaluated with respect to the wild-type folding free energy but not with the absolute value of the folding free energy change. Furthermore, it was observed that the magnitude of the effect is correlated neither with the burial of the mutation sites nor with the basic amino acid physicochemical property change. Mutations that strongly perturb the immediate structural features were found to have little effect on folding free energy, while very conservative mutations resulted in large changes of the MBD stability. This observation was attributed to the protein's ability to structurally relax and reorganize to reduce the effect of mutation. Comparison between in silico and in vitro results indicated that some Web servers perform relatively well, while the free energy perturbation approach frequently overpredicts the magnitude of the free energy change especially when a charged amino acid is involved.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Olga Uvarov
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| | - Emil Alexov
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| |
Collapse
|
138
|
Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2015; 35:2178-85. [PMID: 26257058 PMCID: PMC5125076 DOI: 10.1038/onc.2015.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
p21-activated kinases (PAKs) are Cdc42/Rac–activated serine-threonine protein kinases that regulate of several key cancer-relevant signaling pathways, such as the Mek/Erk, PI3K/Akt, and Wnt/b-catenin signaling pathways. Pak1 is frequently overexpressed and/or hyperactivated in different human cancers, including human breast, ovary, prostate, and brain cancer, due to amplification of the PAK1 gene in an 11q13 amplicon. Genetic or pharmacological inactivation of Pak1 has been shown to reduce proliferation of different cancer cells in vitro and reduce tumor progression in vivo. In this work, we examined the roles of Pak1 in cellular and animal models of PAK1-amplified ovarian cancer. We found that inhibition of Pak1 leads to decreased proliferation and migration in PAK1 amplified/overexpressed ovarian cancer cells, and has no effect in cell that lack such amplification/overexpression. Further, we observed that loss of Pak1 function causes 11q13 amplified ovarian cancer cells to arrest in the G2/M phase of the cell cycle. This arrest correlates with activation of p53 and p21Cip and decreased expression of cyclin B1. These findings suggest that small molecule inhibitors of Pak1 may play a therapeutic role in the ~25% of ovarian cancers characterized by PAK1 gene amplification.
Collapse
|
139
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
140
|
Herzog G, Shmueli MD, Levy L, Engel L, Gazit E, Klärner FG, Schrader T, Bitan G, Segal D. The Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity. Biochemistry 2015; 54:3729-38. [DOI: 10.1021/bi501092p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gal Herzog
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| | - Merav D. Shmueli
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| | - Limor Levy
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| | - Liat Engel
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| | - Ehud Gazit
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| | - Frank-Gerrit Klärner
- Institute
of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Thomas Schrader
- Institute
of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Gal Bitan
- Department
of Neurology, David Geffen School of Medicine, Brain Research Institute,
and Molecular Biology Institute, University of California at Los Angeles, Los
Angeles, California 90095-7334, United States
| | - Daniel Segal
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Ramat Aviv, Israel 69978
| |
Collapse
|
141
|
Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015; 22:1239-49. [PMID: 26024390 PMCID: PMC4495363 DOI: 10.1038/cdd.2015.53] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022] Open
Abstract
The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller's classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph', ‘hypomorph', ‘hypermorph' ‘neomorph' or ‘antimorph', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene.
Collapse
Affiliation(s)
- T Soussi
- 1] Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden [2] Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France [3] INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France [4] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - K G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden
| |
Collapse
|
142
|
Blanden AR, Yu X, Wolfe AJ, Gilleran JA, Augeri DJ, O'Dell RS, Olson EC, Kimball SD, Emge TJ, Movileanu L, Carpizo DR, Loh SN. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol Pharmacol 2015; 87:825-31. [PMID: 25710967 PMCID: PMC4407733 DOI: 10.1124/mol.114.097550] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
p53 is a Zn(2+)-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn(2+)]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn(2+)-binding mutants by binding Zn(2+) and buffering it to a level such that Zn(2+) can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn(2+)]free by functioning as a Zn(2+) ionophore, binding Zn(2+) in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn(2+)]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2-3 minutes. These [Zn(2+)]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.
Collapse
Affiliation(s)
- Adam R Blanden
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Xin Yu
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Aaron J Wolfe
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - John A Gilleran
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - David J Augeri
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Ryan S O'Dell
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Eric C Olson
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - S David Kimball
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Thomas J Emge
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Liviu Movileanu
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Darren R Carpizo
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology (A.R.B.,S.N.L.) and Department of Neuroscience and Physiology (R.S.O., E.C.O.), State University of New York Upstate Medical University, Syracuse, New York; Rutgers Cancer Institute of New Jersey (X.Y., D.R.C.), Department of Surgery, Rutgers Robert Wood Johnson Medical School (X.Y., D.R.C.), Office of Translational Sciences (J.A.G., D.J.A., S.D.K.), and Department of Chemistry and Chemical Biology (T.J.E.), Rutgers University, New Brunswick, New Jersey; and Department of Physics, Syracuse University, Syracuse, New York (A.J.W., L.M.)
| |
Collapse
|
143
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
144
|
Arlt C, Ihling CH, Sinz A. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 2015; 15:2746-55. [PMID: 25728495 DOI: 10.1002/pmic.201400549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 11/12/2022]
Abstract
The tumor suppressor p53 presents a great challenge for 3D structural analysis due to its inherent flexibility. In this work, we gained insight into the structure of full-length wild-type human p53 in solution by chemical cross-linking/MS. This approach allowed us obtaining structural information of free wild-type p53 in solution without making use of the ultrastable quadruple p53 variant. The cross-links within one p53 monomer are in good agreement with the small-angle X-ray scattering based model of full-length p53. Our cross-linking data between different p53 molecules in the tetramer however indicate a large degree of flexibility in the C-terminal regulatory domain of full-length p53 in the absence of DNA. The cross-links suggest that the C-terminal regulatory domains are much closer to each other, resulting in a more compact arrangement of the p53 tetramer than perceived by the small-angle X-ray scattering model.
Collapse
Affiliation(s)
- Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
145
|
Adhikari J, West GM, Fitzgerald MC. Global analysis of protein folding thermodynamics for disease state characterization. J Proteome Res 2015; 14:2287-97. [PMID: 25825992 DOI: 10.1021/acs.jproteome.5b00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current methods for the large-scale characterization of disease states generally rely on the analysis of gene and/or protein expression levels. These existing methods fail to detect proteins with disease-related functions and unaltered expression levels. Here we describe the large-scale use of thermodynamic measurements of protein folding and stability for the characterization of disease states. Using the Stable Isotope Labeling with Amino Acids in Cell Culture and Stability of Proteins from Rates of Oxidation (SILAC-SPROX) technique, we assayed ∼800 proteins for protein folding and stability changes in three different cell culture models of breast cancer including the MCF-10A, MCF-7, and MDA-MB-231 cell lines. The thermodynamic stability profiles generated here created distinct molecular markers to differentiate the three cell lines, and a significant fraction (∼45%) of the differentially stabilized proteins did not have altered expression levels. Thus, the differential thermodynamic profiling strategy reported here created novel molecular signatures of breast cancer and provided additional insight into the molecular basis of the disease. Our results establish the utility of protein folding and stability measurements for the study of disease processes, and they suggest that such measurements may be useful for biomarker discovery in disease.
Collapse
Affiliation(s)
- Jagat Adhikari
- #Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27708, United States
| | - Graham M West
- †Department of Mass Spectrometry and Proteomics, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Michael C Fitzgerald
- #Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27708, United States.,∥Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
146
|
Ji L, Xu J, Liu J, Amjad A, Zhang K, Liu Q, Zhou L, Xiao J, Li X. Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor β (TGF-β) pathway. J Biol Chem 2015; 290:11729-40. [PMID: 25767119 DOI: 10.1074/jbc.m115.639351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Indexed: 11/06/2022] Open
Abstract
Specific p53 mutations abrogate tumor-suppressive functions by gaining new abilities to promote tumorigenesis. Inactivation of p53 is known to distort TGF-β signaling, which paradoxically displays both tumor-suppressive and pro-oncogenic functions. The molecular mechanisms of how mutant p53 simultaneously antagonizes the tumor-suppressive and synergizes the tumor-promoting function of the TGF-β pathway remain elusive. Here we demonstrate that mutant p53 differentially regulates subsets of TGF-β target genes by enhanced binding to the MH2 domain in Smad3 upon the integration of ERK signaling, therefore disrupting Smad3/Smad4 complex formation. Silencing Smad2, inhibition of ERK, or introducing a phosphorylation-defective mutation at Ser-392 in p53 abrogates the R175H mutant p53-dependent regulation of these TGF-β target genes. Our study shows a mechanism to reconcile the seemingly contradictory observations that mutant p53 can both attenuate and cooperate with the TGF-β pathway to promote cancer cell malignancy in the same cell type.
Collapse
Affiliation(s)
- Lei Ji
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinjin Xu
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Liu
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Ali Amjad
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Kun Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Qingwu Liu
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhou
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jianru Xiao
- the Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaotao Li
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China, the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
147
|
Johnston SB, Raines RT. Conformational stability and catalytic activity of PTEN variants linked to cancers and autism spectrum disorders. Biochemistry 2015; 54:1576-82. [PMID: 25647146 DOI: 10.1021/acs.biochem.5b00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have activity higher than the activity of those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has conformational stability greater than that of the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism and suggest that PTEN-L is a repository for a critical catalytic activity.
Collapse
Affiliation(s)
- Sean B Johnston
- Department of Biochemistry and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
148
|
Mechanism of initiation of aggregation of p53 revealed by Φ-value analysis. Proc Natl Acad Sci U S A 2015; 112:2437-42. [PMID: 25675526 DOI: 10.1073/pnas.1500243112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many oncogenic mutations inactivate the tumor suppressor p53 by destabilizing it, leading to its rapid aggregation. Small molecule drugs are being developed to stabilize such mutants. The kinetics of aggregation of p53 is deceptively simple. The initial steps in the micromolar concentration range follow apparent sigmoidal sequential first-order kinetics, with rate constants k1 and k2. However, the aggregation kinetics of a panel of mutants prepared for Φ-value analysis has now revealed a bimolecular reaction hidden beneath the observed first-order kinetics. Φu measures the degree of local unfolding on a scale of 0-1. A number of sequential Φu-values of ∼1 for k1 and k2 over the molecule implied more than one protein molecule must be reacting, which was confirmed by finding a clear concentration dependence at submicromolar protein. Numerical simulations showed that the kinetics of the more complex mechanism is difficult, if not impossible, to distinguish experimentally from simple first order under many reaction conditions. Stabilization of mutants by small molecules will be enhanced because they decrease both k1 and k2. The regions with high Φu-values point to the areas where stabilization of mutant proteins would have the greatest effect.
Collapse
|
149
|
Salehi-Reyhani A, Gesellchen F, Mampallil D, Wilson R, Reboud J, Ces O, Willison KR, Cooper JM, Klug DR. Chemical-Free Lysis and Fractionation of Cells by Use of Surface Acoustic Waves for Sensitive Protein Assays. Anal Chem 2015; 87:2161-9. [DOI: 10.1021/ac5033758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Frank Gesellchen
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Dileep Mampallil
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Rab Wilson
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Julien Reboud
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | | | | - Jonathan M. Cooper
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | | |
Collapse
|
150
|
Saha T, Kar RK, Sa G. Structural and sequential context of p53: A review of experimental and theoretical evidence. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:250-263. [PMID: 25550083 DOI: 10.1016/j.pbiomolbio.2014.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Approximately 27 million people are suffering from cancer that contains either an inactivating missense mutation of TP53 gene or partially abrogated p53 signaling pathway. Concerted action of folded and intrinsically disordered domains accounts for multi-faceted role of p53. The intricacy of dynamic p53 structure is believed to shed light on its cellular activity for developing new cancer therapies. In this review, insights into structural details of p53, diverse single point mutations affecting its core domain, thermodynamic understanding and therapeutic strategies for pharmacological rescue of p53 function has been illustrated. An effort has been made here to bridge the structural and sequential evidence of p53 from experimental to computational studies. First, we focused on the individual domains and the crucial protein-protein or DNA-protein contacts that determine conformation and dynamic behavior of p53. Next, the oncogenic mutations associated with cancer and its contribution to thermodynamic fluctuation has been discussed. Thus the emerging anti-cancer strategies include targeting of destabilized cancer mutants with selective inhibition of its negative regulators. Recent advances in development of small molecule inhibitors and peptides exploiting p53-MDM2 interaction has been included. In a nutshell, this review attempts to describe structural biology of p53 which provide new openings for structure-guided rescue.
Collapse
Affiliation(s)
- Taniya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Rajiv K Kar
- Division of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|